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Existence and uniqueness theorem for slant immersion
in cosymplectic space forms

By RAM SHANKAR GUPTA (New Delhi),
S. M. KHURSHEED HAIDER (New Delhi) and A. SHARFUDDIN (New Delhi)

Abstract. In this paper, we have established a general existence and unique-
ness theorem for slant immersions in a non-flat cosymplectic space form M(c).

1. Introduction

B. Y. Chen [4] has defined slant immersions as a natural generaliza-
tion of both holomorphic and totally real immersions and since then this
topic has attracted the attention of Mathematicians. In 1996, A. Lotta

[2] introduced the notion of slant immersion of a Riemannian manifold
into an almost contact metric manifold and obtained some useful results.
B. Y. Chen and Y. Tazawa [7] have shown that there exist several
examples of n-dimensional proper slant submanifolds in the complex Eu-
clidean n-space Cn. On the other hand, Chen and Vrancken [5] have
established the existence of n-dimensional proper slant submanifolds in a
non-flat complex-space form M

n(4c).
Let M be a (2m+1)-dimensional almost contact metric manifold with

structure tensors (ϕ, ξ, η, g), where ϕ is a (1,1) tensor field, ξ a vector field,
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η a 1-form and g the Riemannian metric on M . These tensors satisfy [8]{
ϕ2X = −X + η(X)ξ, ϕξ = 0, η(ξ) = 1, η(ϕ) = 0;

g(ϕX,ϕY ) = g(X,Y ) − η(X)η(Y ), η(X) = g(X, ξ)
(1.1)

for any X,Y ∈ TM . A normal almost contact metric manifold is called a
cosymplectic manifold [1] if

(∇Xϕ)(Y ) = 0, ∇Xξ = 0 (1.2)

where ∇ denotes the Levi–Civita connection of M . The curvature tensor
R of a cosymplectic space form M (c) is given by [1]

R(X,Y )Z =
c

4
{
g(Y,Z)X − g(X,Z)Y + η(X)η(Z)Y − η(Y )η(Z)X

+ η(Y )g(X,Z)ξ − η(X)g(Y,Z)ξ − g(ϕX,Z)ϕY

+ g(ϕY,Z)ϕX + 2g(X,ϕY )ϕZ
}
. (1.3)

Let M be an m-dimensional Riemannian manifold with induced metric g

isometrically immersed in M . Let TM be the tangent bundle of M and
T⊥M be the set of all vector fields normal to M .

For any X ∈ TM and N ∈ T⊥M , we write

ϕX = PX + FX and ϕN = tN + fN (1.4)

where PX (resp. FX) denotes the tangential (resp. normal) component of
ϕX, and tN (resp. fN) denotes the tangential (resp. normal) component
of ϕN .

In what follows, we suppose that the structure vector field ξ is tangent
to M . Hence, if we denote by D the orthogonal distribution to ξ in TM ,
we can consider the orthogonal direct decomposition TM = D ⊕ {ξ}.

For each non zero X tangent to M at x such that X is not proportional
to ξx, we denote by θ(X) the Wirtinger angle of X, that is, the angle
between ϕX and TxM .

The submanifold M is called slant if the Wirtinger angle θ(X) is a
constant, which is independent of the choice of x ∈ M and X ∈ TxM −
{ξx} [2]. The Wirtinger angle θ of a slant immersion is called the slant
angle of the immersion. Invariant and anti-invariant immersions are slant
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immersions with slant angle θ equal to 0 and π
2 , respectively. A slant

immersion which is neither invariant nor anti-invariant is called a proper
slant immersion.

Let ∇ be the Riemannian connection on M . Then the Gauss and
Weingarten formulae are

∇XY = ∇XY + h(X,Y ) (1.5)

and
∇XN = −ANX + ∇⊥

XN (1.6)

where h and AN are the second fundamental forms related by

g(ANX,Y ) = g(h(X,Y ), N) (1.7)

and ∇⊥ is the connection in the normal bundle T⊥M of M , for X,Y ∈ TM

and N ∈ T⊥M . Let the curvature tensor corresponding to ∇, ∇ and ∇⊥

be denoted by R, R, and R⊥ respectively. The Gauss, Codazzi and Ricci
equations are, respectively

R(X,Y,Z,W ) = R(X,Y,Z,W ) − g(h(X,W ), h(Y,Z))

+ g(h(X,Z), h(Y,W )) (1.8)

[
R(X,Y )Z

]⊥ = (∇Xh)(Y,Z) − (∇Y h)(X,Z) (1.9)

and

R(X,Y,N1, N2) = R⊥(X,Y,N1, N2) − g([AN1 , AN2 ]X,Y ) (1.10)

where
[
R(X,Y )Z

]⊥ denotes the normal component of R(X,Y )Z and(∇Xh
)
(Y,Z) is given by(∇Xh

)
(Y,Z) = ∇⊥

X(h(Y,Z)) − h(∇XY,Z) − h(Y,∇XZ).

If P is the endomorphism defined by (1.4), then

g(PX,Y ) + g(X,PY ) = 0 (1.11)

Thus P 2 which is simply denoted by Q, is self adjoint.
We define

(∇XP )Y = ∇X(PY ) − P (∇XY ) (1.12)
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and
(∇XF )Y = ∇⊥

XFY − F (∇XY ) (1.13)

for any X,Y ∈ TM .
Using Gauss and Weingarten formulae and equations (1.2) and (1.10),

we have

(∇XP )Y = AFY X + th(X,Y ) (1.14)

∇⊥
X(FY ) − F (∇XY ) = fh(X,Y ) − h(X,PY ) (1.15)

for any X,Y ∈ TM .
For each X ∈ TM , we put

X∗ =
FX

sin θ
. (1.16)

We define the symmetric bilinear TM -valued form ρ on M by

ρ(X,Y ) = th(X,Y ). (1.17)

Moreover, from (1.2), we have

ρ(X, ξ) = 0. (1.18)

Also, from (1.4), (1.16) and (1.17), we get

ϕρ(X,Y ) = Pρ(X,Y ) + sin θρ∗(X,Y ) (1.19)

Using (1.4) and (1.17), we can write

ϕh(X,Y ) = ρ(X,Y ) + σ∗(X,Y ) (1.20)

where σ is a symmetric bilinear D-valued form on M . Operating ϕ on
(1.20) and using (1.19) together with (1.4), we find

−h(X,Y ) = Pρ(X,Y ) + sin θρ∗(X,Y ) + tσ∗(X,Y ) + fσ∗(X,Y ). (1.21)

On comparing the tangential and normal parts, we get

(i) Pρ(X,Y ) + tσ∗(X,Y ) = 0
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and

(ii) −h(X,Y ) = sin θρ∗(X,Y ) +
fFσ(X,Y )

sin θ
.

Also,

ϕ2σ(X,Y ) = −σ(X,Y ) = P 2σ(X,Y ) + FPσ(X,Y )

+ tFσ(X,Y ) + fFσ(X,Y ).

Comparing the tangential and normal parts, we get

(iii) −σ(X,Y ) = P 2σ(X,Y ) + tFσ(X,Y )

and

(iv) FPσ(X,Y ) + fFσ(X,Y ) = 0.

Now, from (i), we have

Pρ(X,Y ) = −tσ∗(X,Y ) = − tFσ(X,Y )
sin θ

.

Using (iii) in the above equation, we get

−σ(X,Y ) = P 2σ(X,Y ) − Pρ(X,Y ) sin θ

= −σ(X,Y ) cos2 θ − Pρ(X,Y ) sin θ

which gives that
σ(X,Y ) = csc θPρ(X,Y ). (1.22)

Now, from (ii) and (iv), we have

−h(X,Y ) = sin θρ∗(X,Y ) − FPσ(X,Y )
sin θ

and using (1.22), we get

−h(X,Y ) = sin θρ∗(X,Y )−FP 2ρ(X,Y )
sin2 θ

= sin θρ∗(X,Y )+
ρ∗(X,Y ) cos2 θ

sin θ

which gives that
h(X,Y ) = − csc θρ∗(X,Y ). (1.23)
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From (1.19) and (1.23), we have

h(X,Y ) = csc2 θ(Pρ(X,Y ) − ϕρ(X,Y )). (1.24)

On the other hand, from (1.14), we have

g((∇XP )Y,Z) = g(ρ(X,Y ), Z) − g(ρ(X,Z), Y ). (1.25)

Next, from (1.3), we get

R(X,Y,Z,W ) =
c

4
(
g(ϕY,ϕZ)g(X,W ) − g(ϕX,ϕZ)g(Y,W )

+ g(X,Z)η(Y )η(W ) − g(Y,Z)η(X)η(W ) + g(ϕY,Z)g(ϕX,W )

− g(ϕX,Z)g(ϕY,W ) + 2g(X,ϕY )g(ϕZ,W )
)

(1.26)

for all X,Y,Z,W ∈ TM . Using (1.1), (1.4) and (1.8) in (1.26), we find

R(X,Y,Z,W ) − g(h(X,W ), h(Y,Z)) + g((X,Z), h(Y,W ))

=
c

4
(g(Y,Z)g(X,W ) − g(X,W )η(Y )η(Z) − g(X,Z)g(Y,W )

+ g(Y,W )η(X)η(Z) + g(X,Z)η(Y )η(W ) − g(Y,Z)η(X)η(W )

+ g(PY,Z)g(PX,W ) − g(PX,Z)g(PY,W )

+ 2g(X,PY )g(PZ,W )) (1.27)

which, in view of (1.23), gives

R(X,Y,Z,W ) = csc2 θ(g(ρ(X,W ), ρ(Y,Z)) − g(ρ(X,Z), ρ(Y,W )))

+
c

4
(g(, Y, Z)g(X,W ) − g(X,W )η(Y )η(Z) − g(X,Z)g(Y,W )

+ g(Y,W )η(X)η(Z) + g(X,Z)η(Y )η(W ) − g(Y,Z)η(X)η(W )

+ g(PY,Z)g(PX,W ) − g(PX,Z)g(PY,W )

+ 2g(X,PY )g(PZ,W )). (1.28)

Taking normal part of equation (1.3), we get(
R(X,Y )Z

)⊥ =
c

4
(g(PY,Z)FX −g(PX,Z)FY +2g(X,PY )FZ). (1.29)

Moreover,(∇Xh
)
(Y,Z) = − csc2 θ(csc2 θFPρ(X, ρ(Y,Z))

+ csc2 θFρ(X,Pρ(Y,Z)) + F ((∇Xρ)(Y,Z)).
(1.30)
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Using (1.29) and (1.30) in Codazzi equation, we get

(∇Xρ)(Y,Z) + csc2 θ{Pρ(X, ρ(Y,Z) + ρ(X,Pρ(Y,Z))}
+

c

4
sin2 θ{g(X,PZ)(Y − η(Y )ξ) + g(X,PY )(Z − η(Z)ξ}

= (∇Y ρ)(X,Z) + csc2 θ{Pρ(Y, ρ(X,Z)) + ρ(Y, Pρ(X,Z))}
+

c

4
sin2 θ{g(Y, PZ)(X − η(X)ξ) + g(Y, PX)(Z − η(Z)ξ)}.

(1.31)

2. Existence theorem for slant immersions
into cosymplectic space form

In this section we establish the existence theorem for slant immersions
into cosymplectic space form. We need the following:

Theorem A ([5]). Consider a manifold S with complete connection D

having parallel torsion and curvature tensors. Let M be a simply connected

manifold and E be a vector bundle with connection D over M having the

algebraic structure (R,T ) of S. Let F : TM → E be a vector bundle

homomorphism satisfying the equations

DV (F (W )) − DW (F (V )) − F ([V,W ]) = T (F (V ), F (W ))

DV DW U − DW DV U − D[V,W ]U = R(F (V ), F (W ))U

for any sections V , W of TM and U of E. Then there exists a smooth map

f : M → S and a parallel bundle isomorphism Φ : E → f∗TS preserving

T and R such that df = ΦoF . If S is simply connected, then f is unique

up to affine diffeomorphisms of S.

Now, we prove:

Theorem 2.1 (Existence). Let c and θ be two constants with 0 < θ ≤
π
2 and M be a simply connected (m+1)-dimensional Riemannian manifold

with metric tensor g. Suppose that there exist a unit global vector field ξ

on M , an endomorphism P of the tangent bundle TM and a symmetric

bilinear TM -valued form ρ on M such that

P (ξ) = 0, g(ρ(X,Y ), ξ)) = 0, ∇Xξ = 0 (2.1)
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P 2 = − cos2 θ(X − η(X)ξ) (2.2)

g(PX,Y ) + g(X,PY ) = 0 (2.3)

ρ(X, ξ) = 0 (2.4)

g((∇XP )Y,Z) = g(ρ(X,Y ), Z) − g(ρ(X,Z), Y ) (2.5)

R(X,Y,Z,W ) = cos2 θ(g(ρ(X,W ), ρ(Y,Z)) − g(ρ(X,Z), ρ(Y,W )))

+
c

4
{g(Y,Z)g(X,W ) − g(X,W )η(Y )η(Z) − g(X,Z)g(Y,W )

+ g(Y,W )η(X)η(Z) + g(X,Z)η(Y )η(W ) − g(Y,Z)η(X)η(W )

+ g(PY,Z)g(PX,W ) − g(PX,Z)g(PY,W )

+ 2g(X,PY )g(PZ,W )} (2.6)

and

(∇Xρ)(Y,Z) + csc2 θ{Pρ(X, ρ(Y,Z)) + ρ(X,Pρ(Y,Z))}
+

c

4
sin2 θ{g(X,PZ)(Y − η(Y )ξ) + g(X,PY )(Z − η(Z)ξ)}

= (∇Y ρ)(X,Z) + csc2 θ{Pρ(Y, ρ(X,Z)) + ρ(Y, Pρ(X,Z))}
+

c

4
sin2 θ{g(Y, PZ)(X − η(X)ξ) + g(Y, PX)(Z − η(Z)ξ)}

(2.7)

for all X,Y,Z ∈ TM , where η is a dual 1-form of ξ. Then, there exists a

θ-slant immersion from M into M
2m+1(c) whose second fundamental form

h is given by

h(X,Y ) = csc2 θ(Pρ(X,Y ) − ϕρ(X,Y )). (2.8)

Proof. Let all the conditions hold. Consider the Whitney sum TM⊕
D and identify (X, 0) with X for each X ∈ TM . We also identify (0, Z)
by Z∗ for each Z in D and let us denote ξ̂ = (ξ, 0). Let ĝ be the product
metric on TM ⊕ D. Hence, if we denote by η̂ the dual 1-form of ξ̂, then
we can write η̂(X,Z) = η(X), for all X ∈ TM and Z ∈ D.

We denote the endomorphism on TM ⊕ D by ϕ̂, which is defined as

ϕ̂(X, 0) = (PX, sin θ(X − η(X)ξ)), ϕ̂(0, Z) = (− sin θZ,−PZ). (2.9)

Then, ϕ̂2(X, 0) = −(X, 0) + η̂(X, 0)ξ̂, ϕ̂2(0, Z) = −(0, Z) and ϕ̂2(X,Z) =
−(X,Z) + η̂(X,Z)ξ̂, for all X ∈ TM and Z ∈ D. Clearly, (ϕ̂, ĝ, ξ̂, η̂) is an
almost contact structure on TM ⊕ D.
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Now, for X ∈ TM and Z ∈ D, we define A, h, ∇⊥ as

AZ∗X = csc θ((∇XP )Z − ρ(X,Z)) (2.10)

h(X,Y ) = − csc θρ∗(X,Y ) (2.11)

∇⊥
XZ∗ = (∇XZ − η(∇XZ)ξ)∗

+ csc2 θ((Pρ(X,Z)∗ + ρ∗(X,PZ)). (2.12)

We can check that each A is an endomorphism on TM ; h is a (D)∗-valued
symmetric bilinear form on TM and ∇⊥ is a metric connection of the
vector bundle (D)∗ over M .

Let ∇̂ denote the connection on TM ⊕ D induced from equations
(2.10)–(2.12). Then, from (2.1), (2.2) and (2.9), we have (∇̂(X,0)ϕ)(Y, 0)=0,
(∇̂(X,0)ϕ)(0, Y ) = 0 and ∇̂(X,0)(ξ, 0) = 0, for all X, Y tangent to M .

Let R⊥ denote the curvature tensor associated with the connection
∇⊥ on (D)∗, i.e, R⊥(X,Y )Z∗ = ∇⊥

X∇⊥
Y Z∗ − ∇⊥

Y ∇⊥
XZ∗ − ∇⊥

[X,Y ]Z
∗ for

X,Y ∈ TM and Z ∈ D.
Then, using (1.28), (2.1), (2.5) and (2.12), we get

R⊥(X,Y )Z∗ = (R(X,Y )Z − η(R(X,Y )Z)ξ)∗

+
[ c

4
P

{
g(Y, PZ)X + 2g(Y, PX)Z − g(X,PZ)Y

}
+

c

4
{
g(Y, P 2Z)(X − η(X)ξ)+ 2g(Y, PX)PZ − g(X,P 2Z)(Y − η(Y )ξ)

}
+ csc2 θ

{
(∇XP )ρ(Y,Z) − (∇Y P )ρ(X,Z) − η(∇X(Pρ(Y,Z)))ξ

+ η(∇Y (Pρ(X,Z)))ξ + ρ(Y, (∇XP )Z) − ρ(X, (∇Y P )Z)

− η((∇Xρ)(Y, PZ))ξ + η((∇Y ρ)(X,PZ))ξ
}]∗

. (2.13)

On the other hand

sin2 θg
(
[AZ∗ , AW ∗ ]X,Y ) = g((∇Y P )Z, (∇XP )W ) − g(ρ(Y,Z), (∇XP )W )

− g((∇Y P )Z, ρ(X,W )) + g(ρ(Y,Z), ρ(X,W )
)

− g
(
(∇Y P )W, (∇XP )Z) + g(ρ(Y,W ), (∇XP )Z)

+ g((∇Y P )W,ρ(X,Z)) − g(ρ(Y,W ), ρ(X,Z)
)
. (2.14)

From (1.11), we have

g(ρ(Y,Z), PW ) + g(Pρ(Y,Z),W ) = 0. (2.15)
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The covariant derivative of the above equation with respect to X gives

g(ρ(Y,Z), (∇XP )W ) + g((∇XP )ρ(Y,Z),W ) = 0. (2.16)

Moreover, by virtue of (1.25), we have

g((∇Y P )W, (∇XP )Z) = g(ρ(Y,W ), (∇XP )Z)

− g(ρ(Y, (∇XP )Z),W ).
(2.17)

Using (2.17), (2.16), (2.14) and (2.13), we get

g(R⊥(X,Y )Z∗,W ∗) − g([AZ∗ , AW ∗ ]X,Y ) =
c

4
{sin2 θg(Y,Z), g(X,W )

− sin2 θg(X,Z)g(Y,W ) + 2g(Y, PX)g(PZ,W )}. (2.18)

Equations (1.3), (2.2), (2.3) and (2.18) imply that (M,A,∇⊥) satisfies
the equation of Ricci for an (m + 1)-dimensional θ-slant submanifold in
M

2m+1(c). Also, (1.28) and (1.31) imply that (M,h) satisfies the equa-
tions of Gauss and Codazzi for a θ-slant submanifold. Hence, the vector
bundle TM ⊕ D over M equipped with the product metric ĝ, the shape
operator A, the second fundamental form h and the connections ∇⊥ and ∇̂
satisfy the structure equations of (m+1)-dimensional θ-slant submanifold
in M

2m+1(c). Therefore, from Theorem A, we know that there exists a
θ-slant isometric immersion of M in M

2m+1(c) with h as its second funda-
mental form, A as its shape operator and ∇⊥ as its normal connection. �

3. Uniqueness theorem for slant immersions
into cosymplectic space form

In this section we establish uniqueness theorem for slant immersions
into cosymplectic space form. We prove:

Theorem 3.1 (Uniqueness). Let x1, x2 : M → M(c) be two slant

immersions with slant angle θ (0 < θ ≤ π
2 ), of a connected Riemann-

ian manifold M of dimension (m + 1) into the cosymplectic space-form

M
2m+1(c). Let h1, h2 denote the second fundamental forms of x1 and x2
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respectively. Let there be a vector field ξ on M such that x1∗p
(
ξp

)
= ξxi(p),

for i = 1, 2 and p ∈ M , and

g(h1(X,Y ), ϕx1
∗Z) = g(h2(X,Y ), ϕx2

∗Z) (3.1)

for all vector fields X, Y , Z tangent to M . Suppose also that we have one

of the following conditions:

(i) θ = π
2

(ii) there exists a point p of M such that P1 = P2

(iii) c �= 0

Then there exists an isometry Ψ of M
2m+1(c) such that x1 = Ψox2.

Proof. Let p be any point of M . Assume that x1(p) = x2(p) and
x1∗(p) = x2∗(p). We can take a geodesic γ through the point p = γ(0) and let
us define γ1 = x1(γ) and γ2 = x2(γ). To prove the theorem it is sufficient
to show that γ1 and γ2 coincide. We already know that γ1(0) = γ2(0) and
γ′
1(0) = γ′

2(0). Let E1, E2, . . . , Em, ξ be any orthonormal frame along γ.
We can define frames along γ1 and γ2 as follows:

Take Ai = x1∗(Ei), Bi = x2∗(Ei), An+i = (x1∗(Ei))∗, Bn+i = (x2∗(Ei))∗,
where X∗ = FX

sin θ for X ∈ D.

From (2.11), we have hi = − csc θ(ρi)∗, for i = 1, 2 and from (3.1), we
have g(ρ1(X,Y ), x1∗Z) = g(ρ2(X,Y ), x2∗Z). Since x1∗(p) = x2∗(p) and Z is
arbitrary, we have ρ1 = ρ2. Now, we show that P1 = P2.

If (i) is satisfied, it is obvious that P1 = 0, P2 = 0 and hence P1 = P2.
If (ii) is satisfied, it follows from (2.5) that (∇X(P1−P2))Y = 0. Since

we have P1 = P2 at a point p, therefore we have P1 = P2 everywhere.
Now, suppose that (iii) is satisfied and assume that P1 �= P2 and (i)

and (ii) are not satisfied. Then in this case we show that P1 = −P2. From
(2.6), we find

g(P1X,W )g(P1Y,Z) − g(P1X,Z)g(P1Y,W ) + 2g(P1Z,W )g(P1Y,X)

= g(P2X,W )g(P2Y,Z) − g(P2X,Z)g(P2Y,W )

+ 2g(P2Z,W )g(P2Y,X). (3.2)
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Putting X = W , Y = Z and using the skew symmetric property of P1 and
P2, equation (3.2) reduces to

g(P1Y,X)2 = g(P2Y,X)2. (3.3)

Next, put e1 = X and e2 = P1X and suppose that P2e1 has a component
in the direction of a vector e3 which is orthogonal to both e1 and e2.
Then a contradiction follows from (3.3) which states that g(P2e1, e3)2 =
g(P1e1, e3)2 = g(e2, e3)2 = 0. Thus, by applying (2.2) and (2.3), we get
P1ν = ±P2ν for every tangent vector ν.

Now choose a basis {e1, . . . , em, em+1} of the tangent space TpM at a
point p. Then there exists a number εi ∈ {−1, 1} such that P1ei = εiP2ei.
So, we also have ±P1(ei + ej) = P2(ei + ej) = εiP1ei + εjP1ej . Hence, the
above formula shows that all εi have to be equal. Thus, either P1ν = P2ν

or P1ν = −P2ν, for all ν ∈ TpM . Since M is connected, this implies that
we have either P1 = P2 or P1 = −P2 in case (iii).

Let us now assume that we have two immersions with P1 = −P2. From
(2.5), it follows that

g((∇XP1)Y,Z) = g(ρ1(X,Y ), Z) − g(ρ1(X,Z), Y )

and

g((∇XP2)Y,Z) = −g((∇XP1)Y,Z) = g(ρ2(X,Y ), Z) − g(ρ2(X,Z), Y ).

Since ρ1 = ρ2 = ρ, we get

g(ρ(X,Y ), Z) = g(ρ(X,Z), Y ). (3.4)

Writing the equation (2.7) for both the immersions and using the fact that
P1 = −P2 = P , we find

Pρ(X, ρ(Y,Z)) + ρ(X,Pρ(Y,Z)) − Pρ(Y, ρ(X,Z)) − ρ(Y, Pρ(X,Z))

+
c

4
sin4 θ{g(X,PZ)(Y − η(Y )ξ) − g(Y, PZ)(X − η(X)ξ)

+ 2g(X,PY )(Z − η(Z)ξ)} = 0. (3.5)

Taking inner product with a vector W in (3.5) and using (3.4), we get

− g(ρ(X,PW ), ρ(Y,Z)) + g(ρ(Y, PW ), ρ(X,Z)) + g(ρ(X,W ), Pρ(Y,Z))
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− g(ρ(Y,W ), Pρ(X,Z)) +
c

4
sin4 θ{g(X,PZ)g(Y,W )

− g(X,PZ)η(Y )η(W ) − g(Y, PZ)g(X,W ) + g(Y, PZ)η(X)η(W )

+ 2g(X,PY )g(Z,W ) − 2g(X,PY )η(Z)η(W )} = 0. (3.6)

If ρ vanishes identically at a point, then a contradiction follows from (3.6)
since c �= 0.

Now, we take a fixed point p of M and look at the function f defined
on the set of all unit tangent vectors UMp at the point p by f(ν) =
g(ρ(ν, ν), ν). Since UMp is compact there exists a vector u such that f

attains an absolute maximum at the vector u. Let w be a unit vector
orthogonal to u. Then the function f(t) = f(g(t)), where g(t) = (cos t)u+
(sin t)w, satisfies f ′(0) = 0 and f ′′(0) ≤ 0. The first condition implies that
g(ρ(u, u), w) = 0 whereas the second condition implies g(ρ(u,w), w) ≤
1
2g(ρ(u, u), u).

Now, using the total symmetry of ρ, it follows that we can choose an
orthonormal basis e1 = u, . . . , em, em+1 such that

ρ(e1, e1) = λ1e1, ρ(e1, ei) = λiei (3.7)

with i > 1 and λi ≤ 1
2λ1.

Since ρ is not identically zero, it follows from total symmetry of (3.4)
that λl > 0. Using (3.4) and (3.7) in (3.6) with X = Z = W = e1 and
Y = ei, we find (

λ2
i + λiλ1 + 3

c

4
sin4 θ

)
g(Pe1, ei) = 0. (3.8)

Now, we show that Pe1 is an eigen vector of ρ(e1, .). For this we put
X = Z = e1, W = ej and Y = ei in (3.6) for i, j > 1. Then, we get

(λ2
i − λiλ1 + λiλj)g(Pej , ei) + λ1g(ρ(ei, ej), P e1) = 0. (3.9)

Interchanging the indices i and j in (4.9), we obtain

(λ2
j − λjλ1 + λiλj)g(Pei, ej) + λ1g(ρ(ei, ej), P e1) = 0. (3.10)

Combining (3.9) and (3.10), we find

(λi + λj)(λ1 − λi − λj)g(Pej , ei) = 0. (3.11)
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Since λ1 ≥ 2λi, therefore λ1 − λi − λj = 0 only if λi = λj = 1
2λ1. Now, if

we put X = W = e1, Z = ej and Y = ei for i, j > 1 in (3.6), we find that

g(ρ(e1, P e1), ρ(ei, ej)) − λjg(ρ(ei, ej), P e1) + λiλjg(ei, P ej)

+λ1g(ρ(ei, ej), P e1) +
c

4
sin4 θg(ei, P ej) = 0.

(3.12)

Interchanging the indices i and j in (3.12), we get

g(ρ(e1, P e1), ρ(ei, ej)) − λig(ρ(ei, ej), P e1) + λiλjg(ej , P ei)

+λ1g(ρ(ei, ej), P e1) +
c

4
sin4 θg(ej , P ei) = 0.

(3.13)

Combining (3.12) and (3.13), we find

(λi−λj)g(ρ(ei, ej), P e1)+2λiλjg(ei, P ej)+
c

2
sin4 θ g(ei, P ej) = 0. (3.14)

Now, we summarise the previous equations in the following way. First,
taking i = j in (4.9), we get

g(ρ(ei, ei), P e1) = 0. (3.15)

Hence, we have g(ρ(ν, ν), P e1) = 0 if ν is an eigenvector of ρ(e1, .). More-
over, the symmetry of ρ implies that g(ρ(ei, ej), P e1)= 0, whenever λi= λj .

We consider four different cases:

(1) λi + λj �= 0, but not λi = λj = 1
2λ1. In this case (3.11) implies

g(Pei, ej) = 0.

(2) λi + λj = 0, and λi �= 0. In this case, (3.9) implies g(ρ(ei, ei), P e1) =
λig(Pej , ei). Substituting this into (3.14), we obtain
c
2 sin4 θg(ei, P ej) = 0 which yields g(Pej , ei) = 0.

(3) λi + λj = 0, and λi = 0 or equivalently λi = λj = 0. In this case it
follows from (3.14) that g(ei, P ej) = 0.

(4) λi = λj = 1
2λ1.

Therefore, if ei1 , . . . , eik are eigenvectors belonging to an eigenvalue differ-
ent from 1

2λ1, then each Peil , l = 1, . . . , k, can only have a component in
the direction of e1, say Peil = µle1. Thus, µlPe1 = − cos2 θeil . Conse-
quently, either k = 1 or there does not exist an eigenvector with eigen-
value different from 1

2λ1. If k = 1, then clearly Pe1 is an eigenvector.
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In the latter case ρ(e1, .) restricted to the space e⊥1 only has one eigen-
value, namely 1

2λ1. Since Pe1 is always orthogonal to e1, Pe1 is also an
eigenvector in this case. Hence Pe1 is always an eigenvector of ρ(e1, .).

We may assume that e2 is in the direction of Pe1. Then it follows that
ρ(e1, P e1) = λ2Pe1, where λ2 satisfies the equation

λ2
2 + λ2λ1 +

3c
4

sin4 θ = 0 (3.16)

by virtue of (3.8).
If we choose X = Z = e1, W = Pe1 and Y = ei for i > 2 in (3.6),

then

λ1g(ρ(ei, P e1), P e1) = λ1g(ρ(Pe1, P e1), ei) = 0.

Thus, ρ(Pe1, P e1) = λ2 cos2 θe1. Putting X = Z = Pe1 and Y = e1 in
(3.6), we find

−λ2
2 − λ2λ1 +

3c
4

sin4 θ = 0. (3.17)

From (3.16) and (3.17), we get 3c
4 sin4 θ = 0, which is a contradiction since

c �= 0. Therefore P1 = P2. Now it is easy to check from (2.10)–(2.12) that
g(γ′

1, Ak) = g(γ′
2, Bk) and g(∇̂γAk, Al) = g(∇̂γBk, Bl) for k, l = 1, . . . 2m,

such that by [9, Proposition 3], γ1 = γ2. �

4. Applications and examples

Let φ = φ(x) and φi = φi(x), i = 1, 2, 3, be four functions defined
on an open interval containing 0. Let c and θ be two constants with
0 < θ ≤ π

2 and M be a simply connected open neighbourhood of the origin
(0, 0, 0) ∈ �3. Suppose

f(x) = exp
∫

φ3(x)dx (4.1)

η = dz (4.2)

g = η ⊗ η + dx ⊗ dx + f2(x)dy ⊗ dy (4.3)



184 R. S. Gupta, S. M. K. Haider and A. Sharuddin

and
e1 =

∂

∂x
, e2 =

1
f(x)

∂

∂y
, e3 = ξ =

∂

∂z
. (4.4)

Then, we can verify that {e1, e2, ξ} is a local orthonormal frame field of
TM and η is the dual 1-form of structure vector field ξ. Also, we can
obtain

∇e1e1 = 0, ∇e1e2 = 0, ∇e1e3 = 0,

∇e2e1 = φ3e2, ∇e2e2 = −φ3e1, ∇e2e3 = 0, (4.5)

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

We define the tensor ϕ as

ϕe1 = e2, ϕe2 = −e1 and ϕe3 = ϕξ = 0,

and a symmetric bilinear TM -valued form ρ on M as follows:

ρ(e1, e1) = φe1 + φ1e2, ρ(e1, e2) = φ1e1 + φ2e2,

ρ(e2, e2) = φ2e1 − φ1e2
(4.6)

ρ(e1, ξ) = 0, ρ(e2, ξ) = 0, ρ(ξ, ξ) = 0. (4.7)

It is easy to check that (M,ϕ, ξ, η, g) is an almost contact metric manifold.
Now, to calculate the value of (∇Xϕ)Y , we choose vector fields X =
a1e1 + a2e2 + a3e3 and Y = b1e1 + b2e2 + b3e3, where a1, a2, a3, b1, b2, b3,
are real valued functions. Then, (∇Xϕ)Y = 0, for any X,Y ∈ TM .

If we take P = cos θϕ, then it will satisfy equation (2.3). Similarly, we
can show that (M,ϕ, ξ, η, g, ρ) satisfy the equations (2.1)–(2.4) and (2.5).

On the other hand, it can be proved that M satisfy the conditions
(2.6) and (2.7) if we have the following equations:

φ′
3 + φ2

3 = − csc2 θ(φφ2 − 2φ2
1 − φ2

2) −
c

4
(1 + 3 cos2 θ) (4.8)

φ′
1 = −3φ1φ3 + cot θ csc θ(φ2

2 + φ2φ) + 3
c

4
sin2 θ cos θ (4.9)

φ′
1 = −3φ1φ3 + cot θ csc θ(φ2

2 + φ2φ) − 3
c

4
sin2 θ cos θ (4.10)
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and

φ′
2 = φφ3 − 2φ3φ2 − cot θ csc θ(φ1φ + φ2φ1). (4.11)

Equations (4.9) and (4.10) are satisfied together if and only if 3 c
4 sin2 θ ·

cos θ = 0. Since 0 < θ ≤ π
2 implies sin2 θ �= 0, therefore either c = 0 or

θ = π
2 .
Using Theorem 2.1, we obtain:

Theorem 4.1. Let φ = φ(x) be a function defined on an open interval

containing 0 and d1, d2, d3, c, θ be the five constants with 0 < θ ≤ π
2 .

Consider the system of first order ordinary differential equations

y′1 = −3y1y3 + cot θ csc θ(y2
2 + y2φ)

y′2 = φy3 − 2y3y2 − cot θ csc θ(y1φ + y2y1)

y′3 = − csc2 θ(φy2 − 2y2
1 − y2

2) −
c

4
(1 + 3 cos2 θ) − y2

3,

with the initial conditions y1(0) = d1, y2(0) = d2, y3(0) = d3. Let φ1,

φ2 and φ3 be the components of the unique solution of this differentiable

system on some open interval containing 0. Let M be a simply connected

open neighbourhood of the origin (0, 0, 0) ∈ �3 endowed with the metric

given by (4.1)–(4.4) and let ρ be the TM -valued form defined by (4.6)–
(4.7). Then,

(i) if c = 0, there exists a θ-slant isometric immersion of M in M
5(c)

whose second fundamental form is given by

h(X,Y ) = cos2 θ(Pρ(X,Y ) − ϕρ(X,Y )),

(ii) if θ = π
2 , then there exists an anti-invariant immersion whose second

fundamental form is given by

h(X,Y ) = −ϕρ(X,Y ).

We can obtain from Theorem 4.1 the following existence result for
three dimensional slant submanifolds with prescribed scalar curvature or
mean curvature.
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Corollary 4.2. For a given constant θ with 0 < θ < π
2 and a given

function F1 = F1(x) (resp. F2 = F2(x)), there exist infinitely many three-

dimensional θ slant submanifolds in M
5(c) with F1 (resp. F2) as the pre-

scribed scalar curvature (resp. mean curvature) function for c = 0.

Corollary 4.2 follows from Theorem 4.1 by putting d2 �= 0 and choosing
φ to be a function satisfying F1 sin2 θ = 2(2φ2

1 + φ2
2 − φφ2). On the other

hand, it is enough to put φ = 3F2 sin θ − φ2 in order to obtain F2 as the
prescribed mean curvature function.

Clearly, we can obtain a similar result for anti-invariant submanifolds
in M

5(c) for a given constant c.
We prove:

Proposition 4.3. For each given constant θ with 0 < θ < π
2 , there

exist three-dimensional θ slant submanifolds in M
5(−4) with non zero

constant mean curvature and constant negative scalar curvature.

Proof. For a given constant θ with 0 < θ < π
2 , we can choose two

nonzero constants β and γ such that

β2 + γ2 = 4cos2 θ. (4.12)

Let a, b, c be constants defined by

a = − sin2 θ sec3 θ

(
β3

4
− 3

2
β cos2 θ +

6
β

cos4 θ

)
, (4.13)

b = γ sin2 θ sec3 θ

(
β2

4
− cos2 θ

)
, (4.14)

c = −β sin2 θ sec3 θ

(
β2

4
− 1

2
cos2 θ +

1
2
γ2

)
. (4.15)

Let M be �3 and define the 1-form η = dz. We consider on M the metric g

given by

g = η ⊗ η + (dx ⊗ dx − βe−γx(dx ⊗ dy + dy ⊗ dx))

+ (β2 + γ2)e−2γxdy ⊗ dy.
(4.16)

If we take

e1 =
∂

∂x
, e2 =

1
γ

(
β

∂

∂x
+ eγx ∂

∂y

)
and ξ =

∂

∂z
(4.17)
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then {e1, e2, ξ} form an orthonormal frame field for (M,g) and η is the
dual 1-form of ξ. It is easy to see that

∇e1e1 = βe2, ∇e1e2 = −βe1, ∇e1ξ = 0,

∇e2e1 = −γe2, ∇e2e2 = −γe1, ∇e2ξ = 0, (4.18)

∇ξe1 = 0, ∇ξe2 = 0, ∇ξξ = 0.

Equations (4.12) and (4.18) imply that the scalar curvature of M is given
by

τ = −2(β2 + γ2) < 0.

We define a TM -valued symmetric bilinear form ρ on M by:

ρ(e1, e1) = ae1 + be2, ρ(e1, e2) = be1 + ce2,

ρ(e2, e2) = ce1 − be2, (4.19)

ρ(e1, ξ) = 0, ρ(e2, ξ) = 0, ρ(ξ, ξ) = 0. (4.20)

Let P be the endomorphism on TM defined by Pe1 = cos θe2, Pe2 =
− cos θe1 and Pξ = 0. Then using (4.12)–(4.20) and after a long com-
putation, we find that (M, ξ, η, g, P, ρ) satisfies the equations (2.1)–(2.7)
stated in Theorem 2.1 for c = −4. Therefore, Theorem 2.1 implies that
there exists a θ-slant immersion of (M,g) into M

5(−4) whose second fun-
damental form is given by h(X,Y ) = csc2 θ(Pρ(X,Y ) − ϕρ(X,Y )). Since
θ, a, b and c are constants such that 0 < θ < π

2 , and β �= 0 the proper
slant submanifolds have nonzero constant mean curvature and constant
negative scalar curvature. �

References

[1] A. Cabra, A. Ianus and Gh. Pitis, Extrinsic spheres and parallel submanifolds
in cosymplectic manifolds, Math. J. Toyama Univ. 17 (1994), 31–53.

[2] A. Lotta, Slant submanifolds in contact geometry, Bull. Math. Soc. Roumanie
(1996), 183–198.

[3] A. Lotta, Three dimensional slant submanifolds of K-contact manifolds, Balkan
J. Geom. Appl. 3(1) (1998), 37–51.

[4] B. Y. Chen, Geometry of slant submanifolds, Katholieke Universiteit Leuven, 1990.



188 R. S. Gupta et al. : Existence and uniqueness theorem . . .

[5] B. Y. Chen and L. Vrancken, Existence and uniqueness theorem for slant im-
mersions and its applications, Result. Math. 31 (1997), 28–39.

[6] B. Y. Chen and L. Vrancken, Addendum to: Existence and uniqueness theorem
for slant immersions and its applications, Result. Math. 39 (2001), 18–22.

[7] B. Y. Chen and Y. Tazawa, Slant submanifolds in complex Euclidean spaces,
Tokyo J. Math. 14 (1991), 101–120.

[8] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lect. Notes in Math.,
Vol. 509, Springer Verlag, Berlin – New York, 1976.

[9] H. Reckziege, On the problem whether the image of a given differentiable map
into a Riemannian manifold is contained in a submanifold with parallel second
fundamental form, J. Reine. Angew. Math. 325 (1981), 87–104.

[10] J. H. Eschenburg and R. Tribuzy, Existence and uniqueness of maps into affine
homogeneous spaces, Rend. Sem. Mat. Univ. Padova 89 (1993), 11–18.

[11] J. L. Cabrerizo, A. Carriazo, L. M. Fernandez and M. Fernandez, Existence
and uniqueness theorem for slant immersion in Sasakian manifolds, Publicationes
Mathematicae Debrecen 58 (2001), 559–574.

[12] J. L. Cabrerizo, A. Carriazo, L. M. Fernandez and M. Fernandez, Slant
submanifolds in Sasakian manifolds, Glasgow Math. J. 42 (2000), 125–138.

[13] J. L. Cabrerizo, A. Carriazo, L. M. Fernandez and M. Fernandez, Structure
on a slant submanifold of a contact manifold, Indian J. Pure and Appl. Math. 31(7)
(2000), 857–864.

RAM SHANKAR GUPTA

DEPARTMENT OF MATHEMATICS

FACULTY OF NATURAL SCIENCES

JAMIA MILLIA ISLAMIA

NEW DELHI-110025

INDIA

S. M. KHURSHEED HAIDER

DEPARTMENT OF BIOSCIENCE

FACULTY OF NATURAL SCIENCES

JAMIA MILLIA ISLAMIA

NEW DELHI-110025

INDIA

E-mail: smkhaider@yahoo.co.in

A. SHARUDDIN

DEPARTMENT OF MATHEMATICS

FACULTY OF NATURAL SCIENCES

JAMIA MILLIA ISLAMIA

NEW DELHI-110025

INDIA

(Received December 1, 2003; revised March 23, 2004)


