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Limiting behavior of weighted sums of heavy-tailed
random vectors

By CHEN PINGYAN (Guangzhou) and HANS-PETER SCHEFFLER (Dortmund)

Abstract. We present an integral test to determine the limiting behavior of
weighted sums of i.i.d. R

d-valued random vectors belonging to the (generalized)
domain of operator semistable attraction of some nonnormal law, and deduce a
version of Chover’s law of the iterated logarithm for them.

1. Introduction and Main Results

Let X,X1,X2, . . . be i.i.d. R
d-valued random vectors. We assume that

X belongs to the strict generalized domain of semistable attraction of a full
operator semistable Y having nonnormal component (see [9] for details).
Then, by definition, there exists a constant c > 1 and a sequence (kn)
of natural numbers tending to infinity with kn+1/kn → c as n → ∞ and
linear operators An ∈ GL(Rd) such that for Sn =

∑n
i=1 Xi we have

AnSkn ⇒ Y as n → ∞. (1.1)

Here ⇒ denotes convergence in distribution. The distribution ν of the
limit Y is then strictly (cE , c)-operator semistable (E an invertible d × d

matrix), that is
νc = (cEν) (1.2)

Mathematics Subject Classification: 60F15, 60F10, 60E07.
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where νc denotes the c-fold convolution power and (cEν)(A) = ν(c−EA)
is the image measure. Note that if ν is strictly operator stable with expo-
nent E, then (1.2) holds for any c > 1, but the class of operator semistable
laws is much larger than that of operator stable laws.

Then it is shown in [11], that there exists a sequence (Bn) ⊂ GL(Rd)
regularly varying with exponent −E, that is B[λn]B

−1
n → λ−E as n → ∞,

such that
BknSkn ⇒ Y as n → ∞. (1.3)

Moreover the whole sequence (BnSn)n is stochastically compact with dis-
tributions in {λ−Eνλ : λ ∈ [1, c]}. Given any unit vector θ ∈ R

d, we can
project the random walk (Sn) onto the direction θ, that is we consider the
one-dimensional random walk

〈Sn, θ〉 =
n∑

i=1

〈Xi, θ〉.

Then it is shown in [11] that for any ‖θ‖ = 1 there exists a sequence
rn = rn(θ) > 0 such that (rn〈Sn, θ〉)n is stochastically compact. The
norming sequence (rn) behaves roughly like n−1/α(θ), where the tail index
0 < α(θ) < 2 depends on the exponent E in (1.2). See [9] for details.

The tail behavior of 〈X, θ〉 is well understood. In fact, if we let
V0(t, θ) = P{|〈X, θ〉| > t} is follows from Theorem 6.4.15 of [9] that for
any δ > 0 there exist constants C1, C2 > 0 and a t0 > 0 such that

C1λ
−α(θ)−δ ≤ V0(λt, θ)

V0(t, θ)
≤ C2λ

−α(θ)+δ (1.4)

for any t ≥ t0 and any λ ≥ 1. Especially, for some B1, B2 > 0 and some
t0 > 0 we have

B1λ
−α(θ)−δ ≤ V0(t, θ) ≤ B2λ

−α(θ)+δ (1.5)

for all t ≥ t0. Here the tail-index α(θ) is as above.
(1.4) and (1.5) are weaker than the well known tail behavior

P{|Z| > t} ∼ Ct−α of an α-stable variable Z, but sufficiently sharp enough
for our purpose.

In the following, let B[0, 1] and BV [0, 1] denote, respectively, the set
of all bounded measurable functions and all functions of bounded variation
on [0, 1].
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The law of the iterated logarithm for sums of α-stable random variables
was first discovered in [7] and then generalized in various ways. See e.g.
[1]–[5], [10]. In this paper we generalize the results in [1] and [10] in the
following way:

Let X belong to the strict generalized domain of semistable attraction
of some full (cE , c) operator semistable Y having no normal component.
Then we have

Theorem 1.1. Let f : [1,∞) → (0,∞) be nondecreasing with

limx→∞ f(x) = ∞. Then:

(a) If there exists a ε0 > 0 such that
∫ ∞
2

d x
xf(x)1−ε0

< ∞, then for any

h ∈ BV [0, 1], any ‖θ‖ = 1 we have for rn = rn(θ) and α(θ) as above,

that

lim sup
n→∞

|rn
∑n

i=1 h(i/n)〈Xi, θ〉|
f(n)1/α(θ)

= 0 a.s. (1.6)

and especially for any δ > 0

lim sup
n→∞

|rn
∑n

i=1 h(i/n)〈Xi, θ〉|
(log n)(1+δ)/α(θ)

= 0 a.s. (1.7)

(b) If there exists a ε0 > 0 such that
∫ ∞
2

d x
xf(x)1+ε0

= ∞, then for any

function h satisfying that there exists a x0 ∈ (0, 1] with h(x0) �= 0 and

h is continuous in x0 and any ‖θ‖ = 1 we have

lim sup
n→∞

|rn
∑n

i=1 h(i/n)〈Xi, θ〉|
f(n)1/α(θ)

= ∞ a.s. (1.8)

and especially for any 0 < δ < 1

lim sup
n→∞

|rn
∑n

i=1 h(i/n)〈Xi, θ〉|
(log n)(1−δ)/α(θ)

= ∞ a.s. (1.9)

As a corollary the following law of the iterated logarithm (LIL) holds
true:

Corollary 1.2. Let h as in (a) and (b) of Theorem 1.1. Then for any

‖θ‖ = 1 we have

lim sup
n→∞

∣∣∣∣rn

n∑
i=1

h(i/n)〈Xi, θ〉
∣∣∣∣
1/ log log n

= e1/α(θ) a.s. (1.10)
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where rn is as above.

If we restrict θ to the set {θ : ‖θ‖ = 1, 0 < α(θ) < 1}, we can weaken
the condition on h.

Theorem 1.3. Let f : [1,∞) → (0,∞) be nondecreasing with

limx→∞ f(x) = ∞. If there exists a ε0 > 0 such that
∫ ∞
2

d x
xf(x)1−ε0

< ∞,

then for any h ∈ B[0, 1], any θ ∈ {θ : ‖θ‖ = 1, 0 < α(θ) < 1}, (1.6) holds,

and especially for any δ > 0, (1.7) holds.

Corollary 1.4. Let h ∈ B[0, 1] satisfy (b) of Theorem 1.1, then for

any θ ∈ {θ : ‖θ‖ = 1, 0 < α(θ) < 1}, (1.10) holds true.

Additionally to the results above on weighted sums of 〈Xk, θ〉 we also
derive the limiting behavior of weighted sums of 〈Sk, θ〉 as in [1].

Theorem 1.5. Let h ∈ B[0, 1] such that for some 0 < t0 < 1,∫ 1
t0

h(x)dx �= 0. Moreover let f : [1,∞) → (0,∞) be nondecreasing with

limx→∞ f(x) = ∞. Then

(a) If there exists a ε0 > 0 such that
∫ ∞
2

d x
xf(x)1−ε0

< ∞, then for any

‖θ‖ = 1 we have

lim sup
n→∞

|rn
∑n

k=1 h(k/n)〈Sk, θ〉|
nf(n)1/α(θ)

= 0 a.s. (1.11)

(b) If there exists a ε0 > 0 such that
∫ ∞
2

d x
xf(x)1+ε0

= ∞, then for any

‖θ‖ = 1 we have

lim sup
n→∞

|rn
∑n

k=1 h(k/n)〈Sk, θ〉|
nf(n)1/α(θ)

= ∞ a.s. (1.12)

Corollary 1.6. Let h(x) be as in Theorem 1.5. Then for any 0< δ < 1
and any ‖θ‖ = 1 we have

lim sup
n→∞

|rn
∑n

k=1 h(k/n)〈Sk, θ〉|
n(log n)(1+δ)/α(θ)

= 0 a.s. (1.13)

and

lim sup
n→∞

|rn
∑n

k=1 h(k/n)〈Sk, θ〉|
n(log n)(1−δ)/α(θ)

= ∞ a.s. (1.14)
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and especially

lim sup
n→∞

∣∣∣∣rn
∑n

k=1 h(k/n)〈Sk , θ〉
n

∣∣∣∣
1/ log log n

= e1/α(θ) a.s. (1.15)

Complementary to our results on the limiting behavior of weighted
sums of 〈Xi, θ〉 given above, we also consider the behavior of the norm of
the partial sum Sn of the Xi’s. Our result extends Theorem 2.6 in [10]
by dropping the symmetry assumption and by allowing one to be an
eigenvalue of the exponent E. Recall that the distribution ν of Y is a
full (cE , c) operator semistable law without normal component and let
R

d = V1 ⊕ · · · ⊕ Vp denote the spectral decomposition of R
d with respect

to E. Recall that E = E(1) ⊕ · · · ⊕ E(p) and that every eigenvalue of E(i)

has real part 1/αi for 1 ≤ i ≤ p. Then Theorem 1 in [6] implies that
0 < αp < · · · < α1 < 2.

In the following let X belong to the strict generalized domain of
semistable attracttion of a (cE , c) semistabel law ν such that (1.3) holds.
In view of Theorem 8.3.7 of [9] we can assume without loss generality that
the distribution of X is spectrally compatible with ν. Then the spaces Vi

are Bn invariant for all n and all 1 ≤ i ≤ p, so that Bn = B
(1)
n ⊕· · ·⊕B

(p)
n .

We write X = X(1) + · · ·+X(p) with respect to the spectral decomposition
of R

d obtained above and for 1 ≤ i ≤ p set X(1,...,i) = X(1) + · · · + X(i)

and B
(1,...,i)
n = B

(1)
n ⊕ · · · ⊕ B

(i)
n .

Theorem 1.7. Suppose that X is in the strict generalized domain of

semistable attraction of some full (cE , c) operator semistable law without

normal component, where c > 1. Moreover let f : [1,∞) → (0,∞) be

nondecreasing with limx→∞ f(x) = ∞. Then

(a) If there exists a ε0 > 0 such that
∫ ∞
2

d x
xf(x)1−ε0

< ∞, then for any

1 ≤ i ≤ p we have that

lim sup
n→∞

∥∥B
(1,...,i)
n S

(1,...,i)
n

∥∥
f(n)1/αi

= 0 a.s. (1.16)

and especially for any δ > 0

lim sup
n→∞

∥∥B
(1,...,i)
n S

(1,...,i)
n

∥∥
(log n)(1+δ)/αi

= 0 a.s. (1.17)
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(b) If there exists a ε0 > 0 such that
∫ ∞
2

d x
xf(x)1+ε0

= ∞, then for any

1 ≤ i ≤ p we have

lim sup
n→∞

∥∥B
(1,...,i)
n S

(1,...,i)
n

∥∥
f(n)1/αi

= ∞ a.s. (1.18)

and especially for any 0 < δ < 1

lim sup
n→∞

∥∥B
(1,...,i)
n S

(1,...,i)
n

∥∥
(log n)(1−δ)/αi

= ∞ a.s. (1.19)

Corollary 1.8. Under the assumptions of Theorem 1.7 we have

lim sup
n→∞

∥∥B(1,...,i)
n S(1,...,i)

n

∥∥1/ log log n = e1/αi a.s. (1.20)

Results similar to Theorem 1.1–1.5 and the respective corollaries also
hold true for X(1,...,i). We leave the formulation and proofs to the interested
reader.

2. Proofs

Before we give the proofs of our results in Section 1, we recall for easier
reference some notations and results of [9].

For any unit vector θ ∈ R
d and b ≥ 0 let

Ub(t, θ) = E
(|〈X, θ〉|bI(|〈X, θ〉| ≤ t)

)
.

Then it is shown in Corollary 6.4.16 of [9] that for any ‖θ‖ = 1 and b > α(θ)
there exists a t0 > 0 and constants m,M > 0 such that

m ≤ tbV0(t, θ)
Ub(t, θ)

≤ M for all t ≥ t0. (2.1)

where the tail-function V0(t, θ) = P{|〈X, θ〉| > t}.
We also need the following large deviation result presented in [10] (see

also [9], Theorem 9.1.3):
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For any sequence xn → ∞ we have

0 < lim inf
n→∞

P{|〈Sn, θ〉| > r−1
n xn}

nP{|〈X, θ〉| > r−1
n xn}

≤ lim sup
n→∞

P{|〈Sn, θ〉| > r−1
n xn}

nP{|〈X, θ〉| > r−1
n xn}

< ∞
(2.2)

where rn is the norming sequence for 〈Sn, θ〉 as above. This large deviation
result replaces the stability property of stable random variables.

Finally, some technical estimates on nP{|〈X, θ〉| > r−1
n } as in (9.21)

and (9.22) of [9] together with some asymptotic results on rn as in Lem-
ma 4.1 of [10] are needed. In fact, for any ‖θ‖ = 1 we have

0 < inf
n≥1

nP
{|〈X, θ〉| > r−1

n

} ≤ sup
n≥1

nP
{|〈X, θ〉| > r−1

n

}
< ∞, (2.3)

where rn = rn(θ) is as above.

The following lemma generalizes Lemma 2.1 in [1] and (4.8) of [10].

Lemma 2.1. Let f be as in (a) of Theorem 1.1. Then for any ‖θ‖ = 1
we have

lim sup
n→∞

max1≤k≤n |rn
∑k

i=1〈Xi, θ〉|
f(n)1/α(θ)

= 0 a.s.

Proof. Given any λ > 0 let

An =
{

max
1≤k≤n

|〈Sk, θ〉| > λr−1
n f(n)1/α(θ)

}

and for nk = 2k let

Bm =
{

max
nm≤n<nm+1

|〈Sn, θ〉| > λr−1
nm

f(nm)1/α(θ)
}
.

In view of Remark 4.5 of [11] it follows that r−1
n is eventually increasing

to infinity and hence lim supAn ⊂ lim supBm. Now argue as in the proof
of (4.8) in [10] and Lemma 2.1 in [1], using (1.4), (2.2) and (2.3) to complete
the proof. �

We need the next lemma to prove the divergent part of the main
theorem.
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Lemma 2.2. Let f be as in (b) of Theorem 1.1. Then there exists

a nondecreasing function g : [1,∞) → (0,∞) such that limn→∞ g(x) = ∞
and

∫ ∞
2

dx
x(f(x)g(x))1+ε0

= ∞.

Proof. The assertion follows from Lemma 2.2 of [1]. �

Proof of Theorem 1.1. (a) By the Abel’s partial summation meth-
od, we get

∣∣∣∣
n∑

k=1

h(k/n)〈Xk , θ〉
∣∣∣∣

=
∣∣∣∣
n−1∑
k=1

(h(k/n) − h((k + 1)/n))
k∑

i=1

〈Xi, θ〉 + h(1)
n∑

i=1

〈Xi, θ〉
∣∣∣∣

≤ max
1≤k≤n

∣∣∣∣
k∑

i=1

〈Xi, θ〉
∣∣∣∣
(n−1∑

k=1

|h(k/n) − h((k + 1)/n)| + |h(1)|
)

By the assumption there exists a constant 0 < C0 < ∞, such that∑n−1
k=1 |h(k/n) − h((k + 1)/n)| + |h(1)| < C0 for all n ≥ 1. So, using Lem-

ma 2.1 (1.16) follows.

(b) Suppose that

lim sup
n→∞

|rn
∑n

i=1 h(i/n)〈Xi, θ〉|
f(n)1/α(θ)

= ∞ a.s.

does not hold. Then by Kolmogorov 0-1 law, there exists a d0 ∈ [0,∞)
such that

lim sup
n→∞

|rn
∑n

i=1 h(i/n)〈Xi, θ〉|
f(n)1/α(θ)

= d0 a.s.

Hence, for the function g obtained in Lemma 2.2 we have

lim
n→∞

|rn
∑n

i=1 h(i/n)〈Xi, θ〉|
(f(n)g(n))1/α(θ)

= 0 a.s. (2.4)

Let {X ′, X ′
n, n ≥ 1} be independent copies of {X, Xn, n ≥ 1}. Since

equation (2.4) above also holds for (X ′
i) instead of (Xi), it follows

lim
n→∞

|rn
∑n

i=1 h(i/n)〈Xi − X ′
i, θ〉|

(f(n)g(n))1/α(θ)
= 0 a.s.
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Let n(m) = inf{n : [x0n] = m} for all m ≥ 1. By the same argument as
on page 371 of [1], we get

lim
m→∞

rn(m)|〈Xm − X ′
m, θ〉|(

f(n(m))g(n(m))
)1/α(θ)

= 0 a.s.

Then the Borel–Cantelli lemma implies

∞∑
m=1

P

{
rn(m)|〈X − X ′, θ〉| ≥ 1

2
(
f(n(m))g(n(m))

)1/α(θ))
}

< ∞.

For all m large enough, using (6.1) in [8], it follows that

P
{

rn(m)|〈X, θ〉| ≥ (
f(n(m))g(n(m))

)1/α(θ))
}

≤ 2P
{

rn(m)|〈X − X ′, θ〉| ≥ 1
2
(
f(n(m))g(n(m))

)1/α(θ))
}

and hence
∞∑

m=1

P
{

rn(m)|〈X, θ〉| ≥ (
f(n(m))g(n(m))

)1/α(θ))}
< ∞.

In view of (1.4) together with (2.3), the formula above implies that

∞∑
m=1

1
n(m)(f(n(m))g(n(m)))1+ε0

< ∞. (2.5)

Since supm≥1(n(m + 1) − n(m)) ≤ [1/x0] + 1, we have

n(m+1)−1∑
k=n(m)

1
k(f(k)g(k))1+ε0

≤ [1/x0] + 1
n(m)(f(n(m))g(n(m)))1+ε0

and then
∫ ∞

2

dx

x(f(x)g(x))1+ε0
≤ 2 +

∞∑
n=2

1
n(f(n)g(n))1+ε0

< ∞.

This leads to a contradiction and completes the proof. �
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Proof Theorem 1.3. Since

f(n)−1/α(θ)rn

∣∣∣∣∣
n∑

i=1

h(i/n)〈Xi, θ〉
∣∣∣∣∣ ≤ sup

0≤x≤1
|h(x)|f(n)−1/α(θ)rn

n∑
i=1

|〈Xi, θ〉|

and

max
2k≤n<2k+1

f(n)−1/α(θ)rn

n∑
i=1

|〈Xi, θ〉| ≤ C0r2k+1f(2k)−1/α(θ)
2k+1∑
i=1

|〈Xi, θ〉|

where C0 = supk≥1 sup2k≤n≤2k+1 rnr−1
2k+1 < ∞ by Lemma 4.1 in [10], it

suffices to prove that

r2k+1f(2k)−1/α(θ)
2k+1∑
i=1

|〈Xi, θ〉| → 0 a.s.

By the Borel–Cantelli lemma, this follows if we can show that

∞∑
k=1

P

{
r2k+1f(2k)−1/α(θ)

2k+1∑
i=1

|〈Xi, θ〉| > ε

}
< ∞ for all ε > 0. (2.6)

Observe that

∞∑
k=1

P

{
r2k+1f(2k)−1/α(θ)

2k+1∑
i=1

|〈Xi, θ〉| > ε

}

≤
∞∑

k=1

2k+1P
{
|〈X, θ〉| > r−1

2k+1f(2k)1/α(θ)
}

+
∞∑

k=1

P

{2k+1∑
i=1

|〈Xi, θ〉|I(|〈Xi, θ〉|≤ r−1
2k+1f(2k)1/α(θ))> εr−1

2k+1f(2k)1/α(θ)

}

= I1 + I2.

In view of (1.4) and (2.3), we conclude that

I1 ≤ C2 sup
k≥1

2k+1P
{|〈X, θ〉| > r−1

2k+1

} ∞∑
k=1

f(2k)−(1−ε0) < ∞.
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Moreover, by Markov’s inequality together with (1.4), (2.1) and (2.3) we
have, using α(θ) < 1, that for an individual summand of I2 we have

P

{2k+1∑
i=1

|〈Xi, θ〉|I(|〈Xi, θ〉| ≤ r−1
2k+1f(2k)1/α(θ)) > εr−1

2k+1f(2k)1/α(θ)

}

≤ ε−1r2k+1f(2k)−1/α(θ)2k+1E|〈X, θ〉|I(|〈X, θ〉| ≤ r−1
2k+1f(2k)1/α(θ))

= ε−1r2k+1f(2k)−1/α(θ)2k+1U1

(
r−1
2k+1f(2k)1/α(θ), θ

)

= ε−1
U1

(
r−1
2k+1f(2k)1/α(θ), θ

)
r−1
2k+1f(2k)1/α(θ)V0

(
r−1
2k+1f(2k)1/α(θ), θ

)

· V0

(
r−1
2k+1f(2k)1/α(θ), θ

)
V0

(
r−1
2k+1, θ

) 2k+1V0

(
r−1
2k+1 , θ

)

≤ Cf(2k)−(1−ε0)

for all large k and some constant C > 0. Hence, by our assumption on f

we conclude I2 < ∞, so (2.6) holds true. This completes the proof. �

Proof of Theorem 1.5. By analyzing the proof of Theorem 1.1
carefully, it is easy to see that the result of Theorem 1.1 and hence of
Corollary 1.2 also hold if h(k/n) is replaced by an,k where the real trian-
gular array {an,k : 1 ≤ k ≤ n, n ≥ 1} fulfills the following two conditions:

(a) supn≥1

(∑n−1
k=1 |an,k − an,k−1| + |an,n|

)
< ∞.

(b) There exist increasing sequences (n(k))k and (m(k))k such that
supk≥1(n(k + 1) − n(k)) < ∞ and lim infk→∞ |an(k),m(k)| > 0.

Now, under the assumptions of Theorem 1.5, let an,k = 1
n

∑n
i=k h(i/n).

Then it is easy to see that {an,k} fulfills (a) and (b) above. An application
of the above mentioned variant of Theorem 1.1 to the present case gives,
after a change of the order of summation, the desired result. �

Before we give a proof of Theorem 1.7 and its corollary, we first prove
a special case sufficient for our purpose. Recall from [9] that a (cE , c)
operator semistable law is called spectrally simple, if every eigenvalue of
E has the same real part.
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Proposition 2.3. Let the distribution of Y be a full (cE , c) operator

semistable, spectrally simple, nonnormal law on a finite dimensional vector

space V and let X belong to the strict generalized domain of semistable

attraction of Y i.e. (1.3) holds. Let f : [1,∞] → (0,∞) nondecreasing with

limx→∞ f(x) = ∞. Then

(a) If there exists a ε0 > 0 such that
∫ ∞
2

d x
xf(x)1−ε0

< ∞, then

lim sup
n→∞

∥∥BnSn

∥∥
f(n)1/α

= 0 a.s.

(b) If there exists a ε0 > 0 such that
∫ ∞
2

d x
xf(x)1+ε0

= ∞, then

lim sup
n→∞

∥∥BnSn

∥∥
f(n)1/α

= ∞ a.s.

and especially

lim sup
n→∞

∥∥BnSn

∥∥ 1
log log n = e1/α a.s.

where Bn ∈ RV (−E) is the embedding sequence and 1/α is the real part

of the eigenvalues of E.

Proof. (a) Let nk = 2k. Since

max
nk≤n<nk+1

‖BnSn‖
f(n)1/α

≤ sup
k≥1

sup
nk≤n<nk+1

‖BnB−1
nk+1

‖ max
nk≤n<nk+1

‖Bnk+1
Sn‖

f(nk)1/α

and by (4.7) of [10] we have supk≥1 supnk≤n<nk+1
‖BnB−1

nk+1
‖ < ∞, it is

enough to prove that

max
nk≤n<nk+1

‖Bnk+1
Sn‖

f(nk)1/α
→ 0 a.s. as k → ∞

holds true. Let {θ(1), . . . , θ(m)} be an orthonormal basis of V . Since

‖Bnk+1
Sn‖2 = |〈Bnk+1

Sn, θ(1)〉|2 + · · · + |〈Bnk+1
Sn, θ(m)〉|2

it suffices to show that for any 1 ≤ j ≤ m we have

max
nk≤n<nk+1

|〈Bnk+1
Sn, θ(j)〉|

f(nk)1/α
→ 0 a.s. as k → ∞. (2.7)
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Fix any 1 ≤ j ≤ m. Then (2.7) follows, if we can show that

max
nk≤n<nk+1∣∣〈Bnk+1

Sn,θ(j)〉−nE
[
〈Bnk+1

X,θ(j)〉I(|〈Bnk+1
X,θ(j)〉| ≤ f(nk)1/α)

]∣∣
f(nk)1/α → 0 (2.8)

a.s. as k → ∞ and

nkE
[
〈Bnk+1

X,θ(j)〉I(|〈Bnk+1
X,θ(j)〉| ≤ f(nk)1/α)

]
f(nk)1/α → 0 as k → ∞. (2.9)

Write B∗
nk+1

θ(j) = rkθk for some rk > 0 and ‖θk‖ = 1. For k ≥ 1 and ε > 0
let

Ak =
{

max
nk≤n<k+1

∣∣rk〈Sn, θk〉 − nE
[
rk〈X, θk〉I(|rk〈X, θk〉| ≤ f(nk)1/α)

]∣∣
> εf(nk)1/α

}
.

For the proof of (2.8), by Borel–Cantelli’s Lemma, we have to show that∑∞
k=1 P (Ak) < ∞. Now let

Ek =
{|rk〈Xi, θk〉| > f(nk)1/α for at least one 1 ≤ i ≤ nk+1

}

and

Gk =
{

max
nk≤n<nk+1

∣∣∣rk

n∑
i=1

〈Xi, θk〉I(rk|〈Xi, θk〉| ≤ f(nk)1/α)

− nE
[
rk〈Xi, θk〉I(rk|〈Xi, θk〉| ≤ f(nk)1/α)

]∣∣∣ > εf(nk)1/α
}

.

Then Ak ⊂ Ek∪Gk. Moreover, using that supnP{|〈BnX, θ(j)〉| > 1} < ∞,
together with Corollary 4.15 of [12] we obtain, by setting δ = αε0, that

P (Ek) ≤ nk+1V0(r−1
k f(nk)1/α, θk)

=
V0(r−1

k f(nk)1/α, θk)
V0(r−1

k , θk)
nk+1V0(r−1

k , θk)

≤ Cf(nk)−1+ε0
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for all large k and some constant C > 0. Moreover, in view of Theorem
4.20 and Corollary 4.15 of [12], we get using Kolmogoroff’s inequality, that

P (Gk) ≤ ε−2f(nk)−2/αnk+1E
[
r2
k〈X, θk〉2I(|〈X, θk〉| ≤ r−1

k f(nk)1/α)
]

= ε−2nk+1

(
f(nk)−1rk

)2
U2

(
r−1
k f(nk)1/α, θk

)

= ε−2 U2

(
r−1
k f(nk)1/α, θk

)
(
r−1
k f(nk)1/α

)2
V0

(
r−1
k f(nk)1/α, θk

)

· V0

(
r−1
k f(nk)1/α, θk

)
V0(r−1

k , θk)
nk+1V0(r−1

k , θk)

≤ Cε−2f(nk)−1+ε0

for some constant C > 0 and all large k. Hence P (Ak) ≤ Cf(nk)−1+ε0 for
all large k, so by our assumption on f , (2.8) holds true.

For the proof of (2.9) note that since by [11] the sequence (BnSn)
is stochastically compact, we have Bnk

Snk
/f(nk)1/α → 0 in probability.

Using that (Bn) is regularly varying that implies that for any 1 ≤ j ≤ m

〈Bnk+1
Snk

, θ(j)〉
f(nk)1/α

→ 0 in probability. (2.10)

Now (2.8) implies that
∣∣〈Bnk+1Snk

, θ(j)〉 − nkE
[〈Bnk+1X, θ(j)〉I(|〈Bnk+1X, θ(j)〉| ≤ f(nk)1/α)

]∣∣
f(nk)1/α

→ 0

in probability, as k → ∞, so by (2.10) it follows that (2.9) holds true.
The proof of (b) is similar to the proof of (4.16) in [10] and therefore

omitted. �

Proof of Theorem 1.7. Using Proposition 2.3, the result of Theo-
rem 1.7 follows along the lines of the proof of Theorem 2.6 in [10]. �
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