When does an iterate equal a power?

By CHE TAT NG (Waterloo) and WEINIAN ZHANG (Chengdu)

Abstract

Let f be a continuous self-map on the real line, $f^{[m]}$ denote its m-th iterate and f^{n} its n-th multiplicative power. In this paper we solve the functional equation $f^{[m]}=f^{n}$ for integers $m \geq 2, n \geq 2$. When $m=n$, it reveals functions whose n-th iterate and power agree.

1. Introduction

Let $f: X \rightarrow X$ be a map on a set $X, m \geq 0$ an integer. The m-th iterate $f^{[m]}$ of f is defined by

$$
f^{[m]}(x)=f\left(f^{[m-1]}(x)\right), \quad f^{[0]}(x) \equiv x
$$

When f is bijective, with inverse f^{-1}, iterates with negative exponents are defined by $f^{[-m]}=\left(f^{-1}\right)^{[m]}$. Sometimes the brackets around m in $f^{[m]}$ are omitted when there is no confusion [1], [4]-[6]. As pointed out in [2], in circumstances where f^{m} has other natural meaning, such an omission would possibly lead some readers astray. For functions defined on the real line \mathbb{R}, let f^{m} denote its m-th (multiplicative) power. We would like to ask when $f^{[m]}$ and f^{m} actually agree, i.e.

$$
\begin{equation*}
f^{[m]}=f^{m} \tag{1}
\end{equation*}
$$

[^0]On various domains, this functional equation was discussed ([2], [3]) for $m=-1$. In particular, in [2] the problem leads to a discussion on the 4 -th iterative roots of the identity as [4] does. In this paper we seek continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
\begin{equation*}
f^{[m]}=f^{n} \tag{2}
\end{equation*}
$$

for given integers $m \geq 2, n \geq 1$.

2. Fundamental results

The following theorem, as a fundamental result, links our problem to iterative roots of special functions.

Theorem 1. A continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ is a solution of equation (2) if and only if there exists an interval I in \mathbb{R} such that
(i) I is non-empty, closed relative to \mathbb{R}, and is invariant under the power function $F(x)=x^{n}$,
(ii) I is also f-invariant, $f^{[m-1]}=F$ on I, and
(iii) $\operatorname{ran}(f) \subset I$, where $\operatorname{ran}(f)$ denotes the range of f.

Proof. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous solution of equation (2):

$$
\begin{equation*}
f^{[m]}(x)=(f(x))^{n}, \quad \forall x \in \mathbb{R} \tag{3}
\end{equation*}
$$

Putting $y=f(x)$ in it we get

$$
\begin{equation*}
f^{[m-1]}(y)=y^{n}, \quad \forall y \in \operatorname{ran}(f) \tag{4}
\end{equation*}
$$

Since f is continuous, $\operatorname{ran}(f)$ is a non-empty interval. Let I be its closure in \mathbb{R}. Then I is also an interval and (iii) holds. Clearly, (iii) implies that I is f-invariant. By continuity, equation (4) can be extended to I and we have (ii):

$$
\begin{equation*}
f^{[m-1]}(y)=y^{n}, \quad \forall y \in I \tag{5}
\end{equation*}
$$

Being f-invariant, I is also invariant under $f^{[m-1]}$. In view of (5), we get (i) - that I is invariant under the power function F. The converse is easy to check. With (iii), $\operatorname{ran}(f) \subset I$, (ii) implies (4) which is equivalent to (3).

While there is no need for I to be a closed interval in order to get the converse in the above theorem, its imposition eliminates the need to discuss a broader class of I. Its closure assures that continuous self-maps on I have continuous extension to the larger domain \mathbb{R} without an expansion on its codomain. Although we could impose the condition that $\operatorname{ran}(f)$ is dense in I, we do not do this because it would be inconvenient and unnecessary for the converse.

Referring to condition (i), let

$$
a:=\inf I, \quad b:=\sup I
$$

Thus a is possibly $-\infty, b$ is possibly ∞, and $I=[a, b] \cap \mathbb{R}$. The determination of F-invariant I is straight forward. In the next proposition we state the result.

Proposition 1. For even $n, n \geq 2, I$ is invariant under $F(x)=x^{n}$ if and only if its ends a, b are in one of the following four combinations: $\left(E_{1}\right)$ $a \in[-1,0]$ and $b \in\left[a^{n}, 1\right]$, or $\left(E_{2}\right) a \in[-\infty, 0]$ and $b=\infty$, or $\left(E_{3}\right) a=1$ and $b=1$, or $\left(E_{4}\right) a \in[1, \infty[$ and $b=\infty$. For odd $n, n \geq 3, I$ is invariant under $F(x)=x^{n}$ if and only if its ends a, b are in one of the following five combinations: $\left(O_{1}\right) a=-\infty$ and $\left.\left.b \in\right]-\infty,-1\right]$, or $\left(O_{2}\right) a=-1$ and $b=-1$, or $\left(O_{3}\right) a \in\{-\infty\} \cup[-1,0]$ and $b \in[0,1] \cup\{\infty\}$, or $\left(O_{4}\right) a=1$ and $b=1$, or $\left(O_{5}\right) a \in[1, \infty[$ and $b=\infty$. For $n=1, a$ and b can be chosen arbitrarily with $a \leq b$.

We now turn our attention to condition (ii). Letting $g=\left.f\right|_{I}: I \rightarrow I$, we shall solve the equation

$$
\begin{equation*}
g^{[m-1]}=\left.F\right|_{I} \tag{6}
\end{equation*}
$$

in the next two sections. Together with the above fundamental results, (2) is solved fully. Solving (6) for $m=2$ is a trivial mission, so in the coming sections we will assume $m>2$.

3. Cases of odd n

In the special case $n=1$,(6) is known as a Babbage equation, i.e., $F=\mathrm{id}$ on I, where id denotes the identity map. By Theorem 11.7.1 in [4], either $g=\mathrm{id}$ on I or m has to be odd and g is a strictly decreasing involution. As described in [4], decreasing involutions on an interval have simple geometric interpretation: their graph has to be symmetric with respect to the diagonal $\left\{(x, y) \in \mathbb{R}^{2}: x=y\right\}$. In the sequel, we need only discuss the cases of an odd $n \geq 3$.

Lemma 1. Let $n \geq 3$ be odd. Let g be a continuous $(m-1)$-th order iterative root of $F(x)=x^{n}$ on I. Then (i) g is strictly monotonic, (ii) g has no periodic points other than 0,1 and -1 , and they are in fact periodic points of g whenever they are in I, (iii) for strictly increasing g, its periodic points can only be of order 1 (a fixed point), (iv) for strictly decreasing g, its periodic points are of order 1 and 2, while at most one is of order 1 , and $(-1,1)$ is its only possible 2-cycle in I.

Proof. (i) With odd n, F is injective. If $g\left(x_{1}\right)=g\left(x_{2}\right)$, then $g^{[m-1]}\left(x_{1}\right)=g^{[m-1]}\left(x_{2}\right)$. Thus $F\left(x_{1}\right)=F\left(x_{2}\right)$, implying $x_{1}=x_{2}$. This shows that g is also injective. Being continuous on the interval, g must be strictly monotonic. (ii) If x_{0} is a periodic point of g, then x_{0} must be a fixed point of an iterate of F. However, for any integer $k \geq 1$ the function $F^{[k]}(x)=x^{n^{k}}$ has exactly three fixed points at 0,1 and -1 . This proves that x_{0} can only be 0,1 or -1 . Conversely, every fixed point x_{0} of F is a periodic point of g, as $g^{[m-1]}\left(x_{0}\right)=x_{0}$ where $m-1 \geq 1$.
(iii) This is a general observation that the only order preserving (finite) cycles on a linearly ordered set are the trivial 1-cycles. (iv) An order reversing cycle on a linearly orderly set must be a 1 -cycle or a 2 -cycle. A map with more than one fixed point cannot be order reversing. The 2-cycles $(-1,0)$ and $(0,1)$ cannot occur for continuous g, because no fixed points are present in the open intervals $]-1,0[$ and $] 0,1[$.

According to the list in Proposition 1, we shall seek roots on intervals $I=[a, b] \cap \mathbb{R}$ where a, b are in one of the following five combinations $\left(O_{1}\right) a=-\infty$ and $\left.\left.b \in\right]-\infty,-1\right]$, or $\left(O_{2}\right) a=-1$ and $b=-1$, or $\left(O_{3}\right)$ $a \in\{-\infty\} \cup[-1,0]$ and $b \in[0,1] \cup\{\infty\}$, or $\left(O_{4}\right) a=1$ and $b=1$, or $\left(O_{5}\right)$ $a \in[1, \infty[$ and $b=\infty$.

In light of Lemma 1, (i), all roots are strictly monotonic. Within the following two subsections, the shorter form "increasing g ", for instance, will have the same effect as "strictly increasing g ".
3.1. For increasing \boldsymbol{g} on \boldsymbol{I}. The solving of (6) for increasing g on intervals of type $\left(O_{3}\right)$ can be further simplified by solving it "componentwise", as stated more accurately in the following:

Proposition 2. Let $n \geq 3$ be odd. Then g is a strictly increasing continuous $(m-1)$-th order iterative root of $F(x)=x^{n}$ on I if and only if it is the union of strictly increasing roots on each of the closed connected sub-intervals of I separated by the fixed points $\{0, \pm 1\} \cap I$.

Theorem 11.2.2 in [4] gives the results on increasing iterative roots on I. In particular it shows that F possesses increasing iterative roots g of all orders, and they can be constructed by piecewise defining.

Moreover, it is easy to show that $g(x) \leq x$ (resp. $\geq x$) for $x \in$ $]-\infty,-1] \cup[0,1]$ (resp. $x \in[-1,0] \cup[1,+\infty[$) if g is defined at the point x. For example, if g is an increasing second order root and $g\left(t_{0}\right)>t_{0}$ for some $t_{0} \in[0,1]$ where g is defined, then $F\left(t_{0}\right)=g\left(g\left(t_{0}\right)\right)>g\left(t_{0}\right)>t_{0}$ since g is strictly increasing. This will contradict $F\left(t_{0}\right)=t_{0}^{n} \leq t_{0}$. This property of g is observed when we apply Theorem 11.2.5 in [4] during a subsequent discussion on the decreasing roots.

In what follows we select a typical interval under the case $-1<a<0$ and $b=0$ to illustrate the general construction of an increasing root.

Let g be a strictly increasing continuous self-map on $[a, 0]$ and

$$
\begin{equation*}
g^{[m-1]}(x)=F(x)=x^{n} \quad(x \in[a, 0]) \tag{7}
\end{equation*}
$$

According to Lemma 1, g has 0 as its unique fixed point. Letting

$$
\begin{equation*}
c_{j}=g^{[j]}(a), \quad j=0, \ldots, m-1 \tag{8}
\end{equation*}
$$

we first get $-1<a=c_{0} \leq c_{1} \leq c_{2} \leq \cdots \leq c_{m-2} \leq c_{m-1}=F(a)=a^{n}<0$ from the range condition $\operatorname{ran}\left(\left.F\right|_{I}\right)=\operatorname{ran}\left(g^{[m-1]}\right) \subset \operatorname{ran}\left(g^{[m-2]}\right) \subset \cdots \subset$ $\operatorname{ran}(g) \subset[a, 0]$ while using $g(0)=0$. Because g has 0 as its unique fixed point, the above inequalities must be strict:

$$
-1<a=c_{0}<c_{1}<c_{2}<\cdots<c_{m-2}<c_{m-1}=a^{n}<0
$$

Recall that $m>2$ has been assumed. A fundamental region for g is $\left[c_{0}, c_{m-2}\right]$, in the sense that the restriction

$$
g_{0}:=\left.g\right|_{\left[c_{0}, c_{m-2}\right]}
$$

can be initiated reasonably freely, and it determines g on the full $[a, 0]$. The initial g_{0} is an order preserving homeomorphism, mapping [c_{0}, c_{m-2}] onto $\left[c_{1}, F(a)\right]$, and $g_{0}\left(c_{j}\right)=c_{j+1}$ for each $j=0, \ldots, m-2$. It implies

$$
\begin{equation*}
g_{0}^{[m-2]}\left(\left[c_{0}, c_{1}\right]\right)=\left[c_{m-2}, c_{m-1}\right] \tag{9}
\end{equation*}
$$

in particular, and g on $[a, 0]$ is uniquely determined by g_{0} via:
Step 1. For each $\ell \geq 1$ and $x \in\left[F^{[\ell]}\left(c_{0}\right), F^{[\ell]}\left(c_{m-2}\right)\right]$, there exists a unique $y \in\left[c_{0}, c_{m-2}\right]$ such that $F^{[\ell]}(y)=x$. We have $g(x)=g\left(F^{[\ell]}(y)\right)=$ $F^{[\ell]}(g(y))$. Thus $g(x)=F^{[\ell]}\left(g_{0}(y)\right)$.

It corresponds to the observation that for each $\ell \geq 0, g$ maps $\left[F^{[\ell]}\left(c_{m-3}\right)\right.$, $\left.F^{[\ell]}\left(c_{m-2}\right)\right]$ homeomorphically onto $\left[F^{[\ell]}\left(c_{m-2}\right), F^{[\ell+1]}(a)\right]$, order preserving.

Step 2. For each $\ell \geq 0$ and $x \in\left[F^{[\ell]}\left(c_{m-2}\right), F^{[\ell+1]}(a)\right]$, there exists a unique $y \in\left[c_{m-2}, F(a)\right]$ such that $F^{[\ell]}(y)=x$. Further, by (9), there exists a unique $z \in\left[c_{0}, c_{1}\right]$ such that $g_{0}^{[m-2]}(z)=y$. We have $g(x)=g\left(F^{[\ell]}(y)\right)=$ $F^{[\ell]}\left(g\left(g_{0}^{[m-2]}(z)\right)\right)=F^{[\ell+1]}(z)$.

It reflects that g maps $\left[F^{[\ell]}\left(c_{m-2}\right), F^{[\ell+1]}(a)\right]$ onto $\left[F^{[\ell+1]}(a), F^{[\ell+1]}\left(c_{1}\right)\right]$ homeomorphically, order preserving.

Step 3. $g(0)=0$.
Conversely, let $\left(c_{j}\right)_{j=0}^{m-1}$ be a strictly increasing sequence with $c_{0}=a$ and $c_{m-1}=F(a)$, and let g_{0} be an order preserving homeomorphism from $\left[c_{0}, c_{m-2}\right]$ onto $\left[c_{1}, c_{m-1}\right]$ satisfying (8), we can verify that the above three steps well define an extension of g_{0} to a continuous increasing g satisfying (7).

3.2. For decreasing g on I.

Proposition 3. Let $n \geq 3$ be odd. Let g be a strictly decreasing continuous $(m-1)$-th order iterative root of $F(x)=x^{n}$ on I. Then the five interval types listed in Proposition 1 are confined further to $\left(C_{1}\right) I$ is one of the degenerated singletons $\{-1\},\{0\}$ and $\{1\},\left(C_{2}\right) I=\mathbb{R}$ or $[-1,1]$, or $\left(C_{3}\right) I=[a, b]$ where $-1<a<0,0<b<1$.

Proof. Amongst the five interval types $\left(O_{1}\right) a=-\infty$ and $b \in$ $]-\infty,-1]$, or $\left(O_{2}\right) a=-1$ and $b=-1$, or $\left(O_{3}\right) a \in\{-\infty\} \cup[-1,0]$ and $b \in[0,1] \cup\{\infty\}$, or $\left(O_{4}\right) a=1$ and $b=1$, or $\left(O_{5}\right) a \in[1, \infty[$ and $b=\infty$, we shall rule some out quickly. When $a=-\infty, b$ cannot be finite because the condition $\operatorname{ran}\left(\left.F\right|_{I}\right) \subset \operatorname{ran}(g)$ cannot be met by finite b. For the same reason, a finite a cannot be paired with $b=\infty$. By Lemma 1, I cannot contain two points in $\{-1,0,1\}$ without having the third. This rules out both $a=-1$ and $0 \leq b<1$, and $-1<a \leq 0$ and $b=1$. The case $a=0$ and $0<b<1$ is not admissible because the order reversing g cannot map $[0, b]$ into $[0, b]$ while keeping 0 fixed. For the same reason the case $-1<a<0$ and $b=0$ is not admissible.

In the following we give the construction of g on intervals I listed in Proposition 3. On a degenerated singleton I, the answer for g is trivial. For the rest of this subsection, we shall assume that I is not a singleton. Because F is strictly increasing, $m-1$ must be even, say $m-1=2 k$.

Let

$$
\phi:=g^{[2]} .
$$

Then ϕ is continuous, strictly increasing and satisfies

$$
\begin{equation*}
\phi^{[k]}(x)=x^{n} . \tag{10}
\end{equation*}
$$

As illustrated in the previous subsection we can solve for all increasing ϕ from (10). By Lemma $1, \phi$ has no periodic points other than 0,1 and -1 and they are in fact fixed points of ϕ whenever they are in I.

For each solved ϕ, which is perhaps not a power function, we continue to solve for continuous and strictly decreasing g from

$$
\begin{equation*}
g^{[2]}=\phi . \tag{11}
\end{equation*}
$$

CASE $a=-1$ and $b=1$, or $a=-\infty$ and $b=\infty$.
In this case, the fixed points of ϕ are $-1,0$ and 1 . Notice that F is a bijection on I and so is ϕ. Thus ϕ is an increasing homeomorphism of I onto I.

Theorem 11.2.5 in [4] is applicable, giving the construction of g. A fundamental region for g is $\left[x_{0}, \phi\left(x_{0}\right)\right]$ on $[-1,1]$, or $\left[x_{0}, \phi\left(x_{0}\right)\right] \cup\left[\phi\left(y_{0}\right), y_{0}\right]$ on \mathbb{R}, where $-1<x_{0}<0$ and $y_{0}<-1$ are arbitrarily chosen.

CASE $-1<a<0,0<b<1$.
From $\operatorname{ran}(\phi)=\operatorname{ran}\left(g^{[2]}\right) \subset \operatorname{ran}(g) \subset[a, b]$ we get $[\phi(a), \phi(b)] \subset[g(b), g(a)] \subset[a, b]$. Letting

$$
[c, d]=\operatorname{ran}(g), \quad \text { where } c=g(b), d=g(a)
$$

we note their relative positions in \mathbb{R} :

$$
-1<a \leq c \leq \phi(a)<0<\phi(b) \leq d \leq b<1
$$

Consider the sequences

$$
a, \phi(a), \phi^{[2]}(a), \ldots, \phi^{[\ell]}(a), \ldots
$$

and

$$
d, \phi(d), \phi^{[2]}(d), \ldots, \phi^{[\ell]}(d), \ldots
$$

which are strictly increasing and strictly decreasing, respectively. They tend to 0 , the unique fixed point of ϕ. Observe that g maps each term in the first sequence to a corresponding term in the second sequence, i.e.,

$$
\begin{equation*}
g\left(\phi^{[\ell]}(a)\right)=\phi^{[\ell]}(d) \quad \ell=0,1,2, \ldots \tag{12}
\end{equation*}
$$

as g and ϕ commute. Moreover, each term in the second sequence is mapped by g to a shifted term in the first sequence, i.e.,

$$
\begin{equation*}
g\left(\phi^{[\ell]}(d)\right)=\phi^{[\ell+1]}(a) \quad \ell=0,1,2, \ldots \tag{13}
\end{equation*}
$$

The interval $[a, \phi(a)]$ is a fundamental region for g as we shall explain.
(1) The initial g_{0} maps $[a, \phi(a)]$ homeomorphically onto $[\phi(d), d]$, $g_{0}(a)=d, g_{0}(\phi(a))=\phi(d)$ and $d \in[\phi(b), b]$.
(2) g_{0} determines g elsewhere as follows:

Step 1. For each $\ell \geq 1$ and $x \in\left[\phi^{[\ell]}(a), \phi^{[\ell+1]}(a)\right]$, there exists a unique $y \in[a, \phi(a)]$ such that $\phi^{[\ell]}(y)=x$. We have $g(x)=g\left(\phi^{[\ell]}(y)\right)=\phi^{[\ell]}(g(y))$. Thus $g(x)=\phi^{[\ell]}\left(g_{0}(y)\right)$.

Step 2. For each $\ell \geq 0$ and $x \in\left[\phi^{[\ell+1]}(d), \phi^{[\ell]}(d)\right]$, there exists a unique $y \in\left[\phi^{[\ell]}(a), \phi^{[\ell+1]}(a)\right]$ such that $g(y)=x$. We have $g(x)=g(g(y))=\phi(y)$.

Step 3. For each $x \in[d, b]$, we see $\phi(x) \in[\phi(d), \phi(b)] \subset[\phi(d), d]$. Since g_{0} maps $[a, \phi(a)]$ homeomorphically onto $[\phi(d), d]$, there exists a unique
$y \in[a, \phi(a)]$ such that $g(y)=\phi(x)$. Because $\phi(x)=g(g(x))$ and g is injective, we have $g(x)=y$.

So g maps $[d, b]$ homeomorphically onto $[c, \phi(a)]$, order reversing.
Step 4. $g(0)=0$ according to Lemma 1.
Conversely, it is straight forward to check that if g_{0} is a continuous order reversing map of the interval $[a, \phi(a)]$ onto the interval $[\phi(d), d]$ for some $d \in[\phi(b), b]$, then the above four steps well define a continuous extension g on $[a, b]$ which satisfies $g^{[2]}=\phi$.

4. Cases of even n

In this final section, we determine the continuous ($m-1$)-th order iterative roots of $F(x)=x^{n}$ on I when n is an even positive integer. According to Proposition 1, there are four types of $I=[a, b] \cap \mathbb{R}$ to cover: Case $\left(E_{1}\right) a \in[-1,0]$ and $b \in\left[a^{n}, 1\right]$, or $\left(E_{2}\right) a \in[-\infty, 0]$ and $b=\infty$, or $\left(E_{3}\right) a=1$ and $b=1$, or $\left(E_{4}\right) a \in[1, \infty[$ and $b=\infty$.

Lemma 2. Let $n \geq 2$ be even. Let g be a continuous ($m-1$)-th order iterative root of $F(x)=x^{n}$ on I. Then (i) g has no periodic points other than 0 and 1 , and they are in fact fixed points of g whenever they are in I, (ii) g is strictly increasing on $I_{+}:=I \cap[0,+\infty[$, and is strictly decreasing on $\left.\left.I_{-}:=I \cap\right]-\infty, 0\right]$.

Proof. (i) If x_{0} is a periodic point of g, then x_{0} must be a fixed point of an iterate of F. For any integer $k \geq 1$ the function $F^{[k]}(x)=x^{n^{k}}$ has exactly two fixed points at 0 and 1 . This proves that x_{0} can only be 0 or 1 . Conversely, every fixed point x_{0} of F, if it is in I, is a periodic point of g. So 0 and 1 are indeed periodic points of g whenever they are in I. Having no third fixed point between 0 and 1 , they cannot form a 2 -cycle under the continuous g. This shows that 0 and 1 are in fact fixed points of g whenever they are in I.
(ii) With even $n \geq 2, F$ is injective on $]-\infty, 0]$ and on $[0,+\infty[$. Repeating the arguments in the proof of Lemma 1 , we see that g must be strictly monotonic on each of the two intervals $I \cap]-\infty, 0]$ and $I \cap[0,+\infty[$. Consider the four types of I.

Case $\left(E_{4}\right): a \in[1, \infty[$ and $b=\infty$. Subcase 1. Suppose $a>1$. By (i), $g(a) \neq a$. The interval I being g-invariant, we must have $g(a)>a$. If g were strictly decreasing, we would have $a \leq g^{(2)}(a)<g(a)$. The compact interval $[a, g(a)]$ will then be g-invariant and must contain a fixed point of g. This is a contradiction to (i), that g has no fixed point in I when $a>1$. So g is strictly increasing. Subcase 2. $a=1$. By (i), $g(a)=a$. As I is g-invariant, g cannot be strictly decreasing.

Case $\left(E_{1}\right): a \in[-1,0]$ and $b \in\left[a^{n}, 1\right]$. Subcase 1. Suppose $a<0$. By (i), $g(0)=0$. First, we observe that if g were strictly increasing on both I_{+}and I_{-}, then it is strictly increasing on I. This would imply all its iterates, including F, are strictly increasing on I. But F is not strictly increasing. This contradiction shows that g cannot be strictly increasing on both I_{+}and I_{-}. For similar reasons it cannot be strictly decreasing on both I_{+}and I_{-}. Next, if g were strictly increasing on I_{-}and strictly decreasing on I_{+}, then g and therefore all its iterates will have their range included in I_{-}. This is a contradiction as F does not comply with this property. So we reached the conclusion that g is strictly increasing on I_{+} and strictly decreasing on I_{-}. Subcase 2. Suppose $a=0$. The argument for g strictly increasing is the same as that of Subcase 2 in Case $\left(E_{4}\right)$.

Case $\left(E_{2}\right): a \in[-\infty, 0]$ and $b=\infty$. Subcase 1. Suppose $a<0$. In this case, 0 is an interior point of I and the proof given above for Subcase 1 in Case $\left(E_{1}\right)$ is also valid. Subcase 2. Suppose $a=0$. The argument for an increasing g is the same as that of Subcase 2 in Case $\left(E_{4}\right)$.

Case $\left(E_{3}\right): a=1$ and $b=1$. The statements are trivial.
Lemma 3. Let $n \geq 2$ be even. Let g be a continuous $(m-1)$-th orderiterative root of $F(x)=x^{n}$ on $I=[a, b] \cap \mathbb{R}$ which contains 0 as an interior point. Then g is even on the maximal subinterval of I symmetric about 0. Furthermore, it can be extended uniquely to a continuous ($m-1$)th order iterative root \bar{g} of F on the balanced interval $\bar{I}:=[-c, c] \cap \mathbb{R}$ where $c=\max (|a|, b)$, with $\operatorname{ran}(\bar{g})=\operatorname{ran}(g) \subset I$.

Proof. Let $x \in I$ and assume $-x \in I$. By Lemma $2, g$ is minimized at the fixed point 0 . So $y_{1}:=g(x)$ and $y_{2}:=g(-x)$ are both in I_{+}. We also have $g^{[m-2]}\left(y_{1}\right)=g^{[m-1]}(x)=F(x)$ and $g^{[m-2]}\left(y_{2}\right)=g^{[m-1]}(-x)=$ $F(-x)$. Because F is even, it follows that $g^{[m-2]}\left(y_{1}\right)=g^{[m-2]}\left(y_{2}\right)$. The strict monotonicity of g on I_{+}which is g-invariant yields $y_{1}=y_{2}$. This
proves the evenness of g, that $g(x)=g(-x)$ whenever both x and $-x$ are in I. The function $\bar{g}: \bar{I} \rightarrow \bar{I}$ given by

$$
\bar{g}(x)= \begin{cases}g(x), & \forall x \in I \\ g(-x), & \forall x \in-I\end{cases}
$$

is thus well defined. It is straight forward to check that on the interval $\bar{I}=I \cup(-I), \bar{g}$ is again a continuous $(m-1)$-th iterative root of F. It is immediate from the definition of \bar{g} that $\operatorname{ran}(\bar{g})=\operatorname{ran}(g)$. The function \bar{g} is clearly the unique even extension of g from I to \bar{I}.

Combining the above two lemmas we arrive at the following conclusion for the Section. The convention $-(-\infty)=\infty$ will be in use.

Proposition 4. Let $F(x)=x^{n}, n \geq 2$ even, $I=[a, b] \cap \mathbb{R} F$-invariant, and let $g: I \rightarrow I$ denote a continuous $(m-1)$-th order iterative root of F. (i) When $a \geq 0, g$ exists (for every $m>2$) and its general construction is given in the same manner as in the discussions in Section 3.1. (ii) When $a<0$ and $-a \leq b, g$ exists. Its restriction to I_{+}, dentoted by g_{*}, is a root of $\left.F\right|_{I_{+}}$and g is the even extension of g_{*} to I. Conversely, for every root g_{*} of $\left.F\right|_{I_{+}}$whose general construction is covered in (i), the even extension $g(x):=g_{*}(|x|)$ to I (which is not necessarily the balanced \bar{I}) is a root on I. (iii) When $a<0$ and $-a>b>a^{n}, g$ exists. It is the restriction, to I, of some root $\bar{g}:[a,-a] \rightarrow[a,-a]$ of F on $[a,-a]$ satisfying the extra range condition $\operatorname{ran}(\bar{g}) \subset[0, b]$. (iv) When $a<0$ and $-a>b=a^{n}, g$ does not exist (for every $m>2$).

Proof. Recall that I belongs to one of the following types: $\left(E_{1}\right)$ $a \in[-1,0]$ and $b \in\left[a^{n}, 1\right]$, or $\left(E_{2}\right) a \in[-\infty, 0]$ and $b=\infty$, or $\left(E_{3}\right) a=1$ and $b=1$, or $\left(E_{4}\right) a \in[1, \infty[$ and $b=\infty$.

Case 1. Suppose $a \geq 0$.
This is the case where $I=I_{+}$. According to Lemma 2, g is strictly increasing having 0 and 1 as its only fixed points provided they are in I. Just like the discussions in section 3.1, its existence as well as its general construction are given by Theorem 11.2.2 in [4].

Case 2. Suppose $a<0$.
This is the case where 0 is an interior point of I. According to Lemma $3, g$ is even and has an extension $\bar{g}: \bar{I} \rightarrow \bar{I}, \bar{I}=I \cup(-I)$.

Furthermore, the extension satisfies the range condition

$$
\begin{equation*}
\operatorname{ran}(\bar{g}) \subset I \tag{14}
\end{equation*}
$$

Subcase 1. Suppose $-a \leq b$.
In this subcase, $x \in I_{-}$implies $-x \in I_{+}$. The consideration of the extension \bar{g} is not crucial. By Lemma 2, $g_{*}:=\left.g\right|_{I_{+}}$is an increasing root of F on I_{+}. The existence and general construction of g_{*} are attended in Case 1. On the interval I_{-}, g is determined by its evenness $g(x)=g_{*}(-x)$.

Subcase 2. Suppose $-a>b$.
This can only occur within Case (E_{1}), with $\left.a \in\right]-1,0[$ and $b \in$ $\left[a^{n},-a\left[\right.\right.$. We first attend the general construction of $\bar{g}_{*}:=\left.\bar{g}\right|_{\bar{I}_{+}}$which is strictly increasing. The interval \bar{I}_{+}is $[0, c]$ where $c=-a$. While Theorem 11.2.2 in [4] gives the general construction of all roots \bar{g}_{*} mapping $[0, c]$ into $[0, c]$, we must confine ourselves to those meeting the stronger range condition (14) which requires that \bar{g}_{*} maps $[0, c]$ into $[0, b]$. Its initialization on $[0, c]$ is, in part, based on the following:

The sequence

$$
\begin{equation*}
c_{j}:=\bar{g}_{*}^{[j]}(c), \quad j=0, \ldots, m-1 \tag{15}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
1>c=c_{0}>c_{1}>c_{2}>\cdots>c_{m-2}>c_{m-1}=c^{n}>0 \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{1} \leq b \tag{17}
\end{equation*}
$$

Subcase 2.1. Suppose $a \in]-1,0\left[\right.$ and $b=a^{n}$.
For $m>2$ there is no sequence satisfying (16)-(17). So F has no root.
Subcase 2.2. Suppose $a \in]-1,0\left[\right.$ and $b>a^{n}$. Then the conditions (16)-(17) can be met by some sequence, \bar{g}_{*} exists, and a fundamental region for its construction is $\left[c_{m-2}, c_{0}\right]$. It determines g by

$$
\begin{equation*}
g(x)=\bar{g}_{*}(|x|) \quad \forall x \in I . \tag{18}
\end{equation*}
$$

Acknowledgements. The authors are grateful to the referees for their helpful comments and suggestions.

References

[1] K. Baron and W. Jarczyk, Recent results on functional equations in a single variable, perspectives and open problems, Aequationes Math. 61 (2001), 1-48.
[2] R. Cheng, A. Dasgupta, B. R. Ebanks, L. F. Kinch, L. M. Larson and R. B. McFadden, When does $f^{-1}=1 / f$?, Amer. Math. Monthly 105 (1998), 8: 704-717.
[3] R. Euler and J. Foran, On functions whose inverse is their reciprocal, Math. Mag. 54 (1981), 185-189.
[4] M. Kuczma, B. Choczewski and R. Ger, Iterative functional equations, Encyclopedia of Math. \& Its Applications Vol. 32, Cambridge University Press, Cambridge, 1990.
[5] A. Mukherjea and J. S. Ratti, On a functional equation involving iterates of a bijection on the unit interval, Nonlinear Anal. 7 (1983), 899-908.
[6] W. Zhang, Solutions of equivariance for a polynomial-like iterative equation, Proc. Roy. Soc. Edinburgh 130A (2000), 1153-1163.

CHE TAT NG
DEPARTMENT OF PURE MATHEMATICS
UNIVERSITY OF WATERLOO
WATERLOO, ONTARIO N2L 3G1
CANADA

WEINIAN ZHANG
DEPARTMENT OF MATHEMATICS
SICHUAN UNIVERSITY
CHENGDU, SICHUAN 610064
CHINA
E-mail: matzwn@sohu.com
(Received August 8, 2003; revised March 31, 2004)

[^0]: Mathematics Subject Classification: 39B12, 37E05.
 Key words and phrases: iteration, periodic orbit, range, iterative root.
 Supported by NSERC of Canada Grant OGP 0008182, NNSFC(China) Grant 10171071 and China Education Ministry Research Grants.
 Corresponding author: Weinian Zhang (matzwn@sohu.com)

