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On special cases of local Möbius equations

By FAZİLET ERKEKOG̃LU (Ankara)

Abstract. An overwiev of certain differential equations as special cases of
local Möbius equations is given.

1. Introduction

In analysis, mostly the existence of a solution to a differential equa-
tion on a certain domain is argued. But in geometry, one can also argue
the existence of a domain manifold for a differential equation to possess
a nontrivial solution. This may be considered as an analytic characteri-
zation (or representation) of a manifold by a differential equation if this
manifold serves as a unique domain for this differential equation to pos-
sess a nontrivial solution in a certain class of manifolds. In the literature,
some characterizations of rank one symmetric Riemannian manifolds by
differential equations can be found. For example, some known character-
izations of Euclidian spheres, complex projective spaces and quaternionic
projective spaces by differential equations can be found in [9], [10], [6], [4],
[14], [13], [3], [8],[1], and also a survey of these results can be found in [5].

It seems that one of the most significant example of such characteri-
zations of Euclidian spheres is a result of Obata [9], that is, a necessary
and sufficient condition for a connected, complete, n (≥ 2)-dimensional
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Riemannian manifold (M,g) to be isometric with the Euclidean sphere of
radius 1/

√
λ, λ > 0, is the existence of a nonconstant function f on M

satisfying the (tensorial) differential equation Hf + λfg = 0, where Hf is
the Hessian form of f on (M,g). In other words, the differential equation
Hf + λfg = 0, λ > 0, on a connected, complete, Riemannian manifold
(M,g) has a nontrivial solution if and only if its domain (M,g) is the
Euclidean sphere of radius 1/

√
λ. Also, in this particular example, on the

domain connected, complete Riemannian manifolds (M,g), the differential
equation Hf + λfg = 0, λ > 0, can be considered as an analytic (or rep-
resentative) characterization of Euclidean spheres. As well, if we take the
trace of the differential equation Hf + λfg = 0 on an n (≥ 2)-dimensional
Riemannian manifold (M,g) with respect to g then we obtain another dif-
ferential (in fact an eigenvalue) equation ∆f = −nλf on (M,g), where ∆f
is the trace of Hf with respect to g. It is shown in [9] that, if (M,g) is con-
nected, compact, Einstein n (≥ 2)-dimensional Riemannian manifold with
constant scalar curvature τ and there exist a nonconstant function f on M
satisfying ∆f = −nλf then λ ≤ − τ

n−1 , and in particular λ = τ
n−1 if and

only if (M,g) isometric with the Euclidian sphere of radius
√

n(n−1)
τ . Also,

in [6], there is stated another differential equation (which is equivalent to
Hf +λfg = 0, λ �= 0) on connected, complete Riemannian manifolds (M,g)
characterizing Euclidian spheres by the existence of a nontrivial solution
to that differential equation. More precisely, it is shown that, a necessary
and sufficient condition for a connected, complete, n (≥ 2)-dimensional
Riemannian manifold to be isometric with the Euclidean sphere of radius
1/
√
λ, λ > 0, is the existence of a nonzero vector field Z on (M,g) satisfy-

ing the differential equation (∇2Z)(· , ·)+λg(Z, ·) · = 0 on (M,g). That is,
the differential equation ∇2Z(· , ·) + λg(Z, ·) · = 0, λ > 0, on a connected,
complete, n (≥ 2)-dimensional Riemannian manifold (M,g) has a non-
trivial solution if and only if its domain (M,g) is the Euclidean sphere of
radius 1/

√
λ. Hence, in the class of domain connected, complete Riemann-

ian manifolds (M,g), the differential equation ∇2Z(· , ·) + λg(Z, ·) · = 0,
λ > 0, also serves as an analytic (or representative) characterization
of Euclidean spheres. If we take the trace of the differential equation
∇2Z(· , ·) + λg(Z, ·) · = 0 on an n (≥ 2)-dimensional Riemannian manifold
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(M,g) with respect to g we obtain another differential (in fact, an eigen-
value) equation ∆Z = −λZ on (M,g), where ∆Z is the trace of the second
covariant differential ∇2Z of Z with respect to g. The subject of [4] is dif-
ferential (in fact, the eigenvalue) equation ∆Z = −λZ on a connected,
compact, Einstein n ≥ 2-dimensional Riemannian manifold of constant
scalar curvature of τ . Mainly, it is shown that, a necessary and sufficient
condition for a connected, compact, Einstein n (≥ 2)-dimensional mani-
fold (M,g) with τ > 0 to be isometric with an Euclidian sphere of radius√

n(n−1)
τ is the existence of a nonzero vector field Z on (M,g) satisfying

the differential equation ∆Z = − τ
n(n−1)Z. Also, it is shown that, the dif-

ferential equations ∆f = − τ
n−1f and ∆Z = − τ

n(n−1)Z are “equivalent” on
a connected, compact, Einstein n (≥ 2)-dimensional Riemannian manifold
(M,g) of constant scalar curvature τ > 0, provided that dimM = n ≥ 3.

In this paper, we state another differential equation, which is a slight
generalization of an equation given by Obata [10], characterizing Eu-
clidean spheres. We also give an overview of the above differential equa-
tions as special cases of local Möbius equations. In fact, the idea underlying
this paper is to characterize (or represent) Riemannian manifolds analyti-
cally by a differential equation on certain classes of Riemannian manifolds
determined by mild geometric/topological assumptions.

2. Preliminaries

Here, we briefly state the main concepts and definitions used through-
out this paper.

Let Z be a vector field on an n-dimensional Riemannian manifold
(M,g) with Levi–Civita connection ∇. The second covariant differential
∇2Z of Z is defined by

(∇2Z)(X,Y ) = ∇X∇Y Z −∇∇XY Z,

where X,Y ∈ ΓTM . We define the Laplacian ∆Z of Z on (M,g) to be
the trace of ∇2Z with respect to g, that is,

∆Z = trace∇2Z =
n∑

i=1

(∇2Z)(Xi,Xi),
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where {X1, . . . ,Xn} is a local orthonormal frame for TM.

Also, if Z is a vector field on a Riemannian manifold (M,g) then the
affinity tensor LZ∇ of Z is defined by

(LZ∇)(X,Y ) = LZ∇XY −∇LZXY −∇XLZY,

where LZ is the Lie derivative with respect to Z and X,Y ∈ ΓTM . (See,
for example page 109 of [12]). We define the tension field �Z of Z on
(M,g) to be the trace of LZ∇ with respect to g, that is,

�Z = traceLZ∇ =
n∑

i=1

(LZ∇)(Xi,Xi),

where {X1, . . . ,Xn} is a local orthonormal frame for TM.

By a straightforward computation, it can be shown by using the tor-
sion-free property of ∇ that

(LZ∇)(X,Y ) = (∇2Z)(X,Y ) +R(Z,X)Y

(see page 110 of [12]) and hence,

�Z = ∆Z + R̂ic(Z),

where R is the curvature tensor of (M,g), R̂ic is the Ricci operator of
(M,g) and X,Y ∈ ΓTM . (Also see page 40 of [15].)

3. A characterization of Euclidean spheres

Now we will give an overview of the differential equations Hf +λfg = 0
and (∇2Z)(· , ·) + λg(Z, ·) · = 0 on a Riemannian manifold (M,g), where
λ ∈ R.

Definition 3.1. A function f on an n-dimensional Riemannian mani-
fold (M,g) is said to satisfy the local Möbius equation on (M,g) if Hf =
∆f
n g. (For example, see [11].)

Note that, at the same time, if f is also an eigenfunction of ∆, that
is, ∆f = −λf , then the local Möbius equation reduces to the equation
Hf +λfg = 0 on (M,g). We also have a similar situation for vector fields.
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Definition 3.2. A vector field Z on a Riemannian manifold (M,g)
is said to satisfy the local Möbius equation on (M,g) if (∇2Z)(· , ·) =
g(∆Z, ·) · .

Hence, at the same time, if Z is also an eigenvector field of ∆, that
is, ∆Z = −λZ, then the local Möbius equation reduces to the equation
(∇2Z)(· , ·)+λg(Z, ·) · = 0 on (M,g). (Note that, on a connected, compact
Riemannian manifold (M,g), the Laplacian ∆ is negative semi-definite on
both spaces of functions and vector fields on (M,g).) Thus, if (M,g) is
compact, eigenvalues of ∆ are nonpositive both on spaces of functions and
vector fields on (M,g). (See [2] or [4]).)

It is known that, if a nonconstant function f satisfies the local Möbius
equation Hf = ∆f

n g on an n (≥ 2)-dimensional Riemannian manifold
(M,g) then, near each regular point p ∈ M of f , (M,g) can be expressed
as a nontrivial warped product of an open Euclidean interval and a Rie-
mannian manifold, where the warping function ψ on the interval is a scalar
multiple of ‖∇f‖ (see for example, Theorem 5.2 of [11]), and in particu-
lar, if (M,g) is connected and compact with constant scalar curvature τ
then τ > 0 and (M,g) is isometric with the Euclidean sphere of radius√
n(n− 1)/τ (see Theorem 24 of [7]). Now we prove analogs of these

results for the local Möbius equation (∇2Z)(· , ·) = g(∆Z, ·) · on a Rie-
mannian manifold (M,g).

First we state an elementary lemma to be used in the proof of the
main result of this paper which is Lemma 3.1 in [6]

Lemma 3.3. Let (M,g) be an n-dimensional Riemannian manifold.

If Z is a vector field on (M,g) satisfying the Local Möbius equation

(∇2Z)(X,Y ) = g(∆Z,X)Y

for all X,Y ∈ ΓTM then,

(i) R(X,Y )Z = −[g(∆Z, Y )X−g(X,∆Z)Y ] for every X,Y ∈ ΓTM , and

hence, R̂ic(Z) = −(n− 1)∆Z,

(ii) ∇ divZ = n∆Z, and hence, ∇2 divZ = n∇∆Z, where ∇2 divZ is the

Hessian tensor of divZ.
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Proof. (i) LetX,Y ∈ ΓTM . Then,

R(X,Y )Z = ∇2
X,Y Z −∇2

Y,XZ = g(∆Z,X)Y − g(∆Z, Y )X

= −[g(∆Z, Y )X − g(∆Z,X)Y ].

Hence,

g(R̂ic,X) = g

(
n∑

i=1

R(Z,Xi)Xi,X

)
=

n∑
i=1

g(R(Z,Xi)Xi,X)

=
n∑

i=1

R(Z,Xi,Xi,X) =
n∑

i=1

R(Xi,X,Z,Xi)

=
n∑

i=1

g(R(Xi,X)Z,Xi)

=
n∑

i=1

g(−g(∆Z,X)Xi + g(∆Z,Xi)X,Xi)

= −g(∆Z,X)
n∑

i=1

g(Xi,Xi) +
n∑

i=1

g(∆Z,Xi)g(X,Xi)

= −ng(∆Z,X) + g(∆Z,X) = (−n+ 1)g(∆Z,X)

= −(n− 1)g(∆Z,X) = g(−(n− 1)∆Z,X).

(ii) Let {X1, . . . ,Xn} be an adapted orthonormal frame near p ∈M , that
is, {X1, . . . ,Xn} is an orthonormal frame in TM with (∇Xi)p = 0 for
i = 1, . . . , n and let X ∈ Γ(TM). Then, at p ∈M ,

g(∇ divZ,X) = X(divZ) = X

[
n∑

i=1

g(∇XiZ,Xi)

]

=
n∑

i=1

[Xg(∇XiZ,Xi)]

=
n∑

i=1

[g(∇X∇XiZ,Xi) + g(∇XiZ,∇XXi)]
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=
n∑

i=1

g((∇2Z)(X,Xi),Xi) − g(∇∇XXiZ,Xi)]

=
n∑

i=1

g(g(∆Z,X)Xi ,Xi) =
n∑

i=1

g(∆Z,X)g(Xi,Xi)

= g(∆Z,X)
n∑

i=1

g(Xi,Xi) = ng(∆Z,X) = g(n∆Z,X).

Hence it follows that ∇ divZ = n∆Z, and hence, ∇2 divZ = n∇∆Z.
�

Remark 3.4. Note that, a vector field Z on an n (≥ 2)-dimensional Rie-
mannian manifold (M,g) satisfying the local Möbius equation (∇2Z)(·, ·) =
g(∆Z, ·) · on (M,g) also satisfies the equation �Z + n−2

n ∇ divZ = 0 on
(M,g):

�Z +
n− 2
n

∇ divZ = ∆Z + R̂icZ +
n− 2
n

∇ divZ

=
1
n
∇ divZ − (n− 1)∆Z +

n− 2
n

∇ divZ

=
1
n
∇ divZ − n− 1

n
∇ divZ +

n− 2
n

∇ divZ

=
−n+ 2
n

∇ divZ +
n− 2
n

∇ divZ = 0.

Hence, if (M,g) is compact, then a vector field Z satisfying the local
Möbius equation (∇2Z)(· , ·) = g(∆Z, ·) · on (M,g) is a conformal vector
field. (See page 47 of [15].)

Lemma 3.5. Let (M,g) be an n (≥ 2)-dimensional Riemannian man-

ifold. If Z is conformal vector field on M satisfying the equation

R(X,Y )Z = −[g(∆Z, Y )X − g(X,∆Z)Y ]

for every X,Y ∈ ΓTM , then Z satisfies the local Möbius equation

(∇2Z)(· , ·) = g(∆Z, ·) ·
on (M,g).
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Proof. This can be easily obtained from (LZ∇)(X,Y ) =
1
n [g(∇ divZ, Y )X+g(X,∇ divZ)Y −g(X,Y )∇ divZ] for a conformal vec-
tor field Z (see page 46 of [15]) and then by taking the trace of this equation
to show that ∆Z = 1

n∇ divZ. Briefly,

�Z = tr(LZ∇) =
n∑

i=1

(LZ∇)(Xi,Xi)

=
n∑

i=1

1
n

[g(∇ divZ,Xi)Xi + g(∇ divZ,Xi)Xi − g(Xi,Xi)∇ divZ]

=
1
n

[
n∑

i=1

g(∇ divZ,Xi)Xi+
n∑

i=1

g(∇ divZ,Xi)Xi−
n∑

i=1

g(Xi,Xi)∇ divZ

]

=
1
n

[∇ divZ + ∇ divZ − n∇ divZ] =
1
n

(2 − n)∇ divZ = ∆Z + R̂icZ,

which implies,

∆Z =
2 − n

n
∇ divZ +

n− 1
n

∇ divZ =
1
n
∇ divZ. �

Theorem 3.6. Let (M,g) be an n (≥ 2)-dimensional Riemannian

manifold. If there exists a nonzero vector field Z on (M,g) satisfying the

equation

(∇2Z)(X,Y ) = g(∆Z,X)Y

for all X,Y ∈ ΓTM and ∆Z is a conformal vector field on (M,g) then,

(M,g) is a nontrivial warped product of an Euclidean interval and a Rie-

mannian manifold near each point p ∈ M with (∆Z)p �= 0, where the

warping function ψ on this interval is a scalar multiple of ‖∆Z‖. In par-

ticular, if (M,g) is connected and compact with constant scalar curvature

τ then τ > 0 and (M,g) is isometric with the Euclidean sphere of radius√
n(n− 1)/τ

Proof. First note that, by Lemma 3.3, ∇∆Z is self-adjoint on (M,g)
and ∆ divZ = n div ∆Z. Thus,

∇2 divZ = n∇∆Z = div ∆Z id + nσ =
∆ divZ

n
id + nσ,
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where σ is the traceless self-adjoint part of ∇∆Z. But, since ∆Z is as-
sumed to be a conformal vector field, σ = 0 (see page 173 of [12]), and it
follows that ∇2 divZ = ∆ div Z

n id. Hence, by Theorem 5.2 of [11], (M,g)
is a nontrivial warped product of an Euclidean interval and a Riemannian
manifold near each point p ∈ M with 1

n(∇ divZ)p = (∆Z)p �= 0, where
the warping function ψ on the interval is a scalar multiple of ‖∆Z‖. In
particular, if (M,g) is connected and compact with constant scalar curva-
ture τ then, by Theorem 24 of [7], τ > 0 and (M,g) is isometric with the
Euclidean sphere of radius

√
n(n− 1)/τ . �

Finally we state another differential equation, which is a slight gen-
eralization of an equation given by Obata [10], characterizing Euclidean
spheres. It is shown in [13] that, a necessary and sufficient condition for a
connected, simply connected, complete n (≥ 2)-dimensional Riemannian
manifold (M,g) to be isometric with the Euclidean sphere of radius 1/

√
λ,

λ > 0, is the existence of a nonconstant function f on M satisfying the
equation (∇2∇f)(X,Y ) + λ[2g(∇f,X)Y + g(Y,∇f)X + g(X,Y )∇f ] = 0
for all X,Y ∈ ΓTM . In fact, we can replace ∇f with a nonzero vector
field Z in the above equation.

Theorem 3.7. Let (M,g) be a connected, simply connected, com-

plete n (≥ 2)-dimensional Riemannian manifold. Then, a necessary and

sufficient condition for (M,g) to be isometric with the Euclidean sphere

of radius 1/
√
λ, λ > 0, is the existence of a nonzero vector field Z on M

satisfying the equation

(∇2Z)(X,Y ) + λ[2g(Z,X)Y + g(Y,Z)X + g(X,Y )Z] = 0

for all X,Y ∈ ΓTM .

Proof. We will show that ∇ divZ also satisfies this equation. First,
it can be similarly shown as in the proof of Lemma 3.3 that ∇ divZ =
−2λ(n+ 1)Z and hence,

∇2 divZ = −2λ(n + 1)∇Z = −2λ(n+ 1)
[
divZ
n

id + σ

]
,

where σ is the traceless self-adjoint part of ∇Z. Also,

(∇σ)(X,Y ) = (∇2Z)(X,Y ) −∇
(

divZ
n

id
)

(X,Y )
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= − 1
n(n+ 1)

g(X,∇ divZ)Y +
1

2(n+ 1)
g(∇ divZ, Y )X

+
1

2(n+ 1)
g(X,Y )∇ divZ

for all X,Y ∈ ΓTM . Thus,

(∇2∇ divZ)(X,Y ) = −2λ(n+ 1)
[
g(X,∇ divZ)

n
Y + (∇σ)(X,Y )

]
= −λ[2g(X,∇ divZ)Y + g(∇ divZ, Y )X + g(X,Y )∇ divZ]

for all X,Y ∈ ΓTM . Hence, by Theorem A of [13], the necessary and
sufficient condition of the Theorem follows for f = divZ. �

Note that, the differential equation (∇2Z)(X,Y ) + λ[2g(Z,X)Y +
g(Z, Y )X + g(X,Y )Z] = 0, λ > 0, can also be considered as an ana-
lytic characterization (or representative) of Euclidean spheres in the class
of connected, simply connected, complete Riemannian manifolds by The-
orem 3.7.

Remark 3.8. Considering differential equations (∇2Z)(X,Y )+
λg(Z,X)Y = 0 and (∇2Z)(X,Y )+λ[2g(X,Z)Y +g(Z, Y )X+g(X,Y )Z] = 0
for λ > 0 on the n (≥ 2)-dimensional Euclidean sphere of radius 1/

√
λ,

intuitively, the first differential equation corresponds to the first eigenvalue
of the Laplacian (that is, ∆ divZ = −nλdivZ) and the latter differential
equation corresponds to the second eigenvalue of the Laplacian (that is,
∆ divZ = −2λ(n + 1) divZ) on the Euclidean sphere of radius 1/

√
λ. In

fact, a vector field Z satisfying the latter differential equation is necessarily
a projective vector field (see Proposition 2.1 in [13]). Also a vector field
Z satisfying the first differential equation is necessarily a conformal vector
field (see Remark 3.5 in [4]). For further discussion of the latter differential
equation, see [13].

Note that, if a nonzero vector field Z on a Riemannian manifold
(M,g) satisfies the equation (∇2Z)(X,Y ) + λ[2g(X,Z)Y + g(Z, Y )X +
g(X,Y )Z] = 0, λ ∈ R, then Z also satisfies the eigenvalue equation ∆Z =
−λ(n+3)Z on (M,g). Hence, as before, we can generalize this equation to
a local Möbius equation on (M,g) by (∇2Z)(X,Y ) = 1

n+3 [2g(X,∆Z)Y +
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g(∆Z, Y )X + g(X,Y )∆Z]. Thus, in particular, if a solution Z of the
above local Möbius equation is also a solution of the eigenvalue equation
∆Z = −λ(n + 3)Z, then the above local Möbius equation reduces to the
equation (∇2Z)(X,Y ) + λ[2g(X,Z)Y + g(Z, Y )X + g(X,Y )Z] = 0 on
(M,g). The proof of the Lemma below can be given similar to the proof
of Lemma 3.3.

Lemma 3.9. Let (M,g) be an n-dimensional Riemannian manifold.

If Z is a vector field on (M,g) satisfying the equation

(∇2Z)(X,Y ) =
1

n+ 3
[2g(X,∆Z)Y + g(∆Z, Y )X + g(X,Y )∆Z]

for all X,Y ∈ ΓTM then,

(a) R(X,Y )Z = − 1
n+3 [g(X,∆Z)Y − g(Y,∆Z)X] for all X,Y ∈ ΓTM ,

and hence, R̂ic(Z) = −n−1
n+3∆Z,

(b) ∇ divZ = 2n+1
n+3∆Z, and hence, ∇2 divZ = 2n+1

n+3∇∆Z, where

∇∇ divZ is the Hessian tensor of divZ.

Remark 3.10. Note that, if a nonzero vector field Z on an n (≥ 2)-di-
mensional Riemannian manifold (M,g) satisfies the local Möbius
equation (∇2Z)(X,Y ) = 1

n+3 [2g(X,∆Z)Y + g(∆Z, Y )X + g(X,Y )∆Z]
then, by using Lemma 3.9, it can be shown that (LZ∇)(X,Y )
= 1

n+3 [g(∇ divZ, Y )X + g(X,∇ divZ)Y ] for all X,Y ∈ ΓTM . That is,
Z is a projective vector field on (M,g). Conversely, if Z is a projec-
tive vector field on an n (≥ 2)-dimensional Riemannian manifold with
R(X,Y )Z = − 1

n+3 [g(X,∆Z)Y − g(∆Z, Y )X] for all X,Y ∈ ΓTM , then
Z satisfies the local Möbius equation (∇2Z)(X,Y ) = 1

n+3 [2g(X,∆Z)Y +
g(∆Z, Y )X+g(X,Y )∆Z]. This can be easily obtained from (LZ∇)(X,Y )
= 1

n+1 [g(∇ divZ, Y )X + g(X,∇ divZ)Y ] for a projective vector field Z

(see page 183 of [12]) and then by taking the trace of this equation to
show that ∆Z = n+3

2(n+1)∇ divZ.

Also by Lemma 3.9, we have the following analog of Theorem 3.6.
The proof of the Theorem below can be given similar to the proof of
Theorem 3.6.
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Theorem 3.11. Let (M,g) be an n (≥ 2)-dimensional Riemannian

manifold. If there exists a nonzero vector field Z on (M,g) satisfying the

equation

(∇2Z)(X,Y ) =
1

n+ 3
[2g(X,∆Z)Y + g(∆Z, Y )X + g(X,Y )∆Z]

for all X,Y ∈ ΓTM and ∆Z is a conformal vector field on (M,g) then,

(M,g) is a nontrivial warped product of an Euclidean interval and a Rie-

mannian manifold near each point p ∈ M with (∆Z)p �= 0, where the

warping function ψ on this interval is a scalar multiple of ‖∆Z‖. In par-

ticular, if (M,g) is connected and compact with constant scalar curvature

τ then τ > 0 and (M,g) is isometric with the Euclidean sphere of radius√
n(n− 1)/τ .
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