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Minimizers of nonsmooth functionals on manifolds
and nonlinear eigenvalue problems with constraints

By SOPHIA TH. KYRITSI (Athens)
and NIKOLAOS S. PAPAGEORGIOU (Athens)

Abstract. In this paper first we prove a theorem on the relation between
C1

0 (Z̄) and W 1,p
0 (Z) local minimizers of a locally Lipschitz functional on a smooth

submanifold of codimension one. Our result extends the semilinear, smooth works
of Brezis–Nirenberg (CRAS, t.317 (1993), no constraints) and Tehrani (Non.
Anal. 26 (1996), on manifolds). Then using this result and nonsmooth critical
point theory, we prove a three critical points theorem for locally Lipschitz func-
tionals on manifolds. Finally the results are used to establish three nontrivial
solutions for eigenvalue problems with nonsmooth potential and constraints.

1. Introduction

Brezis–Nirenberg [2] proved an interesting result on the compari-
son of the H1

0 versus the C1
0 local minimizers of a C1-functional. The result

proved to be a useful tool in establishing multiplicity results for semilin-
ear elliptic problems. Soon thereafter Tehrani [26] extended the result
of Brezis–Nirenberg to C1-functionals defined on suitable submanifolds of
H1

0 (Z). Tehrani used his extension to prove multiplicity results for certain
semilinear eigenvalue problems. Recently the result of Brezis–Niremberg
was extended by Kourogenis–Papageorgiou [15] to nonsmooth locally
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Lipschitz functionals defined on W 1,p
0 (Z) (p ≥ 2). Kourogenis–Papage-

orgiou used their result to study quasilinear elliptic problems driven by
p-Laplacian differential operator with a nonsmooth potential. Such prob-
lems are known as “hemivariational inequalities” and are a new type of
variational expressions which arise in Mechanics and Engineering, when
one wants to consider more realistic laws of nonmonotone multivalued na-
ture, which correspond to nonsmooth nonconvex energy functionals. For
concrete applications, we refer to the book of Naniewicz–Panagioto-

poulos [13].
In this paper we extend the work of Tehrani to nonsmooth locally

Lipschitz functionals constrained on a smooth submanifold of W 1,p
0 (Z)

(2 ≤ p < ∞). The result is then used to prove a multiplicity result (a
three solutions theorem) for quasilinear eigenvalue problem for hemivaria-
tional inequalities with constraints. Semilinear hemivariational inequalities
with constraints were examined using different methods by Bocea–Pa-

nagiotopoulos–Radulescu [5], Motreanu–Panagiotopoulos [21],
Radulescu–Panagiotopoulos [24]. Also multiplicity results for eigen-
value problems were obtained by Gasinski–Papageorgiou [9], Goele-

ven–Motreanu–Panagiotopoulos [11], Radulescu [23] (semilinear
problems) and Gasinski–Papageorgiou [10] (quasilinear problems).

Our approach uses the nonsmooth critical point theory as this was
developed initially by Chang [4] and extended recently by Kourogenis–

Papageorgiou [14] and Kyritsi–Papageorgiou [16]. For another ap-
proach with applications to problems with an area-type term, we refer to
the paper of Degiovanni–Marzocchi–Radulescu [7] and the references
therein.

2. Mathematical preliminaries

In this section for the convenience of the reader, we recall some basic
definitions and facts from the critical point theory for nonmooth locally
Lipschitz functionals. This theory is based on the subdifferential theory of
Clarke [6].

Let X be a Banach space and X∗ its dual. By (. , .) we denote the
duality brackets for the pair (X,X∗). A map ϕ : X → R is said to be
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locally Lipschitz if for every x ∈ X there exists a neighborhood U of x and
a constant kU > 0 such that |ϕ(z) − ϕ(y)| ≤ kU‖z − y‖ for all z, y ∈ U .
It is a well-known fact of convex analysis that a proper, convex and lower
semicontinuous function ψ : X → R = R∪{+∞}, is locally Lipschitz in the
interior of its effective domain domψ = {x ∈ X : ψ(x) < +∞}. In analogy
to the directional derivative of a convex function, for a locally Lipschitz
function ϕ : X → R we define the generalized directional derivative at
x ∈ X in the direction h ∈ X, by

ϕ0(x;h) = lim sup
x′→x
λ↓0

ϕ(x′ + λh) − ϕ(x′)
λ

.

It is easy to check that the function h→ ϕ0(x;h) is sublinear contin-
uous and so by the Hahn–Banach theorem, it is the support function of a
nonempty, convex and w∗-compact set

∂ϕ(x) = {x∗ ∈ X∗ : (x∗, h) ≤ ϕ0(x;h) for all h ∈ X}.
The set ∂ϕ(x) is called the generalized (or Clarke) subdifferential of

ϕ at x ∈ X. If ϕ,ψ : X → R are two locally Lipschitz functions, then
for all x ∈ X and all λ ∈ R, we have ∂(ϕ + ψ)(x) ⊆ ∂ϕ(x) + ∂ψ(x) and
∂(λϕ)(x) = λ∂ϕ(x). Moreover, if ϕ : X → R is also convex, then the
generalized subdifferential of ϕ coincides with the subdifferential in the
sense of convex analysis defined by ∂ϕ(x) = {x∗ ∈ X∗ : (x∗, y − x) ≤
ϕ(y) − ϕ(x) for all y ∈ X}. Also if ϕ ∈ C1(X), then ∂ϕ(x) = {ϕ′(x)}.

Let C ⊆ X be a nonempty set. We know that the distance from C

function dC(y) = inf[‖y − x‖ : x ∈ C], is Lipschitz. Moreover, if C is
convex, then so is the function x → dC(x). Given x ∈ C, let TC(x) =
{h ∈ X : d0

C(x;h) = 0}. Clearly the set TC(x) is a closed, convex cone and
is known as the tangent cone to C at x ∈ C. By definition, the normal
cone to C at x ∈ C is the set NC(x) = {x∗ ∈ X∗ : (x∗, h) ≤ 0 for all
h ∈ TC(x)}. So NC(x) = T 0

C(x) = the polar cone associated to TC(x). If C
is convex, then NC(x) coincides with the normal cone of convex analysis,
i.e. NC(x) = {x∗ ∈ X∗ : (x∗, x − y) ≥ 0 for all y ∈ C}. If C is a C1-
manifold, then the tangent cone coincides with usual tangent space and
the normal cone with the normal space. It is an easy consequence of this
definition, that NC(x) =

⋃
λ≥0 λ∂dX(x)

w∗
. If intC 	= ∅ and x ∈ intC, then
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TC(x) = X and NC(x) = {0}. Suppose that ϕ : X → R is locally Lipschitz
and attains a local minimum on C at x ∈ C. Then 0 ∈ ∂ϕ(x) +NC(x).

It is well-known that the smooth critical point theory uses a compact-
ness-type condition known as the Palais–Smale condition (PS-condition for
short). In the present nonsmooth setting this condition takes the following
form:

“Let C ⊆ X be nonempty and ϕ : X → R locally Lipschitz.
We say that ϕ satisfies the nonsmooth Palais–Smale condition at
the level c ∈ R on C (nonsmooth PSc-condition on C), if ev-
ery sequence {xn}n≥1 ⊆ C such that ϕ(xn) → c and m1(xn) =
min[‖x∗‖ : x∗ ∈ ∂(ϕ|C )(xn)] → 0 has a strongly convergent subse-
quence.”

3. W 1,p versus C1 minimizers on manifolds

Let Z ⊆ R
N be a bounded domain with a C1,α boundary Γ (0<α< 1).

Let f : Z × R → R be a Caratheodory function (i.e. f is measurable in
z ∈ Z and continuous in x ∈ R). We know that such a function is jointly
measurable (see for example Hu–Papageorgiou [12], p. 142). We assume
that f(z, x) satisfies the following growth condition. For almost all z ∈ Z

and all x ∈ R, we have

|f(z, x)| ≤ α(z) + c|x|p−1 with α ∈ L∞(Z), c > 0.

We set F (z, x) =
∫ x
0 f(z, r)dr (the potential function corresponding to

f). We know that the functional x → ∫
Z F (z, x(z))dz from W 1,p

0 (Z) into
R is C1 and its derivative at x is Nf (x) is Nf (x) = the Nemitsky operator
corresponding to f , i.e. Nf (x)(.) = f( . , x(.)).

Also let j : Z×R → R be a function such that for all x ∈ R z → j(z, x)
is measurable, for almost all z ∈ Z x→ j(z, x) is locally Lipschitz and for
all z ∈ Z and all x ∈ R, we have

|j(z, x)| ≤ α1(z) + c1|x|p with α1 ∈ L∞(Z), c1 > 0.

Let J : W 1,p
0 (Z) → R be the integral function defined by J(x) =∫

Z j(z, x(z))dz, for all x ∈ W 1,p
0 (Z). We know that J is locally Lipschitz

(see Hu–Papageorgiou [13], p. 313).
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Let ψ : W 1,p
0 (Z) → R be the C1-functional defined by

ψ(x) =
1
p
‖Dx‖p

p −
∫

Z
F (z, x(z))dz

and let C = {x ∈ W 1,p
0 (Z) : ψ(x) = c}. Evidently C is a C1-manifold in

W 1,p
0 (Z) of codimension 1, provided that c is not a critical value of ψ.

In what follows F : W 1,p
0 (Z) → W−1,q(Z) = W 1,p

0 (Z)∗ is the dual-
ity map for the Sobolev space W 1,p

0 (Z). Since W 1,p
0 (Z) and W−1,q(Z)

are uniformly convex, F is a homeomorphism and F−1 is the duality
map of W−1,q(Z) (see Hu–Papageorgiou [12], p. 313 or Zeidler [28],
p. 861). In what follows by 〈·, ·〉 we denote the duality brackets for the
pair

(
W 1,p

0 (Z),W−1,q(Z)
)
.

Theorem 1. If x0 ∈ C1,β
0 (Z̄), β ∈ (0, 1) is a local minimizer of J |C for

the C1
0 (Z̄)-topology and for all x∗ ∈ ∂J(x0) we have

〈
x∗,F−1(ψ′(x1))

〉
< 0,

then x0 is a local minimizer of J |C for the W 1,p
0 (Z)-topology.

Proof. Suppose that the result is not true. For ε > 0, let Bε(x0) =
{x ∈ W 1,p

0 (Z) : ‖x − x0‖ < ε} (on W 1,p
0 (Z) we consider the norm ‖x‖ =

‖Dx‖p, by Poincaré’s inequality). Then for every n ≥ 1 we can find
0 < εn ≤ 1

n and xn ∈ ∂C ∩ B̄εn(x0) such that

J(xn) = inf
[
J(x) : x ∈ C ∩ B̄εn(x0)

]
< J(x0), n ≥ 1.

Let ϑ ∈ C1(W 1,p
0 (Z)) be defined by ϑ(x) = 1

p‖Dx‖p
p. We have

J(xn) = inf
[
J(x) : ψ(x) = c, ϑ(x− x0) ≤ εpn

p

]
.

Invoking Theorem 1 and Proposition 13 of Clarke [5], we can find
x∗n ∈ ∂J(xn), µn ∈ R and ξn ≤ 0 such that

x∗n = µnψ
′(xn) + ξnϑ

′(xn), n ≥ 1.

Let A : W 1,p
0 (Z) → W−1,q(Z) be the continuous monotone (hence

maximal monotone, see Hu–Papageorgiou [12], p. 309) operator de-
fined by

〈A(x), y〉 =
∫

Z
‖Dx‖p−2(Dx,Dy)RN dz for all x, y ∈W 1,p

0 (Z).
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We have ϑ′(xn) = A(xn − x0). So we can write that

x∗n = µnψ
′(xn) + ξnA(xn − x0). (1)

First suppose that |ξn| ≤ M1 for some M1 > 0 and all n ≥ 1. Then
from (1), for all v ∈W 1,p

0 (Z) we have that

〈x∗n, v〉 = µn

〈
ψ′(xn), v

〉
+ ξn 〈A(xn − x0), v〉 . (2)

Use as test function v = F−1(ψ′(x0)). We have〈
x∗n,F−1(ψ′(x0))

〉
= µn

〈
ψ′(xn),F−1(ψ′(x0))

〉
+ ξn

〈
A(xn − x0),F−1(ψ′(x0))

〉
.

(3)

Since x∗n ∈ ∂J(xn) and {xn}n≥1 ∈ C ∩ ∂Bεn(x0) ⊆ W 1,p
0 (Z), hence

bounded, because the Clarke subdifferential is a multifunction mapping
bounded sets to bounded sets, it follows that {x∗n}n≥1 ⊆ W−1,q(Z) is
bounded. So by passing to a subsequence if necessary, we may assume
that x∗n

w→ x∗ in W−1,q(Z). For every n ≥ 1 and for every v ∈ W 1,p
0 (Z),

we have that
〈x∗n, v〉 ≤ J0(xn; v).

Because xn → x0 in W 1,p
0 (Z) and (x, v) → J0(x; v) is upper semicon-

tinuous (see Clarke [6], p. 25), we obtain

〈x∗, v〉 ≤ J0(x0; v) for all v ∈W 1,p
0 (Z)

⇒ x∗ ∈ ∂J(x0).

If we pass to the limit in (3) and recalling that we have assumed
that |ξn| ≤ M1 for all n ≥ 1, because x∗n

w→ x∗, ψ′(xn) → ψ′(x0) (since
ψ ∈ C1(W 1,p

0 (Z))) and A(xn − x0) → 0, we obtain

0 >
〈
x∗,F−1(ψ′(x0))

〉
= (limµn)

〈
ψ′(x0),F−1(ψ′(x0))

〉
= (limµn)‖F−1(ψ′(x0))‖2.

(4)

Here we have used the fact that F−1 is the duality map of W−1,q(Z).
From (4) it follows that limµn < 0 and so we can find n0 ≥ 1 such that
for all n ≥ n0, we have µn < 0.
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Next suppose that |ξn| → ∞ as n→ ∞.
We shall show that there exist ε0 > 0 and n0 ≥ 1 such that for all

n ≥ n0, we have |µn| ≥ ε0. Suppose that this is not true. Then by
passing to a subsequence if necessary, we may assume that µn → 0. Let
yn = xn−x0

‖xn−x0‖ , n ≥ 1. We may assume that yn
w→ y in W 1,p

0 (Z). In (2) we
use as test function v = yn. We have

〈x∗n, yn〉 = µn

〈
ψ′(xn), yn

〉
+ ξn 〈A(xn − x0), yn〉

= µn

〈
ψ′(xn), yn

〉
+ ξn‖Dxn −Dx0‖p−1

p .
(5)

Because {〈ψ′(xn), yn〉}n≥1 ⊆ R is bounded and by hypothesis µn → 0,
it follows that µn 〈ψ′(xn), yn〉 → 0. Also since x∗n ∈ ∂J(xn) ⊆ Lq(Z)
(see Chang [4] or Clarke [6], p. 47), we have that {x∗n}n≥1 ⊆ Lq(Z) is
bounded and so we may assume that x∗n

w→ x∗ in Lq(Z) and x∗ ∈ ∂J(x0)
(recall that the graph of ∂J is sequentially closed in Lp(Z) × Lq(Z)w, see
Clarke [6], p. 29). Also from the compact embedding of W 1,p

0 (Z) into
Lp(Z), we have that yn → y in Lp(Z) and so 〈x∗n, yn〉 = (x∗n, yn)pq →
(x∗, y)pq = 〈x∗, y〉 (by (., )pq we denote the duality brackets for the pair
(Lp(Z), Lq(Z))). Hence from (5) in the limit as n→ ∞, we obtain

〈x∗, y〉 = lim ξn‖Dxn −Dx0‖p−1
p . (6)

From the mean value theorem, we have

0 = ψ(xn) − ψ(x0) =
〈
ψ′(x0 + tn(xn − x0)), xn − x

〉
with tn ∈ (0, 1)

⇒ 0 =
〈
ψ′(x0 + tn(xn − x0)), yn

〉
for all n ≥ 1.

Because xn → x0 in W 1,p
0 (Z), it follows that tn → 0 and since

ψ ∈ C1(W 1,p
0 (Z)), we have

0 = lim
n→∞

〈
ψ′(x0 + tn(xn − x0)), yn

〉
=

〈
ψ′(x0), y

〉
.

From Lusternik’s theorem (see for example Zeidler [29], p. 276), we
know that

TC(x0) = {h ∈W 1,p
0 (Z) :

〈
ψ′(x0), h

〉
= 0}.

Therefore y ∈ TC(x0).
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Since x0 is a local minimizer of J
∣∣
C

in C1
0 (Z̄), the latter space is dense

in W 1,p
0 (Z) and h→ J0(x0;h) is continuous on W 1,p

0 (Z), we infer that

0 ≤ J0(x0;h) for all h ∈ TC(x0).

Because TC(x0) is a linear subspace of W 1,p
0 (Z) of codimension 1, we

have
0 ≤ J0(x0;−h) for all h ∈ TC(x0).

We know that J0(x0;−h) = (−J)0(x0;h) (see Clarke [6]). Remark
that x0 is a local maximizer in C1

0 (Z̄) of (−J)
∣∣
C
. So as above, we deduce

that

(−J)0(x0;h) ≤ 0 for all h ∈ TC(x0),

⇒ J0(x0;h) ≤ 0 for all h ∈ TC(x0)

⇒ J0(x0;h) = 0 for all h ∈ TC(x0).

Moreover, from the nonsmooth Lagrange multiplier rule (see Clarke

[5], [6]), we can find x̂∗ ∈ ∂J(x0) such that

〈x̂∗, h〉 = J0(x0;h) for all h ∈ TC(x0).

Recall that x∗ ∈ ∂J(x0). So we have

〈x̂∗, h〉 ≥ 〈x∗, h〉 ,
⇒ 〈x̂∗ − x∗, h〉 ≥ 0 for all h ∈ TC(x0)

⇒ x̂∗ = x∗.

Since y ∈ TC(x0) it follows that

〈x∗, y〉 = 0

⇒ lim
n→∞ ξn‖Dxn −Dx0‖p−1

p = 0.

We return to (2) and use v = F−1(ψ′(x0)) ∈W 1,p
0 (Z). We obtain〈

x∗n,F−1(ψ′(x0))
〉

= µn

〈
ψ′(xn),F−1(ψ′(x0))

〉
+ ξn

〈
A(xn − x0),F−1(ψ′(x0))

〉
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⇒ 0 >
〈
x∗,F−1(ψ′(x0))

〉
= (limµn)‖ψ′(x0)‖2

+ lim ξn
〈
A(xn − x0),F−1(ψ′(x0))

〉
= (limµn)‖ψ′(x0‖2 = 0,

a contradiction (note that |ξn
〈
A(xn − x0),F−1(ψ′(x0))

〉 | ≤ |ξn|‖Dxn −
Dx0‖p−1

p ‖F−1(ψ′(x0))‖p). So indeed we can find ε0 > 0 and n0 ≥ 1 such
that for all n ≥ n0 we have |µn| ≥ ε0.

Moreover, from (3) we have that〈
x∗n,F−1(ψ′(x0))

〉 − ξn
〈
A(xn − x0),F−1(ψ′(x0))

〉
= µn

〈
ψ′(xn),F−1(ψ′(x0))

〉
,

⇒ lim
n→∞µn

〈
ψ′(xn),F−1(ψ′(x0))

〉
=

〈
x∗,F−1(ψ′(x0))

〉
< 0 (see (6)),

⇒ ( lim
n→∞µn)

〈
ψ′(x0),F−1(ψ′(x0))

〉
= ( lim

n→∞µn)‖ψ′(x0)‖2 < 0,

⇒ µn < 0 for all n ≥ n0.

Once again we return to (2) and as above we employ the test function
v = F−1(ψ′(x0)). We obtain〈

x∗n,F−1(ψ′(x0))
〉

= µn

〈
ψ′(xn),F−1(ψ′(x0))

〉
+ ξn

〈
A(xn − x0),F−1(ψ′(x0))

〉
.

Divide by ξn (recall that we are assuming that |ξn| → +∞). So we
have

1
ξn

〈
x∗n,F−1(ψ′(x0))

〉
=
µn

ξn

〈
ψ′(xn),F−1(ψ′(x0))

〉
+

〈
A(xn − x0),F−1(ψ′(x0))

〉
.

Remark that 1
ξn

〈
x∗n,F−1(ψ′(x0))

〉 → 0 while from the previous argu-
ments we have that

〈
A(xn − x0),F−1(ψ′(x0))

〉 → 0. So in the limit as
n→ ∞, we obtain

lim
n→∞

µn

ξn
‖ψ′(x0)‖2 = 0

⇒ lim
n→∞

µn

ξn
= 0.

(7)
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Since x∗n = µnψ
′(xn) + ξnA(xn − x0) (see (1)) and ψ′(xn) = A(xn) −

Nf (xn) we have

A(xn) =
1
µn
x∗n +Nf (xn) − ξn

µn
A(xn − x0)

⇒ 〈A(xn), ϑ〉 =
〈

1
µn
x∗n +Nf (xn) − ξn

µn
A(xn − x0), ϑ

〉
for all ϑ ∈ C∞

0 (Z).
From the representation theorem for the elements of W−1,q(Z) =

W 1,p
0 (Z)∗ (see Adams [1], p. 51) we have −div (‖Dxn‖p−2Dxn) and

div (‖D(xn − x0)‖p−2D(xn − x0)) ∈ W−1,q(Z). So after integration by
parts and since C∞

0 (Z) is dense in W 1,p
0 (Z), we obtain

−div (‖Dxn(z)‖p−2Dxn(z)) − ξn
µn

div (‖D(xn − x0)(z)‖p−2D(xn − x0)(z))

=
1
µn
x∗n(z) + f(z, xn(z)) a.e. on Z.

From the previous considerations we have that either µn < 0 for n ≥ 1
large or (7) is valid, hence ξn

µn
→ +∞ as n→ ∞.

Also because by hypothesis x0 is a local minimizer of J
∣∣
C
, for some

λ < 0, we have

−div (‖Dx0(z)‖p−2Dx0(z)) − f(z, x0(z)) =
1
λ
u0(z) a.e. on Z

with u0 ∈ Lq(Z), u0(z) ∈ ∂j(z, x0(z)) a.e. on Z. So we have

− div
(
‖Dxn‖p−2Dxn +

ξn
µn

‖D(xn − x0)‖p−2(Dxn −Dx0)

+
ξn
µn

‖Dx0‖p−2Dx0

)
(z)

=
1
µn
x∗n(z) + f(z, xn(z)) − ξn

µn
f(z, x0(z)) − 1

λ

ξn
µn
u0(z) a.e. on Z.

Let η(z) = Dx0(z). Then η ∈ Cβ(Z̄). We consider the vector field

An(z, ζ) = ‖ζ‖p−2ζ +
ξn
µn

‖ζ − η(z)‖p−2(ζ − η(z)) +
ξn
µn

‖η(z)‖p−2η(z).
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Evidently An(z, 0) = 0 and 〈An(z, ζ), ζ〉 ≥ ‖ζ‖p. Moreover, if ξn

µn
∈

[0, 1], straightforward calculations can verify that

‖An(z, ζ)‖ ≤ β1 + β2‖ζ‖p−1,(
An(z, ζ) −An(z, ζ ′), ζ − ζ ′

)
RN ≥ β3‖ζ − ζ ′‖p,

‖An(z, ζ) −An(z′, ζ)‖ ≤ β4‖z − z′‖(1 + ‖ζ‖p−1),(
DζAn(z, ζ)ϑ, ϑ

)
RN ≥ β5

(
‖ζ‖p−2 +

ξn
µn

‖η(z) − ζ‖p−2

)
‖ϑ‖2,

(
DζAn(z, ζ)ϑ, ϑ

)
RN ≤ β6

(
‖ζ‖p−2 +

ξn
µn

‖η(z) − ζ‖p−2

)
‖ϑ‖2

with βk > 0 k = 1, . . . , 6 independent of ξn

µn
∈ [0, 1]. Also

1
β7

((
1 +

ξn
µn

)
‖ζ‖p−2 +

ξn
µn

‖η(z)‖p−2

)
≤

(
‖ζ‖p−2 +

ξn
µn

‖η(z) − ζ‖p−2

)
≤ β7

((
1+

ξn
µn

)
‖ζ‖p−2 +

ξn
µn

‖η(z)‖p−2

)
with β7 > 1 depending only on p ≥ 2.

Then we have that

−divAn

(
z,Dxn(z)

)
=

1
µn
x∗(z) + f(z, xn(z)) − ξn

µn
f(z, x0(z))

− 1
λ

ξn
µn
u∗0(z) a.e. on Z.

First invoking Theorem 7.1, p. 286 of Ladyzhenskaya–Uraltseva

[18], we obtain M1 > 0

‖xn‖∞ ≤M1 for all n ≥ 1.

Then the properties of the vector field An(z, ζ), permit the use of
Theorem 1 of Lieberman [20] (see also Di Benedetto [8], Chapter IX)
and obtain M2 > 0, α ∈ (0, 1), such that

‖xn‖C1,α
0 (Z̄) ≤M2 for all n ≥ 1.

Now if ξn

µn
> 1. Then if wn = xn − x0, we have

− div
(
‖Dwn‖p−2Dwn +

ξn
µn

‖D(wn + xn)‖p−2D(wn + x0)
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− ξn
µn

‖Dx0‖p−2Dx0

)
(z)

=
1
ξn
x∗n(z) +

ξn
µn
f
(
z,wn(z) + x0(z)

)
+
ξn
µn
f
(
z, x0(z)

)
+

1
λ

ξn
µn
u0(z) a.e. on Z.

Introduce the vector field

Ân(z, ζ) = ‖ζ‖p−2ζ +
ξn
µn

‖ζ + η(z)‖p−2
(
ζ + η(z)

) − ξn
µn

‖η(z)‖p−2η(z).

This satisfies the same properties as An(z, ζ) and

−div Ân(z,Dwn(z)) =
1
ξn
x∗n(z) +

ξn
µn
f
(
z,wn(z) + x0(z)

)
+
ξn
µn
f(z, x0(z)) +

1
λ

ξn
µn
u0(z) a.e.

So we are back in the previous situation and again

‖xn‖C1,α
0 (Z̄)

≤M2 for all n ≥ 1.

Since the embedding of C1,α
0 (Z̄) into C1

0 (Z̄) is compact (see Kufner–

John–Fučik [16], p. 38) and xn → x0 in W 1,p
0 (Z), it follows that xn → x0

in C1
0 (Z̄). Recall that

J(xn) < J(x0) and ψ(xn) = c for all n ≥ 1.

This contradicts the hypothesis that x0 is a local C1
0 (Z̄)-minimizer

of J on C. �

4. Eigenvalue problems with constraints

In this section, we prove a three solutions theorem for the following
constrained eigenvalue problem with nonsmooth potential (hemivariational
inequality):{ −div (‖Dx(z)‖p−2Dx(z) ∈ λ∂j(z, x(z)) a.e on Z

x|Γ = 0, ‖Dx‖p = 1, 2 ≤ p <∞, λ ∈ R.

}
(8)
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Our hypotheses on the nonsmooth nonlinearity j(z, x), are the follow-
ing:
H(j) = j : Z × R → R is a function such that

∫
Z j(z, 0)dz = 0 and

(i) for all x ∈ R, z → j(z, x) is measurable;

(ii) for almost all z ∈ Z, x→ j(z, x) is locally Lipschitz;

(iii) for almost all z ∈ Z, all x ∈ R and all u ∈ ∂j(z, x), we have
|u| ≤ α1(z) + c1|x|p−1, with α1 ∈ L∞(Z), c1 > 0;

(iv) for almost all z ∈ Z, all x ∈ R and all u ∈ ∂j(z, x), we have
ux ≥ 0 and 0 ∈ ∂j(z, x) a.e. on Z if and only if x = 0;

(v) limx→0
u

|x|p−2x
= 0 uniformly for almost all z ∈ Z and all u ∈

∂j(z, x).

In what follows S1 = {x ∈W 1,p
0 (Z) : ‖Dx‖p = 1}, the constraint set.

We start with a general result which is actually of independent interest.

Proposition 2. If X is a reflexive Banach space, S ⊆ X is a C1-

manifold of codimension 1, ϕ : X → R is a locally Lipschitz function,

y1, y2 ∈ S are two distinct local minimizers of ϕ on S and ϕ satisfies the

nonsmooth PSβ-condition on S for every β > max{ϕ(y1), ϕ(y2)}, then ϕ

has a third critical point on S.

Proof. Without any loss of generality, we assume that ϕ(y1) ≤ ϕ(y2).
We also assume that y2 is an isolated local minimizer of ϕ on S, or other-
wise there is nothing to prove. So let r ∈ (0, ‖y1 − y2‖) such that

ϕ(y1) ≤ ϕ(y2) < ξ = inf[ϕ(y) : y ∈ ∂Br(y2) ∩ S].

Let g be a continuous curve on S with g(0) = y1 and g(1) = y2. We
introduce the sets

E = ∂Br(y2) ∩ S and F = g([0, 1]).

It is clear that E and ∂F = {y1, y2} link in S (see Struwe [25],
p. 116). We define

Γ = {γ ∈ C(S, S) : γ|∂F = identity} and β = inf
γ∈Γ

sup
u∈F

ϕ(γ(u)).

Evidently ϕ(y1) ≤ ϕ(y2) < ξ ≤ β. We shall show that β is a critical
value of ϕ on S. To this end let Kβ = {x ∈ S : ϕ(x) = β and 0 ∈
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∂(ϕ|S)(x)}. If β is not a critical value of ϕ on S, then Kβ = ∅. Let
ε0 = ξ − ϕ(y2) > 0 and U = ∅ and apply the deformation theorem of
Chang [4] (see Remark 3 in the paper) with 0 < ε < ε0. We obtain a
continuous one-parameter family of homeomorphisms η : [0, 1] × S → S

with the properties postulated by the result of Chang. From the choice of
ε0 > 0, we see that for all t ∈ [0, 1], η(t, .)|∂F = identity. Also we choose
γ ∈ Γ such that ϕ(γ(u)) < β + ε for all u ∈ F (recall the definition of β).
Set γ1 = η(1, .) ◦ γ. From the deformation theorem, we have that γ1 ∈ Γ
and also sup[ϕ(γ1(u)) : u ∈ F ] < β − ε, which contradicts the definition
of β. This proves that Kβ 	= ∅ and so we have a critical point y3 ∈ S of ϕ
on S such that β ≤ ϕ(y3). This means that y3 is distinct from y1, y2. �

Now we return to the analysis of problem (8) and consider the integral
functional J : W 1,p

0 (Z) → R defined by

J(x) = −
∫

Z
j(z, x(z))dz.

We know that J is locally Lipschitz (see Hu–Papageorgiou [13],
p. 313).

Proposition 3. If hypotheses H(j) hold, then J satisfies the non-

smooth PSc-condition on S1 for every c 	= 0.

Proof. Let {xn}n≥1 ⊆ S1 be a sequence such that

J(xn) → c 	= 0 and m1(xn) → 0.

By virtue of the Poincaré inequality {xn}n≥1 ⊆ W 1,p
0 (Z) is bounded

and so we may assume that xn
w→ x in W 1,p

0 (Z) and xn → x in Lp(Z)
(from the compact embedding of W 1,p

0 (Z) into Lp(Z)). Hence J(xn) →
J(x) = c 	= 0. By virtue of hypothesis H(j)(iv) and the Lebourg mean
value theorem (see Lebourg [9] or Clarke [6], p. 41), we see that for
almost all z ∈ Z and all u 	= 0, we have j(z, u) > 0 and so J(x) 	= 0 implies
x 	= 0. Because the norm in a Banach space is weakly lower semicontinuous
and since the set ∂(J |S1)(xn) ⊆W−1,q(Z) is weakly compact, we can find
x∗n ∈ ∂J(xn) such that

m1(xn) = ‖x∗n − 〈x∗n, xn〉 F(xn)‖ for all n ≥ 1.
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From Clarke [6], p. 47 (see also Chang [4], Theorem 2.2), we have
that {x∗n(·)}n≥1 ⊆ Lq(Z) and because x∗n(z) ∈ ∂j(z, xn(z)) a.e. on Z,
from hypothesis H(j)(iii) it follows that {x∗n}n≥1 ⊆ Lq(Z) is bounded.
So we may assume that x∗n

w→ x∗ in Lq(Z), hence x∗n → x∗ in W−1,q(Z)
(from the compact embedding of Lq(Z) into W−1,q(Z)). Exploiting the
lower semicontinuity of J0(·; ·) and since 〈x∗n, h〉 ≤ J0(xn;h) for almost all
h ∈ W 1,p

0 (Z) and all n ≥ 1, in the limit we have 〈x∗, h〉 ≤ J0(x;h) for all
h ∈W 1,p

0 (Z) and so x∗ ∈ ∂J(x) ⊆ Lq(Z) and x∗(z) ∈ ∂j(z, x(z)) a.e. on Z
(see Clarke [6], p. 76). Therefore, since x 	= 0, from hypothesis H(j)(iv)
we have that x∗ 	= 0. Also we have 〈x∗n, xn〉 = (x∗n, xn)pq → (x∗, x)pq =
〈x∗, x〉. Moreover, since by the choice of the sequence {xn}n≥1 ⊆ S1, we
have ‖x∗n − 〈x∗n, xn〉F(xn)‖ → 0 and x∗n → x∗ in W−1,q(Z), we infer that

〈x∗n, xn〉 F(xn) → x∗ in W−1,q(Z).

Remark that {F(xn)}n≥1 ⊆W−1,q(Z) is bounded. So we may assume
that F(xn) w→ w in W−1,q(Z). Hence 〈x∗, x〉w = x∗ 	= 0 and so 〈x∗, x〉 	= 0.
Therefore F(xn) → x∗

〈x∗,x〉 in W−1,q(Z) and since F is a homeomorphism,

we conclude xn → F−1(x∗)
|〈x∗,x〉| in W 1,p

0 (Z), which completes the proof. �

Now we are ready for the “three solutions theorem” for problem

Theorem 4. If hypotheses H(j) hold, then problem (8) has at least

three distinct nontrivial solutions (λk, xk) ∈ R ×W 1,p
0 (Z), k = 1, 2, 3.

Proof. Let τ+ : R → R+ be the truncation map defined by

τ+(x) =

{
x if x > 0,

0 if x ≤ 0.

Set j+(z, x) = j(z, τ+(x)). From Clarke [6], p. 42, we know that for
almost all z ∈ Z, j+(z, .) is locally Lipschitz and

∂j+(z, x) =

{
∂j(z, x) if x > 0,

{0} if x ≤ 0.

Let J+ : W 1,p
0 (Z) → R be the integral functional defined by

J+(x) = −
∫

Z
j+(z, x(z))dz.
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Also let ψ : W 1,p
0 (Z) → R be defined by ψ(x) = ‖x‖p = ‖Dx‖p

p (by
Poincaré’s inequality, on W 1,p

0 (Z) we consider the norm ‖x‖ = ‖Dx‖p).
Evidently ψ ∈ C1(W 1,p

0 (Z)) and S1 = {x ∈ W 1,p
0 (Z) : ψ(x) = 1}. Hence

S1 is a manifold of codimension 1. We consider the following optimization
problem:

ξ+ = inf[J+(x) : x ∈ S1]. (9)

If x ∈W 1,p
0 (Z), x(z) ≥ 0 a.e. on Z, then from the Lebourg mean value

theorem we know that we can find ut ∈ ∂J+(tx) with t ∈ (0, 1) such that

J+(x) − J+(0) = (ut, x)pq.

But by hypothesis J+(0) = 0 and so

J+(x) = (ut, x)pq =
∫

Z
ut(z)x(z)dz

with −ut(z) ∈ ∂j+(z, x(z)) ⊆ ∂j(z, x(z)) a.e. on Z. Then by hypothesis
H(j)(iv) we have that∫

Z
ut(z)x(z)dz < 0 for all x ∈W 1,p

0 (Z), x(z) ≥ 0 a.e. on Z, x 	= 0,

⇒ J+(x) < 0 for all x ∈W 1,p
0 (Z), x(z) ≥ 0 a.e. on Z, x 	= 0.

It follows that ξ+ < 0. Let {xn}n≥1 ⊆ S1 be a minimizing sequence
for the optimization problem (9), i.e. J+(xn) ↓ ξ+. As before, we may
assume that xn

w→ x in W 1,p
0 (Z) and xn → x in Lp(Z). So J+(xn) →

J+(x) = ξ+ < 0, hence x ≥ 0, x 	= 0. We claim that ‖Dx‖p = 1 (i.e.
x ∈ S1). From the weak lower semicontinuity of the norm in a Banach
space, we have ‖Dx‖p ≤ 1. If ‖Dx‖p < 1, then we can find ϑ̂ > 1
such that ‖D(ϑ̂x)‖p = 1. Consider the map k : (0,+∞) → R defined
by k(ξ) = − ∫

Z j+(z, ξx(z))dz. Evidently k is locally Lipschitz and so
it is differentiable almost everywhere. Moreover, from the chain rule of
Clarke [6], p. 42, for almost all ξ > 0, we have that

k′(ξ) = −
∫
Z

x(z)u(z)dz with u∈Lq(Z), u(z) ∈ ∂j+(z, ξx(z)) a.e. on Z,

⇒ k′(ξ) < 0 (by hypothesis H(j)(iv)).
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So the function k is strictly decreasing on (0,+∞). Note that k(1) =
J+(x). Therefore J+(ϑ̂x) = k(ϑ̂) < k(1) = J+(x) = ξ+, a contradiction
to the definition of ξ+, since ϑ̂x ∈ S1. This means that ‖Dx‖p = 1, hence
x ∈ S1 and J+(x) = ξ+. From the Lagrange multiplier rule of Clarke

[5], we can find λ1 > 0 such that A(x) + λ1∂J+(x) � 0. As in the proof of
Theorem 1, we obtain that

−div (‖Dx(z)‖p−2Dx(z)) ∈ λ1 ∂j+(z, x(z)) a.e. on Z. (10)

From Ladyzhenskaya–Uraltseva [18], p. 286, we have that x ∈
L∞(Z) and so the regularity result of Lieberman [19], implies that x ∈
C1,α(Z̄), for some 0 < α < 1. Moreover, from hypotheses H(j)(iii) and
(v), it follows that for almost all z ∈ Z, all x ∈ R and all u ∈ ∂j+(z, x),
we have

|u| ≤ α2(z)|x|p−1 with α2 ∈ L∞(Z).

Therefore we can apply Theorem 5 of Vazquez [27] and infer that

x(z) > 0 for all z ∈ Z and
∂x

∂n
(z) < 0 for all z ∈ Γ.

Here n denotes the outward unit normal on the boundary Γ of Z.
From this it follows that if ε > 0 is small, for all y ∈ {y ∈ C1

0 (Z̄) : y ∈ S1,
‖x−y‖C1

0 (Z̄) < ε}, we have that J+(x) ≤ J+(y), in other words x is a local
C1

0 (Z̄)-minimizer of J+ on S1. Recall that by definition ψ(x) = ‖Dx‖p
p.

So if ψ1 : W 1,p
0 (Z) → Lp(Z,RN ) is given by ψ1(x) = Dx and ψ2 :

Lp(Z,RN ) → R is given by ψ2(v) = 1
p‖v‖p

p, then ψ = ψ2 ◦ ψ1 and

from the chain rule we have that ψ′(x) = ‖Dx‖p−1
p

Fp(Dx)
‖Dx‖p

◦ ψ1(x) =

‖Dx‖p−2
p Fp(Dx) ◦ ψ1(x) with Fp being the duality map of the Banach

space Lp(Z,RN ). It is well known (see for example Hu–Papageorgiou

[12], p. 317), that Fp(v) = ‖v(.)‖p−2v(.)

‖v‖p−2
p

. So for all ϑ ∈ C∞
0 (Z), 〈ψ′(x), ϑ〉 =∫

Z ‖Dx(z)‖p−2(Dx(z),Dϑ(z))RN dz, hence ψ′(x) = A(x) with A : W 1,p
0 (Z)

→ W−1,q(Z) being the strongly monotone, demicontinuous, coercive op-
erator (thus surjective, see Hu–Papageorgiou [12], p. 322) introduced
earlier. Recall that if F is the duality map of W 1,p

0 (Z), F−1 is the dual-
ity map of W−1,q(Z) = W 1,p

0 (Z)∗ and for all u∗ ∈ W−1,q(Z), F−1(u∗) =
‖D(A−1u∗)‖2−p

p A−1(u∗). So if x∗ ∈ ∂J+(x), we have x∗ ∈ Lq(Z) and
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−x∗(z) ∈ ∂j+(z, x(z)) = ∂j(z, x(z)) a.e. on Z (since x(z) > 0 for all
z ∈ Z) and it follows that〈

x∗,F−1(ψ′(x))
〉

= ‖Dx‖2−p
p 〈x∗, x〉 = ‖Dx‖2−p

p (x∗, x)pq

= ‖Dx‖2−p
p

∫
Z
x∗(z)x(z)dz < 0 (see hypothesis H(j)(iv)).

So we have satisfied the hypotheses of Theorem 1 and we infer that
x is a local W 1,p

0 (Z)-minimizer of J on S1 (recall that J+ = J on the
nonnegative elements of W 1,p

0 (Z)). Moreover, from (10) we see that (λ1,

x1 = x) ∈ (R+ \ {0}) ×W 1,p
0 (Z)+ is a solution of problem (8).

Next let τ− : R → R− be the truncation function defined by τ−(x) ={
0 if x ≥ 0

x if x < 0
and set j−(z, x) = j(z, τ−(x)). Arguing as above, we obtain

y ∈ C1(Z̄), y(z) < 0 for all z ∈ Z which is a local minimizer of J on S1

and solves (8) with λ2 < 0. Hence (λ2, x2 = y) ∈ (R− \ {0}) ×W 1,p
0 (Z)−

is a solution of problem (8).
Let D = {x ∈ S1 : J(x) < 0}. Evidently x1, x2 ∈ D. First assume

that D is path-connected. Then we can find g ∈ C([0, 1], S1) such that
g(0) = x1, g(1) = x2 and g(t) ∈ D for all t ∈ [0, 1]. Then with this
choice of g, if E, F and β are as in the proof of Proposition 2, we have
that β < 0. By virtue of Proposition 3, J satisfies the nonsmooth PSβ-
condition on S1. From Proposition 2 (check the proof), we deduce that
J |S1 has another critical point x3 distinct from x1 and x2 such that β ≤
J(x3). Hence x3 	= 0. As before we can find λ3 ∈ R \ {0} such that
(λ3, x3) ∈ (R\{0})×W 1,p

0 (Z) is a third nontrivial solution of problem (8).
If D is not path-connected and x1, x2 belong to different path-con-

nected components, we can find g ∈ C([0, 1], S1) such that g(t) ∈ G =
{x ∈ S1 : J(x) > 0} for all t ∈ (t1, t2) with t1, t2 ∈ (0, 1), t1 < t2. Again
with this g, let E,F and β be as in the proof of Proposition 2. Then
β > 0 and so from Proposition 3, J satisfies the PSβ-condition on S1.
From Proposition 2, we obtain a third critical point x3 of J on S1, with
β ≤ J(x3), hence x3 	= 0. Again there exists λ3 ∈ R \ {0} such that
(λ3, x3) ∈ (R \ {0}) ×W 1,p

0 (Z) is a nontrivial solution of problem (8). �
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