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Factors of small degree of some difference
polynomials f(x) − g(t) in F [t][x]

By FRANÇOIS BERRONDO (Brest) and LUIS GALLARDO (Brest)

Abstract. Let s ∈ F [t]\F be a nonconstant polynomial over a perfect field
F of characteristic 2. There are no factors of degree 2 of the polynomial T =
xm + g(x)2 + s ∈ F [t][x] where m > 3 is an odd integer and g(x) ∈ F [x] \ {0} is
an additive polynomial of degree d < (m − 1)/2 with g(0) = 0.

1. Introduction

It is unknown whether or not a general method to find small degree
factors of polynomials P ∈ k[x] in one variable x with coefficients in some
field k of characteristic p ≥ 0 can exist. There are several results in the
literature (see [2]–[5]) concerning the special case when P is a trinomial
xn + Axm + B, in which the exponents m, n satisfy n > m > 0, we have
gcd(p,mn(m − n)) = 1 and p > 0, while A, B satisfy some technical
conditions and lie in a finite extension of k(y) where y is a variable vector;
or when p = 0 and k is an algebraic number field. However, nothing is
known in the case when the field of coefficients is a rational field of finite
characteristic p > 0 where p divides mn(m − n).

It is natural to work first in the simplest case where k = F (t) for some
field F and some indeterminate t. We wish to study in detail in this paper
the special case in which P is a polynomial of the form T = xm +g(x)2 +s
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where m > 3 is an odd integer and 0 �= g(x) ∈ F [x] is a nontrivial additive
polynomial of degree d < (m − 1)/2 with g(0) = 0, while s ∈ F [t] is non
constant, and F is a perfect field of characteristic 2. We believe that the
use of the canonical derivation over such a field k is the key to obtain useful
information about the factors of T in F [t][x].

Our main result is:

1) T has no quadratic factors in F [t][x] provided m > 3, (see Theorems 1
and 2).

A key lemma for a neat proof of our result above was suggested by the
referee (see Lemma 2). Moreover, 1) is a first step in order to generalize
some results of Bilu (see [1]) who classified the difference polynomials
with quadratic factors in characteristic 0.

We shall use the following notations: For a field F we let F denote,
as usual, a fixed algebraic closure of F . If E is an extension of the field F ,
then we denote by [E : F ] the degree of E over F , i.e. the dimension
of E considered as a vector space over F . If f(x) ∈ F [t][x] has degree
d < 4 then we denote by K its splitting field over the rational field k. We
denote by Tr the trace of K over k. We denote by N the norm of K over
k, provided the degree of the extension [K : k] �= 6. Observe that when
[K : k] = 6 we denote by N the square root of the norm, instead of the
norm itself. Concerning differentiation, we denote by the same classical
symbol ()′ the canonical extension to K of the derivation relative to t in k,
and the derivation itself.

The derivation relative to x will be denoted by ∂/∂x.
First of all we recall the definition of additive polynomials:

Definition 1. A polynomial A ∈ F [z] where F is some field and z is
an indeterminate is called additive if

A(x + y) = A(x) + A(y)

for all x, y ∈ F .

2. We may assume that s is not a square

Lemma 1. Let m > 1 be an odd integer. Assume that s = r2 is a

nonconstant square in F [t]\F where F is a perfect field of characteristic 2.
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If the difference polynomial T = xm+g(x)2+s ∈ F [t][x], where g(x) ∈ F [x]
is a polynomial of degree < m/2, has a factor f(x) ∈ F [t][x] of degree d

with 0 < d < 4, then all coefficients of f(x) are squares in F [t] and f(x2)1/2

divides (T (x2))1/2 = xm + g1(x)2 + s, where the coefficients of g are the

squares of the coefficients of g1.

Proof. We may assume that f(x) is monic and irreducible. Set e =
[K : k]. Let c ∈ F [t] denote the coefficient of any monomial appearing in
f(x). It suffices to prove that c is a square in k. Observe that every root
α ∈ K of f(x) is a square in K, since s is a square in F [t] and

α
(
(α(m−1)/2)2

)
= s + g(α)2.

It follows from the relations between coefficients and roots of f(x) that
c is a square in K. Thus c is a square in F [t] when e ∈ {1, 3}. Otherwise, let
us consider first the case when d = deg(f) = 2. Then e = 2, and assuming
the separability of the extension K over k, one obtains immediately that
f(x) = x2 + ax + b where b is a nonzero square in K so that a �= 0.

We explain in more detail why the extension K over k cannot be
inseparable, i.e. we always have a �= 0.

Assume that for some Q(x) ∈ F [t][x] we have

xm + g(x)2 + r2 = (x2 + b)Q(x). (1)

We claim that α ∈ F [t]. Indeed, since α2 = b, it follows from (1) that

α =
h(b) + r2

b(m−1)/2
∈ k

where the coefficients of h are the squares of the coefficients of g, proving
the claim.

Since c is a square in K = k[α] one has

c = (y + zα)2 = y2 + α2z2 (2)

for some y, z ∈ k. Taking the trace Tr in (2) one has 0 = c + c = Tr(c) =
z2a2, so that z = 0 and c = y2, with y ∈ F [t].

Now, we treat the case in which d = deg(f) = 3, so that e ∈ {3, 6}.
We may assume that e = 6 and that K = k(γ, β) where β2 + β = g, and
γ3 + aγ + b = 0, for some a, b, g ∈ k.
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Assume that c = z2 for some z ∈ K:

z = a0 + a1γ + a2γ
2 + (b0 + b1γ + b2γ

2)β

where the ai’s and bj’s are in k. After some computation we get

c = a2
0 + gb2

0 + u1γ + u2γ
2 + b2

0β + u4βγ + u5βγ2, (3)

where the ui’s are certain quadratic polynomials in the ai’s and bj ’s with
coefficients in {a, b, g}. It follows immediately from (3) that b0 = 0 so that
c = a2

0 as claimed.
Set T/f(x) = t0 + t1x + . . . + tmxm with tm �= 0 and tn ∈ F [t]

for all 0 ≤ n ≤ m. Since trivially T = (T/f(x))f(x), it follows that
t0 is also a square in F [t]. It follows by induction on n that all these
coefficients tn of T/f(x) are also squares in F [t], so that f(x2)1/2 divides
(T (x2))1/2 = xm + g1(x)2 + s1/2 in F [t][x], where the coefficients of g are
the squares of the coefficients of g1.

This completes the proof of the lemma. �

3. T has at most one root in F [t]

Theorem 1. Let F be a perfect field of characteristic 2. Suppose

m > 3 is odd and 0 �= g(x) ∈ F [x] is an additive polynomial of degree

d < (m − 1)/2, with g(0) = 0. Let s be a nonconstant polynomial in

F [t]\F . If the difference polynomial T = xm + g(x)2 + s ∈ F [t][x] has a

root r ∈ F [t], then r is the only root of T in F [t].

Proof. This follows immediately from Theorem 2. �

In the special case when g(x) = x, there are two other proofs of this
result, a direct one, omitted for brevity, and another proof that is a corol-
lary of the “abc” theorem for rational fields, i.e. a corollary of Mason’s
theorem, (see e.g. [6]).

This latter proof is sketched below:
By Lemma 1, we do assume that s is not a square in F [t]. Suppose

that v is another root of T in F [t]. Set d = gcd(r, v) and let r1, v1 in
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F [t] be defined by r = dr1, v = dv1, so that gcd(r1, v1) = 1. After some
computation we get

(rm
1 + vm

1 )rm
1 vm

1 = rm
1 vm

1

(
(r1 + v1)(r1 + v1)

dm−2

)
, (4)

then (since r′ �= 0 and v′ �= 0), the “abc” theorem applied to A = rm
1 ,

B = vm
1 , C = A + B in (4) implies:

m deg(r1) < n(r1) + n(v1) + 2n(r1 + v1)

≤ deg(r1) + deg(r1) + 2deg(r1) = 4deg(r1)

where n(P ) means the number of distinct roots of P ∈ F [t] in k; i.e. we
get the contradiction m < 4.

4. T has no quadratic factors in F [t][x] provided m > 3

The following lemma, discovered by the referee, is the key to obtain a
neat proof of the main result of the section.

Lemma 2. Let f, g ∈ F [x], where F is a field of characteristic 2,
m = deg(f) is odd and n = deg(g) is positive. If f(x)− g(t) has in F [t, x]
a factor x2 + a(t)x + b(t), then ab �= 0 and

deg(b) = 2deg(a).

Proof. Since m is odd, the equation f(x) − g(t) = 0 has in the
algebraic closure of F (t), m distinct zeros xj, with the expansions at ∞
given by ζj

mγ1/mtn/m +Tj , where ζm is a primitive root of unity of order m

in F , γ is the leading coefficient of g, and Tj is the sum of terms of lower
degree than n/m. Since by the assumption

x2 + a(t)x + b(t) | f(x) − g(t),

we have for some i �= j

x2 + a(t)x + b(t) = (x + xi)(x + xj) = x2 + (xi + xj)x + xixj ,
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thus at t = ∞
a(t) =

(
ζi
m + ζj

m

)
γ1/mtn/m + Ti + Tj , b(t) = ζi+j

m γ2/mt2n/m + U

where U is the sum of terms of degree lower that 2n/m.
However, ζi

m +|, ζj
m �=0 since ζi

m �= ζj
m and also ζi+j

m �= 0. This gives
ab �= 0 and deg(b) = 2deg(a), thereby completing the proof of the lemma.

�

The following lemma presents some necessary conditions that a possi-
ble quadratic factor f(x) ∈ F [t][x] of T must satisfy.

Lemma 3. Let F be a perfect field of characteristic 2. Let m > 1 be

an odd integer. Let s ∈ F [t]\F be a polynomial that is not a square in

F [t]. Let T be the polynomial T = xm +g(x)2 +s ∈ F [t][x] where m > 3 is

an odd integer and g(x) ∈ F [x] is a nonzero additive polynomial of degree

d < m/2 with g(0) = 0. Assume that f(x) = x2 + ax + b ∈ F [t][x] having

roots α, β ∈ K, is a factor of T . We have

a) bm = (s + g(α)g(β))2 + (g(α) + g(β))2s.

b) ab′ �= 0.

c) bm−1(b′)2a2 = (g(α) + g(β))4((b′)2 + b′a′a + (a′)2b).
d) a ∈ F [t] is not constant, i.e. a /∈ F .

Proof. From

αm = s + g(α)2, βm = s + g(β)2,

we get
bm = (s + g(α)g(β))2 + (g(α) + g(β))2s

which proves a).
First of all observe that g(α) + g(β) and g(α)g(β) are polynomials in

a, b so that they are elements of F [t]. To prove that b′ �= 0, assume that b

is a square in F [t]. If g(a) = g(α) + g(β) �= 0 then from a) it follows that
s is also a square, which is impossible. If g(a) = 0 then either a = 0 which
is impossible by Lemma 2, or a is a nonzero constant in F . By Lemma 2
this implies that b is also a nonzero constant in F . Observing that

T = xm + g(x)2 + s = (x2 + ax + b)A(t, x)
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for some polynomial A ∈ F [t][x], we get on differentiating relative to t

above:

s
′
= (x2 + ax + b)

∂A(t, x)
∂(t)

(5)

which implies, by putting x = α in both sides of (5),

s
′
= 0.

But this is impossible. Result b) follows.
In order to prove c) we set h = g(α) + g(β) and we differentiate

α2 = aα + b relative to t to obtain

α′a = a′α + b′. (6)

On the other hand, since αm = g(α)2 + s and βm = g(β)2 + s one has

δ = αm+1 + βm+1 = (α + β)βm + (αm + βm)α = (aβ)βm−1 + h2α (7)

so that (recalling that m+1 and m−1 are even), we get by differentiating
(7) relative to t:

δ′ = 0 = βm−1(βa)′ + α′a2.

But βa = βα + β2, so that (βa)′ = (βα)′ = b′ and we obtain

βm−1b′ = α′h2, αm−1b′ = β′h2. (8)

This together with (6) gives

βm−1b′a = h2(a′α + b′), αm−1b′a = h2(a′β + b′). (9)

On multiplying the corresponding sides of the equations in (9), one obtains
c) since αβ = b, while g(α) + g(β) = h and α + β = a.

To prove d), assume that a �= 0 is constant so that a′ = 0. From c) it
follows that

bm−1a2 = g(a)4,

since b
′ �= 0 by b). But this means that b is constant, contrary to b). This

proves d). �

Now we are ready to present our main result.
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Theorem 2. Let s be a nonconstant polynomial in F [t]\F where F

is a perfect field of characteristic 2. Let m > 3 be an odd integer and

g(x) ∈ F [x] an additive polynomial of degree d < (m−1)/2 with g(0) = 0.
Then the polynomial T = xm + g(x)2 + s ∈ F [t][x] has no factors of

degree 2.

Proof. First of all, using Lemma 1, we may assume that s is not a
square. Assume, contrary to the conclusion, that T has some factor of
degree 2 in F [t][x].

More precisely, assume that q = x2 + ax + b ∈ F [t][x] divides T . Set
h = g(a). We distinguish two cases:

Case 1. a′ = 0, so that by Lemma 3 c) and by Lemma 3 b), we get
bm−1a2 = h4. So

(m − 1) deg(b) + 2deg(a) = 4deg(h) ≤ 4ddeg(a).

This implies by Lemma 3 d) and by Lemma 2 the contradiction m ≤ 2d.

Case 2. a′ �= 0. Observe that b′ �= 0 by Lemma 3 b). We shall
denote by d1 = deg(a), d2 = deg(b), and by d3 = deg(a′), d4 = deg(b′) the
degrees of the derivatives of a, b relative to t. Taking degrees relative to t

in Lemma 3 c) we get

(m − 1)d2 + 2d4 + 2d1 ≤ 4dd1 + max(2d4, d4 + d3 + d1, 2d3 + d2). (10)

Observe that we have

a) 2 ≤ 2d1 = d2 by Lemma 3 b) and Lemma 2,

b) 2 ≤ d4 < d2 since by Lemma 3 b) b
′ �= 0 so that it has even degree,

c) 4 ≤ 2d3 < 2d1 = d2 since a
′ �= 0 and by Lemma 3 b) and Lemma 2,

d) 0 ≤ 2d4 < 2d2, d4 + d3 + d1 < 2d2, 2d3 + 2d1 < 2d2, from a), b), c)
above and Lemma 2. �
Thus (10) implies

(m − 1)d2 + 2d4 + 2d1 ≤ 4dd1 + 2d2,

so that, using Lemma 2, we get

(m − 1)d2 < 4 + (m − 1)d2 ≤ (2d − 1)(2d1) + 2d2 ≤ (2d + 1)d2,

i.e. we obtain the contradiction m − 1 < 2d + 1 < m.
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5. Conjecturally, T has no cubic factors in F [t][x]

The key to obtain the proof that our difference polynomial T = xm +
g(x)2 + s ∈ F [t][x] has no quadratic factors in F [t][x], (see Theorem 2),
resides in the use of Lemma 2; i.e. it relies on the fact that we can prove
that for a possible irreducible quadratic factor q = x2 + ax+ b ∈ F [t][x] of
T we have

deg(b) = 2 deg(a).

In other words, we can say that a kind of “homogeneity” must occur in q.
Moreover, we may say that only this new property “earned by q” implies
the nonexistence of such q.

We were unable to prove the natural analogous property for possible
cubic factors in F [t][x] of T :

Conjecture 1. Let m > 3 be an odd integer and let F be a perfect

field of characteristic 2. Assume that q(x) = x3+ax2+bx+c ∈ F [t][x] is an

irreducible factor of the difference polynomial T = xm +g(x)2 +s ∈ F [t][x]
where m > 3 is an odd integer, s is an element of F [t] that is not a square,

and g(x) ∈ F [x] \ {0} is an additive polynomial of degree d < (m − 1)/2
with g(0) = 0.

We have abc �= 0 and

a) deg(c) = 3 deg(a);

b) deg(b) = 2 deg(a).

Assuming Conjecture 1, it may be proved that d < (m − 4)/2 implies
that T has no cubic factors in F [t][x]. This will be included in a future
paper.
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