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On the spectrum of the difference equations of second order

By ALI AKBULUT (Kiırsehir), MURAT ADIVAR (Aydin) and
ELGIZ BAIRAMOV (Ankara)

Abstract. In this paper we investigate the discrete spectrum of the bound-
ary value problem

an−1yn−1 + bnyn + anyn+1 + fn = λyn, n ∈ N = {1, 2, . . . } , y0 = 0

where {an}∞n=1, {bn}∞n=1 and {fn}∞n=1 are complex sequences.

1. Introduction

Let T be a non-selfadjoint, closed linear operator in a Hilbert space H.
We will denote the continuous spectrum and the set of all eigenvalues
of T by σc(T ) and σd(T ), respectively. In this paper we consider some
singular points which are the poles of the kernel of the resolvent and are
also embedded in the continuous spectrum, but they are not eigenvalues.
Hereafter, we will call such singular points as spectral singularities of T

and denote the set of all spectral singularities of T by σss(T ).
Eigenvalue problems of selfadjoint difference equations have been treat-

ed by various authors (for the relevant references one may consult Agar-

wal [3] or Agarwal and Wong [4]). But spectral theory of non-self-
adjoint difference equations with spectral singularities has not been in-
vestigated extensively. In [7] it has been shown by some examples that
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the non-selfadjoint difference equations have spectral singularities. After-
wards spectral analysis of difference equations with spectral singularities
became interesting subject in this field. Some problems of spectral the-
ory of non-selfadjoint difference equations with spectral singularities were
studied in [1], [7], [8], [10]. Note that spectral analysis of Sturm–Liouville,
Schrödinger and Klein–Gordon differential equations with spectral singu-
larities has been investigated in detail in [2], [5], [6], [9], [11], [12], [14],
[16], [17].

Let us consider the boundary value problem (BVP)

an−1yn−1 + bnyn + anyn+1 + fn = λyn, a0 = 1, n ∈ N, (1.1)

y0 = 0, (1.2)

where {an}∞n=1, {bn}∞n=1 and {fn}∞n=1 are complex sequences, an �= 0 for all
n ∈ N and λ is a complex parameter. Note that we can write equation (1.1)
in the following Sturm–Liouville form:

∆ (an−1∆yn−1) + qnyn + fn = λyn, n ∈ N,

where qn = an−1 + an + bn and ∆ is the forward difference operator, i.e.,
∆yn = yn+1 − yn.

In this paper we investigate spectral properties of the BVP (1.1), (1.2)
using the boundary behavior of analytic functions. In particular, we prove
that under the conditions

sup
n∈N

{
exp

(
ε
√

n
)(|1 − an| + |bn|

)}
< ∞,

sup
n∈N

{
exp

(
εn1+β

)|fn|
}

< ∞

for some ε > 0 and β > 0, the BVP (1.1), (1.2) has a finite number of
eigenvalues and spectral singularities and each of them is of finite multi-
plicity.
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2. The solution of (1.1), (1.2)

Related with equation (1.1) we will consider the following difference
equation

an−1yn−1 + bnyn + anyn+1 = λyn, n ∈ N, (2.1)

i.e. the case fn ≡ 0 for all n ∈ N.
Suppose that the complex sequences {an}∞n=1 and {bn}∞n=1 satisfy

∞∑
n=1

n (|1 − an| + |bn|) < ∞. (2.2)

Under the condition (2.2) equation (2.1) has the following solution

en(z) = αneinz

(
1 +

∞∑
m=1

An,meimz

)
, n ∈ N ∪ {0}, (2.3)

for λ = 2cos z, where z ∈ C+ := {z : z ∈ C, Im z ≥ 0}, and An,m, αn are
expressed in terms of {an}∞n=1 and {bn}∞n=1. Moreover αn and An,m satisfy

αn =

{ ∞∏
k=n

ak

}−1

, |An,m| ≤ c

∞∑
k=n+[m

2 ]
(|1 − ak| + |bk|) , (2.4)

where [m2 ] is the integer part of m
2 and c > 0 is a constant ([15], see also [7]).

Therefore the solution e(z) = {en(z)}∞n=0 is analytic with respect to z in
C+ := {z : z ∈ C, Im z > 0}, continuous in C+ and

en(z + 2π) = en(z), z ∈ C+, n ∈ N ∪ {0},

en(z) = einz[1 + o(1)], z ∈ C+, n → ∞, (2.5)

en(z) = αneinz[1 + o(1)], n ∈ N, z ∈ C+, Im z → ∞, (2.6)

hold ([15]).
Let ê(z) = {ên(z)}∞n=0 denote the solution of (2.1) for λ = 2cos z,

subject to the condition

lim
n→∞ ên(z)einz = 1, z ∈ C+. (2.7)
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The solution ê(z) is analytic in C+ and continuous on the real axis and

ên(z + 2π) = ê(z), n ∈ N ∪ {0}.
Note that e(z) is a bounded solution of (2.1) for λ = 2cos z, but ê(z) is
unbounded. From (2.5) and (2.7) we get that Wronskian of solutions e(z)
and ê(z) is obtained as

W [e(z), ê(z)] = an [en(z)ên+1(z) − en+1(z)ên(z)]

= −2i sin z, z ∈ C+.

Let us define

En(z) =
1

2i sin z

{ ∞∑
k=n

fk+1êk+1(z)en(z) −
∞∑

k=n

fk+1ek+1(z)ên(z)

+ Â(z)en(z) − A(z)ên(z)

}
, n ∈ N ∪ {0}, (2.8)

where

Â(z) =
∞∑

k=1

fkêk(z) + ê0(z),

A(z) =
∞∑

k=1

fkek(z) + e0(z). (2.9)

It is obvious that E(z) := {En(z)}∞n=0 is the solution of the BVP (1.1),
(1.2) for λ = 2cos z and

En(z + 2π) = En(z), z ∈ C+, n ∈ N ∪ {0}.

3. Discrete spectrum of (1.1), (1.2)

Let us define the semi-strips

P0 = {z : z ∈ C, 0 ≤ Re z < 2π, Im z > 0},
P = {z : z ∈ C, 0 ≤ Re z < 2π, Im z ≥ 0}.

We also denote the set of eigenvalues and the set of spectral singularities
of BVP (1.1), (1.2) by σd and σss, respectively.
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Lemma 3.1. If for some ε > 0 and β > 0 (2.2) and

sup
n∈N

{
exp(εn1+β)|fn|

}
< ∞, (3.1)

hold, then

σd = {λ : λ = 2cos z, z ∈ P0, A(z) = 0} , (3.2)

where the function A is defined by (2.9).

Proof. Let λ0 = 2cos z0 and z0 ∈ P0. Using (2.5) and (2.7), we get
that e(z0) ∈ �2(N) and ê(z0) /∈ �2(N). Since

en(z0)
∞∑

k=n

fk+1êk+1(z0) = O
(
e−

∈
2

n1+β)
, n → ∞,

and

ên(z0)
∞∑

k=n

fk+1ek+1(z0) = O
(
e−

∈
2

n1+β)
, n → ∞,

it follows from (2.8) that E(z0) belongs to �2(N) if and only if A(z0)= 0.
�

Analogously to Sturm–Liouville difference equation, we have

σss = {λ : λ = 2cos z, z ∈ (0, 2π), z �= π, A(z) = 0}, (3.3)

(see [1], [7], [8]).
In order to investigate the structure of the eigenvalues and the spectral

singularities of the BVP (1.1), (1.2), by (3.2) and (3.3), we need to discuss
the quantitative properties of the zeros of A in P . In order to do so, write

M1 = {z : z ∈ P0, A(z) = 0},
M2 = {z : z ∈ [0, 2π], A(z) = 0}.

From (3.2) and (3.3), we see that

σd = {λ : λ = 2cos z, z ∈ M1}, (3.4)

σss =
{
λ : λ = 2cos z, z ∈ M2\{0, π, 2π}}. (3.5)
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Lemma 3.2. If (2.2) and (3.1) hold, then

i. The set M1 is bounded and has at most a countable number of ele-

ments, and its limit points can lie only in [0, 2π].

ii. The set M2 is compact and µ(M2) = 0, where µ denotes the Lebesgue

measure in the real axis.

Proof. Using (2.3) and (2.4) we get that the function A is analytic
in P0, continuous in P and

A(z) = α0 +
∞∑

k=1

ϕke
ikz, (3.6)

where
ϕ1 = f1α1 + α0A0,1,

ϕk = fkαk + α0A0,k +
k−1∑
m=1

fmαmAm,k−m, k ≥ 2.
(3.7)

It follows from (2.4), (2.6) and (3.1) that

A(z) = α0 + o(1), z ∈ P0, |z| → ∞. (3.8)

Since α0 �= 0, equation (3.8) shows the boundedness of M1. From the
analyticity of A in P0 we find that M1 has at most a countable number
of elements and its limit points can lie only in [0, 2π]. By the boundary
value uniqueness theorem for analytic functions we obtain that the set M2

is closed and µ(M2) = 0 ([13]). �

From (3.4), (3.5) and Lemma 3.2 we get the following.

Theorem 3.3. Under the conditions (2.2) and (3.1)

i. The set of eigenvalues of the BVP (1.1), (1.2) is bounded, is no more

than countable and its limit points can lie only in [−2, 2].

ii. σss ⊂ [−2, 2] and µ(σss) = 0.

Theorem 3.4. If for some ε > 0, (3.1) and

sup
n∈N

{
eεn
(|1 − an| + |bn|

)}
< ∞, (3.9)

hold, then the BVP (1.1), (1.2) has a finite number of eigenvalues and

spectral singularities, and each of them is of finite multiplicity.



On the spectrum of the difference equations of second order 259

Proof. From (2.4) and (3.9) we obtain that

|An,m| ≤ ce−
ε
2
m, n,m ∈ N,∣∣∣∣∣

k−1∑
m=1

fmαmAm,k−m

∣∣∣∣∣ ≤ ce−
ε
2
k, k ∈ N,

and consequently it follows from (3.7) that

|ϕk| ≤ ce−
ε
2
k, k ∈ N, (3.10)

where c > 0 is a constant. By (3.6) and (3.10) we observe that the func-
tion A has an analytic continuation to the half-plane Im z > − ε

2 . Since
A is a 2π periodic function, the limit points of M1 and M2 cannot lie in
[0, 2π]. Using Theorem 3.3 we get that the bounded sets σd and σss have
no limit points, i.e., the sets σd and σss have a finite number of elements.
From analyticity of A in Im z > − ε

2 we get that all zeros of A in P have a
finite multiplicity. Consequently, all eigenvalues and spectral singularities
of the BVP (1.1), (1.2) have a finite multiplicity. �

Briefly, (3.1) and (3.9) guarantee the analytic continuation of the func-
tion A from the real axis to lower half-plane and finiteness of eigenvalues
and spectral singularities of the BVP (1.1), (1.2) can be obtained as a
result of this analytic continuation.

Now let us suppose that for some ε > 0, and 1
2 ≤ δ < 1,

sup
n∈N

{
eεnδ(|1 − an| + |bn|

)}
< ∞, (3.11)

holds, which is weaker than (3.9). It is evident that under conditions
(3.1) and (3.11), the function A is analytic in C+ and infinitely many
times differentiable on the real axis. But A does not necessarily have an
analytic continuation from the real axis to lower half-plane. Therefore,
under the conditions (3.1) and (3.11), the finiteness of eigenvalues and
spectral singularities of the BVP (1.1), (1.2) cannot be proved by the
same technique used in Theorem 3.4.

Let us denote the set of all limit points of M1 and M2 by M3 and M4,
respectively, and the set of all zeros of A with infinite multiplicity in P by
M5. From the boundary uniqueness theorem of analytic functions

M1 ∩ M5 = ∅, M3 ⊂ M2, M4 ⊂ M2, M5 ⊂ M2,
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and

µ (M3) = µ(M4) = µ(M5) = 0.

Using the continuity of all derivatives of A on the real axis, we have

M3 ⊂ M5, M4 ⊂ M5. (3.12)

To prove the next result, we will use the following uniqueness theorem for
the analytic functions on the upper half-plane.

Theorem 3.5 ([7]). Let us assume that the 2π periodic function f is

analytic in the open upper half-plane, all of its derivatives are continuous

in the closed upper half-plane and

sup
z∈P

∣∣f (k)(z)
∣∣ ≤ Bk, k ∈ N ∪ {0}.

If the set G with Lebesgue measure zero is the set of all zeros of the function

f with infinite multiplicity in P and∫ ω

0
ln F (s)dµ(Gs) = −∞,

where

F (s) = inf
k∈N∪{0}

Bks
k

k!

and µ (Gs) is the Lebesgue measure of s-neighborhood of G and ω ∈ (0, 2π)
is an arbitrary constant, then f ≡ 0 in C+.

Lemma 3.6. If (3.1) and (3.11) hold, then M5 = ∅.

Proof. It follows from (3.1), (3.6) and (3.11) that

|A(n)(z)| ≤ Qn,

where

Qn = c2n
∞∑

m=1

mne−
ε
2
mδ

, n = 0, 1, 2, . . . .
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Now we obtain the estimate

Qn ≤ 2c 2n

∫ ∞

0
tne−

ε
2
tδdt

= c 2n+1 1
δε

(
2
ε

) 2
δ
−1 ∫ ∞

0
t

k+1
δ

−1e−tdt

≤ cqnn!nn( 1
δ
−1),

(3.13)

c and q are positive constants depending on ε, β and δ. Since the function
A is not equal to zero identically, then by Theorem 3.5, M5 satisfies∫ ω

0
ln F (s)dµ (M5,s) > −∞, (3.14)

where
F (s) = inf

n∈N∪{0}
Qnsn

n!

and Qn is constant defined by (3.13). Substituting (3.13) in the definition
of F (s), we arrive at

F (s) ≤ c exp
{
−1 − δ

δ
e−

1
1−δ q−

1
1−δ s−

δ
1−δ

}
,

by (3.14), we get that ∫ ω

0
s−

δ
1−δ dµ(M5,s) < ∞. (3.15)

Since δ
1−δ ≥ 1, (3.15) holds for arbitrary s if and only if µ (M5,s) = 0 or

M5 = ∅. �

Theorem 3.7. Under the conditions (3.1) and (3.11) the BVP (1.1),
(1.2) has a finite number of eigenvalues and spectral singularities, and each

of them is of a finite multiplicity.

Proof. To be able to prove the theorem, we have to show that the
function A has a finite number of zeros with finite multiplicities in P . From
(3.12) and Lemma 3.6 we get that M3 = M4 = ∅. So the bounded sets M1

and M2 have no limit points, i.e., the function A has only finite number of
zeros in P . Since M5 = ∅, these zeros are of finite multiplicity. �
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[9] E. Bairamov, Ö. Çakar and C. Yanık, Spectral singularities of the Klein–Gordon
s-wave equation, Indian J. Pure Appl. Math. 32 (2001), 851–857.
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