On the spectrum of the difference equations of second order

By ALI AKBULUT (Kirsehir), MURAT ADIVAR (Aydin) and ELGIZ BAIRAMOV (Ankara)

Abstract

In this paper we investigate the discrete spectrum of the boundary value problem $$
a_{n-1} y_{n-1}+b_{n} y_{n}+a_{n} y_{n+1}+f_{n}=\lambda y_{n}, n \in \mathbb{N}=\{1,2, \ldots\}, \quad y_{0}=0
$$ where $\left\{a_{n}\right\}_{n=1}^{\infty},\left\{b_{n}\right\}_{n=1}^{\infty}$ and $\left\{f_{n}\right\}_{n=1}^{\infty}$ are complex sequences.

1. Introduction

Let T be a non-selfadjoint, closed linear operator in a Hilbert space H. We will denote the continuous spectrum and the set of all eigenvalues of T by $\sigma_{c}(T)$ and $\sigma_{d}(T)$, respectively. In this paper we consider some singular points which are the poles of the kernel of the resolvent and are also embedded in the continuous spectrum, but they are not eigenvalues. Hereafter, we will call such singular points as spectral singularities of T and denote the set of all spectral singularities of T by $\sigma_{s s}(T)$.

Eigenvalue problems of selfadjoint difference equations have been treated by various authors (for the relevant references one may consult AGARWAL [3] or Agarwal and Wong [4]). But spectral theory of non-selfadjoint difference equations with spectral singularities has not been investigated extensively. In [7] it has been shown by some examples that

[^0]the non-selfadjoint difference equations have spectral singularities. Afterwards spectral analysis of difference equations with spectral singularities became interesting subject in this field. Some problems of spectral theory of non-selfadjoint difference equations with spectral singularities were studied in [1], [7], [8], [10]. Note that spectral analysis of Sturm-Liouville, Schrödinger and Klein-Gordon differential equations with spectral singularities has been investigated in detail in [2], [5], [6], [9], [11], [12], [14], [16], [17].

Let us consider the boundary value problem (BVP)

$$
\begin{gather*}
a_{n-1} y_{n-1}+b_{n} y_{n}+a_{n} y_{n+1}+f_{n}=\lambda y_{n}, a_{0}=1, \quad n \in \mathbb{N}, \tag{1.1}\\
y_{0}=0 \tag{1.2}
\end{gather*}
$$

where $\left\{a_{n}\right\}_{n=1}^{\infty},\left\{b_{n}\right\}_{n=1}^{\infty}$ and $\left\{f_{n}\right\}_{n=1}^{\infty}$ are complex sequences, $a_{n} \neq 0$ for all $n \in \mathbb{N}$ and λ is a complex parameter. Note that we can write equation (1.1) in the following Sturm-Liouville form:

$$
\Delta\left(a_{n-1} \Delta y_{n-1}\right)+q_{n} y_{n}+f_{n}=\lambda y_{n}, \quad n \in \mathbb{N}
$$

where $q_{n}=a_{n-1}+a_{n}+b_{n}$ and Δ is the forward difference operator, i.e., $\Delta y_{n}=y_{n+1}-y_{n}$.

In this paper we investigate spectral properties of the BVP (1.1), (1.2) using the boundary behavior of analytic functions. In particular, we prove that under the conditions

$$
\begin{aligned}
& \sup _{n \in \mathbb{N}}\left\{\exp (\varepsilon \sqrt{n})\left(\left|1-a_{n}\right|+\left|b_{n}\right|\right)\right\}<\infty \\
& \sup _{n \in \mathbb{N}}\left\{\exp \left(\varepsilon n^{1+\beta}\right)\left|f_{n}\right|\right\}<\infty
\end{aligned}
$$

for some $\varepsilon>0$ and $\beta>0$, the BVP (1.1), (1.2) has a finite number of eigenvalues and spectral singularities and each of them is of finite multiplicity.

2. The solution of (1.1), (1.2)

Related with equation (1.1) we will consider the following difference equation

$$
\begin{equation*}
a_{n-1} y_{n-1}+b_{n} y_{n}+a_{n} y_{n+1}=\lambda y_{n}, \quad n \in \mathbb{N} \tag{2.1}
\end{equation*}
$$

i.e. the case $f_{n} \equiv 0$ for all $n \in \mathbb{N}$.

Suppose that the complex sequences $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ satisfy

$$
\begin{equation*}
\sum_{n=1}^{\infty} n\left(\left|1-a_{n}\right|+\left|b_{n}\right|\right)<\infty \tag{2.2}
\end{equation*}
$$

Under the condition (2.2) equation (2.1) has the following solution

$$
\begin{equation*}
e_{n}(z)=\alpha_{n} e^{i n z}\left(1+\sum_{m=1}^{\infty} A_{n, m} e^{i m z}\right), \quad n \in \mathbb{N} \cup\{0\} \tag{2.3}
\end{equation*}
$$

for $\lambda=2 \cos z$, where $z \in \overline{\mathbb{C}}_{+}:=\{z: z \in \mathbb{C}, \operatorname{Im} z \geq 0\}$, and $A_{n, m}, \alpha_{n}$ are expressed in terms of $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$. Moreover α_{n} and $A_{n, m}$ satisfy

$$
\begin{equation*}
\alpha_{n}=\left\{\prod_{k=n}^{\infty} a_{k}\right\}^{-1}, \quad\left|A_{n, m}\right| \leq c \sum_{k=n+\left[\frac{m}{2}\right]}^{\infty}\left(\left|1-a_{k}\right|+\left|b_{k}\right|\right) \tag{2.4}
\end{equation*}
$$

where $\left[\frac{m}{2}\right]$ is the integer part of $\frac{m}{2}$ and $c>0$ is a constant ([15], see also [7]). Therefore the solution $e(z)=\left\{e_{n}(z)\right\}_{n=0}^{\infty}$ is analytic with respect to z in $\mathbb{C}_{+}:=\{z: z \in \mathbb{C}, \operatorname{Im} z>0\}$, continuous in $\overline{\mathbb{C}}_{+}$and

$$
\begin{array}{ll}
e_{n}(z+2 \pi)=e_{n}(z), & z \in \overline{\mathbb{C}}_{+}, n \in \mathbb{N} \cup\{0\}, \\
e_{n}(z)=e^{i n z}[1+o(1)], & z \in \overline{\mathbb{C}}_{+}, n \rightarrow \infty, \\
e_{n}(z)=\alpha_{n} e^{i n z}[1+o(1)], & n \in \mathbb{N}, z \in \mathbb{C}_{+}, \operatorname{Im} z \rightarrow \infty, \tag{2.6}
\end{array}
$$

hold ([15]).
Let $\hat{e}(z)=\left\{\hat{e}_{n}(z)\right\}_{n=0}^{\infty}$ denote the solution of (2.1) for $\lambda=2 \cos z$, subject to the condition

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \hat{e}_{n}(z) e^{i n z}=1, z \in \overline{\mathbb{C}}_{+} \tag{2.7}
\end{equation*}
$$

The solution $\hat{e}(z)$ is analytic in \mathbb{C}_{+}and continuous on the real axis and

$$
\hat{e}_{n}(z+2 \pi)=\hat{e}(z), \quad n \in \mathbb{N} \cup\{0\}
$$

Note that $e(z)$ is a bounded solution of (2.1) for $\lambda=2 \cos z$, but $\hat{e}(z)$ is unbounded. From (2.5) and (2.7) we get that Wronskian of solutions $e(z)$ and $\hat{e}(z)$ is obtained as

$$
\begin{aligned}
W[e(z), \hat{e}(z)] & =a_{n}\left[e_{n}(z) \hat{e}_{n+1}(z)-e_{n+1}(z) \hat{e}_{n}(z)\right] \\
& =-2 i \sin z, \quad z \in \overline{\mathbb{C}}_{+}
\end{aligned}
$$

Let us define

$$
\begin{align*}
& E_{n}(z)=\frac{1}{2 i \sin z}\left\{\sum_{k=n}^{\infty} f_{k+1} \hat{e}_{k+1}(z) e_{n}(z)-\sum_{k=n}^{\infty} f_{k+1} e_{k+1}(z) \hat{e}_{n}(z)\right. \\
&\left.+\hat{A}(z) e_{n}(z)-A(z) \hat{e}_{n}(z)\right\}, \quad n \in \mathbb{N} \cup\{0\} \tag{2.8}
\end{align*}
$$

where

$$
\begin{align*}
& \hat{A}(z)=\sum_{k=1}^{\infty} f_{k} \hat{e}_{k}(z)+\hat{e}_{0}(z) \\
& A(z)=\sum_{k=1}^{\infty} f_{k} e_{k}(z)+e_{0}(z) \tag{2.9}
\end{align*}
$$

It is obvious that $E(z):=\left\{E_{n}(z)\right\}_{n=0}^{\infty}$ is the solution of the BVP (1.1), (1.2) for $\lambda=2 \cos z$ and

$$
E_{n}(z+2 \pi)=E_{n}(z), \quad z \in \overline{\mathbb{C}}_{+}, n \in \mathbb{N} \cup\{0\}
$$

3. Discrete spectrum of (1.1), (1.2)

Let us define the semi-strips

$$
\begin{aligned}
P_{0} & =\{z: z \in \mathbb{C}, 0 \leq \operatorname{Re} z<2 \pi, \operatorname{Im} z>0\} \\
P & =\{z: z \in \mathbb{C}, 0 \leq \operatorname{Re} z<2 \pi, \operatorname{Im} z \geq 0\}
\end{aligned}
$$

We also denote the set of eigenvalues and the set of spectral singularities of BVP (1.1), (1.2) by σ_{d} and $\sigma_{s s}$, respectively.

Lemma 3.1. If for some $\varepsilon>0$ and $\beta>0$ (2.2) and

$$
\begin{equation*}
\sup _{n \in \mathbb{N}}\left\{\exp \left(\varepsilon n^{1+\beta}\right)\left|f_{n}\right|\right\}<\infty \tag{3.1}
\end{equation*}
$$

hold, then

$$
\begin{equation*}
\sigma_{d}=\left\{\lambda: \lambda=2 \cos z, z \in P_{0}, A(z)=0\right\} \tag{3.2}
\end{equation*}
$$

where the function A is defined by (2.9).
Proof. Let $\lambda_{0}=2 \cos z_{0}$ and $z_{0} \in P_{0}$. Using (2.5) and (2.7), we get that $e\left(z_{0}\right) \in \ell_{2}(\mathbb{N})$ and $\hat{e}\left(z_{0}\right) \notin \ell_{2}(\mathbb{N})$. Since

$$
e_{n}\left(z_{0}\right) \sum_{k=n}^{\infty} f_{k+1} \hat{e}_{k+1}\left(z_{0}\right)=O\left(e^{-\frac{\epsilon}{2} n^{1+\beta}}\right), \quad n \rightarrow \infty
$$

and

$$
\hat{e}_{n}\left(z_{0}\right) \sum_{k=n}^{\infty} f_{k+1} e_{k+1}\left(z_{0}\right)=O\left(e^{-\frac{\epsilon}{2} n^{1+\beta}}\right), \quad n \rightarrow \infty
$$

it follows from (2.8) that $E\left(z_{0}\right)$ belongs to $\ell_{2}(\mathbb{N})$ if and only if $A\left(z_{0}\right)=0$.

Analogously to Sturm-Liouville difference equation, we have

$$
\begin{equation*}
\sigma_{s s}=\{\lambda: \lambda=2 \cos z, z \in(0,2 \pi), z \neq \pi, A(z)=0\} \tag{3.3}
\end{equation*}
$$

(see [1], [7], [8]).
In order to investigate the structure of the eigenvalues and the spectral singularities of the BVP (1.1), (1.2), by (3.2) and (3.3), we need to discuss the quantitative properties of the zeros of A in P. In order to do so, write

$$
\begin{aligned}
& M_{1}=\left\{z: z \in P_{0}, A(z)=0\right\} \\
& M_{2}=\{z: z \in[0,2 \pi], A(z)=0\}
\end{aligned}
$$

From (3.2) and (3.3), we see that

$$
\begin{align*}
\sigma_{d} & =\left\{\lambda: \lambda=2 \cos z, z \in M_{1}\right\} \tag{3.4}\\
\sigma_{s s} & =\left\{\lambda: \lambda=2 \cos z, z \in M_{2} \backslash\{0, \pi, 2 \pi\}\right\} \tag{3.5}
\end{align*}
$$

Lemma 3.2. If (2.2) and (3.1) hold, then
i. The set M_{1} is bounded and has at most a countable number of elements, and its limit points can lie only in $[0,2 \pi]$.
ii. The set M_{2} is compact and $\mu\left(M_{2}\right)=0$, where μ denotes the Lebesgue measure in the real axis.

Proof. Using (2.3) and (2.4) we get that the function A is analytic in P_{0}, continuous in P and

$$
\begin{equation*}
A(z)=\alpha_{0}+\sum_{k=1}^{\infty} \varphi_{k} e^{i k z} \tag{3.6}
\end{equation*}
$$

where

$$
\begin{align*}
& \varphi_{1}=f_{1} \alpha_{1}+\alpha_{0} A_{0,1}, \\
& \varphi_{k}=f_{k} \alpha_{k}+\alpha_{0} A_{0, k}+\sum_{m=1}^{k-1} f_{m} \alpha_{m} A_{m, k-m}, \quad k \geq 2 . \tag{3.7}
\end{align*}
$$

It follows from (2.4), (2.6) and (3.1) that

$$
\begin{equation*}
A(z)=\alpha_{0}+o(1), \quad z \in P_{0},|z| \rightarrow \infty . \tag{3.8}
\end{equation*}
$$

Since $\alpha_{0} \neq 0$, equation (3.8) shows the boundedness of M_{1}. From the analyticity of A in P_{0} we find that M_{1} has at most a countable number of elements and its limit points can lie only in $[0,2 \pi]$. By the boundary value uniqueness theorem for analytic functions we obtain that the set M_{2} is closed and $\mu\left(M_{2}\right)=0([13])$.

From (3.4), (3.5) and Lemma 3.2 we get the following.
Theorem 3.3. Under the conditions (2.2) and (3.1)
i. The set of eigenvalues of the $B V P(1.1),(1.2)$ is bounded, is no more than countable and its limit points can lie only in $[-2,2]$.
ii. $\sigma_{s s} \subset[-2,2]$ and $\mu\left(\sigma_{s s}\right)=0$.

Theorem 3.4. If for some $\varepsilon>0$, (3.1) and

$$
\begin{equation*}
\sup _{n \in \mathbb{N}}\left\{e^{\varepsilon n}\left(\left|1-a_{n}\right|+\left|b_{n}\right|\right)\right\}<\infty, \tag{3.9}
\end{equation*}
$$

hold, then the BVP (1.1), (1.2) has a finite number of eigenvalues and spectral singularities, and each of them is of finite multiplicity.

Proof. From (2.4) and (3.9) we obtain that

$$
\begin{gathered}
\left|A_{n, m}\right| \leq c e^{-\frac{\varepsilon}{2} m}, \quad n, m \in \mathbb{N}, \\
\left|\sum_{m=1}^{k-1} f_{m} \alpha_{m} A_{m, k-m}\right| \leq c e^{-\frac{\varepsilon}{2} k}, \quad k \in \mathbb{N},
\end{gathered}
$$

and consequently it follows from (3.7) that

$$
\begin{equation*}
\left|\varphi_{k}\right| \leq c e^{-\frac{\varepsilon}{2} k}, \quad k \in \mathbb{N}, \tag{3.10}
\end{equation*}
$$

where $c>0$ is a constant. By (3.6) and (3.10) we observe that the function A has an analytic continuation to the half-plane $\operatorname{Im} z>-\frac{\varepsilon}{2}$. Since A is a 2π periodic function, the limit points of M_{1} and M_{2} cannot lie in $[0,2 \pi]$. Using Theorem 3.3 we get that the bounded sets σ_{d} and $\sigma_{s s}$ have no limit points, i.e., the sets σ_{d} and $\sigma_{s s}$ have a finite number of elements. From analyticity of A in $\operatorname{Im} z>-\frac{\varepsilon}{2}$ we get that all zeros of A in P have a finite multiplicity. Consequently, all eigenvalues and spectral singularities of the BVP $(1.1),(1.2)$ have a finite multiplicity.

Briefly, (3.1) and (3.9) guarantee the analytic continuation of the function A from the real axis to lower half-plane and finiteness of eigenvalues and spectral singularities of the BVP (1.1), (1.2) can be obtained as a result of this analytic continuation.

Now let us suppose that for some $\varepsilon>0$, and $\frac{1}{2} \leq \delta<1$,

$$
\begin{equation*}
\sup _{n \in \mathbb{N}}\left\{e^{\varepsilon n^{\delta}}\left(\left|1-a_{n}\right|+\left|b_{n}\right|\right)\right\}<\infty, \tag{3.11}
\end{equation*}
$$

holds, which is weaker than (3.9). It is evident that under conditions (3.1) and (3.11), the function A is analytic in \mathbb{C}_{+}and infinitely many times differentiable on the real axis. But A does not necessarily have an analytic continuation from the real axis to lower half-plane. Therefore, under the conditions (3.1) and (3.11), the finiteness of eigenvalues and spectral singularities of the BVP (1.1), (1.2) cannot be proved by the same technique used in Theorem 3.4.

Let us denote the set of all limit points of M_{1} and M_{2} by M_{3} and M_{4}, respectively, and the set of all zeros of A with infinite multiplicity in P by M_{5}. From the boundary uniqueness theorem of analytic functions

$$
M_{1} \cap M_{5}=\emptyset, \quad M_{3} \subset M_{2}, \quad M_{4} \subset M_{2}, \quad M_{5} \subset M_{2},
$$

and

$$
\mu\left(M_{3}\right)=\mu\left(M_{4}\right)=\mu\left(M_{5}\right)=0 .
$$

Using the continuity of all derivatives of A on the real axis, we have

$$
\begin{equation*}
M_{3} \subset M_{5}, \quad M_{4} \subset M_{5} . \tag{3.12}
\end{equation*}
$$

To prove the next result, we will use the following uniqueness theorem for the analytic functions on the upper half-plane.

Theorem 3.5 ([7]). Let us assume that the 2π periodic function f is analytic in the open upper half-plane, all of its derivatives are continuous in the closed upper half-plane and

$$
\sup _{z \in P}\left|f^{(k)}(z)\right| \leq B_{k}, \quad k \in \mathbb{N} \cup\{0\} .
$$

If the set G with Lebesgue measure zero is the set of all zeros of the function f with infinite multiplicity in P and

$$
\int_{0}^{\omega} \ln F(s) d \mu\left(G_{s}\right)=-\infty,
$$

where

$$
F(s)=\inf _{k \in \mathbb{N} \cup\{0\}} \frac{B_{k} s^{k}}{k!}
$$

and $\mu\left(G_{s}\right)$ is the Lebesgue measure of s-neighborhood of G and $\omega \in(0,2 \pi)$ is an arbitrary constant, then $f \equiv 0$ in $\overline{\mathbb{C}}_{+}$.

Lemma 3.6. If (3.1) and (3.11) hold, then $M_{5}=\emptyset$.
Proof. It follows from (3.1), (3.6) and (3.11) that

$$
\left|A^{(n)}(z)\right| \leq Q_{n},
$$

where

$$
Q_{n}=c 2^{n} \sum_{m=1}^{\infty} m^{n} e^{-\frac{\varepsilon}{2} m^{\delta}}, \quad n=0,1,2, \ldots
$$

Now we obtain the estimate

$$
\begin{align*}
Q_{n} & \leq 2 c 2^{n} \int_{0}^{\infty} t^{n} e^{-\frac{\varepsilon}{2} t^{\delta}} d t \\
& =c 2^{n+1} \frac{1}{\delta \varepsilon}\left(\frac{2}{\varepsilon}\right)^{\frac{2}{\delta}-1} \int_{0}^{\infty} t^{\frac{k+1}{\delta}-1} e^{-t} d t \tag{3.13}\\
& \leq c q^{n} n!n^{n\left(\frac{1}{\delta}-1\right)},
\end{align*}
$$

c and q are positive constants depending on ε, β and δ. Since the function A is not equal to zero identically, then by Theorem 3.5, M_{5} satisfies

$$
\begin{equation*}
\int_{0}^{\omega} \ln F(s) d \mu\left(M_{5, s}\right)>-\infty, \tag{3.14}
\end{equation*}
$$

where

$$
F(s)=\inf _{n \in \mathbb{N} \cup\{0\}} \frac{Q_{n} s^{n}}{n!}
$$

and Q_{n} is constant defined by (3.13). Substituting (3.13) in the definition of $F(s)$, we arrive at

$$
F(s) \leq c \exp \left\{-\frac{1-\delta}{\delta} e^{-\frac{1}{1-\delta}} q^{-\frac{1}{1-\delta}} s^{-\frac{\delta}{1-\delta}}\right\}
$$

by (3.14), we get that

$$
\begin{equation*}
\int_{0}^{\omega} s^{-\frac{\delta}{1-\delta}} d \mu\left(M_{5, s}\right)<\infty . \tag{3.15}
\end{equation*}
$$

Since $\frac{\delta}{1-\delta} \geq 1$, (3.15) holds for arbitrary s if and only if $\mu\left(M_{5, s}\right)=0$ or $M_{5}=\emptyset$.

Theorem 3.7. Under the conditions (3.1) and (3.11) the BVP (1.1), (1.2) has a finite number of eigenvalues and spectral singularities, and each of them is of a finite multiplicity.

Proof. To be able to prove the theorem, we have to show that the function A has a finite number of zeros with finite multiplicities in P. From (3.12) and Lemma 3.6 we get that $M_{3}=M_{4}=\emptyset$. So the bounded sets M_{1} and M_{2} have no limit points, i.e., the function A has only finite number of zeros in P. Since $M_{5}=\emptyset$, these zeros are of finite multiplicity.

References

[1] M. Adivar and E. Bairamov, Spectral properties of non-selfadjoint difference operators, J. Math. Anal. Appl. 261 (2001), 461-478.
[2] M. Adivar and E. Bairamov, Spectral Singularities of the nonhomogeneous Sturm-Liouville equations, Appl. Math. Lett. 15 (2002), 825-832.
[3] R. P Agarwal, Difference Equations and Inequalities, Theory, methods, and applications, Marcel Dekker Inc., New York, Basel, 2000.
[4] R. P. Agarwal and P. J. Y. Wong, Advanced Topics in Difference Equations, Kluwer, Dordrecht, 1997.
[5] E. Bairamov, Ö. Çakar and A. M. Krall, Spectrum and spectral singularities of a quadratic pencil of a Schrödinger operator with a general boundary condition, J. Differential Equations 151 (1999), 252-267.
[6] E. Bairamov, Ö. Çakar and A. M. Krall, An eigenfunction expansion for a quadratic pencil of a Schrödinger operator with spectral singularities, J. Differential Equations 151 (1999), 268-289.
[7] E. Bairamov, Ö. Çakar and A. M. Krall, Non-selfadjoint difference operators and Jacobi matrices with spectral singularities, Math. Nachr. 229 (2001), 5-14.
[8] E. Bairamov, Ö. Çakar and A. M. Krall, Spectral analysis of non-selfadjoint discrete Schrödinger operators with spectral singularities, Math. Nachr. 231 (2001), 89-104.
[9] E. Bairamov, Ö. Çakar and C. Yanik, Spectral singularities of the Klein-Gordon s-wave equation, Indian J. Pure Appl. Math. 32 (2001), 851-857.
[10] E. Bairamov and A. O. Çelebi, Spectrum and spectral expansion for the non-selfadjoint discrete Dirac operators, Quart. J. Math. Oxford (2), 50 (1999), 371-384.
[11] E. Bairamov, Ö. Karaman, Spectral singularities of Klein-Gordon s-wave equations with an integral boundary condition, Acta Math. Hungar 97(1-2) (2002), 121-131.
[12] E. Bairamov, A. M. Krall, Dissipative operators generated by the Sturm-Liouville differential expression, J. Math. Anal. Appl. 254 (2001), 178-190.
[13] E. P. Dolzhenko, Boundary value uniqueness theorems for analytic functions, Math. Notes 26 (6) (1979), 437-442.
[14] M. G. Gasymov and F. G. Maksudov, The principal part of the resolvent of non-selfadjoint operators in neighborhood of spectral singularities, Funct. Anal. Appl. 6 (1972), 185-192.
[15] G. S. Guseinov, The inverse problem of scattering theory for a second order difference equation on the whole axis, Soviet Math. Dokl. 17 (1976), 1684-1688.
[16] V. E. Lyance, A differential operator with spectral singularities I, II, Amer. Math. Soc. Trans., Ser. 2, 60 (1967), 185-225, 227-283, Amer. Math. Soc., Providence, 1967.
[17] M. A. Naimark, Investigation of the spectrum and the expansion in eigenfunctions of a non-selfadjoint operator of second order on a semi-axis, Amer. Math. Soc. Trans. Ser. 2, 16 (1960), 103-193, Amer. Math. Soc., Providence, 1960.

ALI AKBULUT
DEPARTMENT OF MATHEMATICS
FACULTY OF ARTS AND SCIENCE
GAZI UNIVERSITY
40100, KIIRSEHIR
TURKEY
E-mail: akbulut@science.ankara.edu.tr

MURAT ADIVAR
DEPARTMENT OF MATHEMATICS
ADNAN MENDERES UNIVERSITY
09100, AYDIN
TURKEY
E-mail: Murat.Adivar@science.ankara.edu.tr

ELGIZ BAIRAMOV
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
ANKARA UNIVERSITY
06100, TANDOĞAN, ANKARA
TURKEY
E-mail: bairamov@science.ankara.edu.tr
(Received February 13, 2003; 2nd revised November 26, 2004)

[^0]: Mathematics Subject Classification: Primary: 39A70; Secondary: 47A10, 47B39.
 Key words and phrases: spectral analysis, eigenvalue, spectral singularity, difference equation.

