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Factors of small degree of some difference
polynomials f(x) — g(t) in F[t][x]

By FRANCOIS BERRONDO (Brest) and LUIS GALLARDO (Brest)

Abstract. Let s € F[t]\F be a nonconstant polynomial over a perfect field
F of characteristic 2. There are no factors of degree 2 of the polynomial 7' =
2™ + g(z)? + s € F[t][z] where m > 3 is an odd integer and g(z) € F[z]\ {0} is
an additive polynomial of degree d < (m — 1)/2 with ¢(0) = 0.

1. Introduction

It is unknown whether or not a general method to find small degree
factors of polynomials P € k[z] in one variable x with coefficients in some
field k of characteristic p > 0 can exist. There are several results in the
literature (see [2]-[5]) concerning the special case when P is a trinomial
" + Ax™ + B, in which the exponents m, n satisfy n > m > 0, we have
ged(p,mn(m —n)) = 1 and p > 0, while A, B satisfy some technical
conditions and lie in a finite extension of k(y) where y is a variable vector;
or when p = 0 and k is an algebraic number field. However, nothing is
known in the case when the field of coefficients is a rational field of finite
characteristic p > 0 where p divides mn(m — n).

It is natural to work first in the simplest case where k = F(t) for some
field F' and some indeterminate t. We wish to study in detail in this paper
the special case in which P is a polynomial of the form T' = 2™ +g(x)? + s
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where m > 3 is an odd integer and 0 # g(x) € F[z] is a nontrivial additive
polynomial of degree d < (m — 1)/2 with g(0) = 0, while s € F|[t] is non
constant, and F' is a perfect field of characteristic 2. We believe that the
use of the canonical derivation over such a field k is the key to obtain useful
information about the factors of T in F'[t][z].

Our main result is:

1) T has no quadratic factors in F'[t][z] provided m > 3, (see Theorems 1
and 2).

A key lemma for a neat proof of our result above was suggested by the
referee (see Lemma 2). Moreover, 1) is a first step in order to generalize
some results of BILU (see [1]) who classified the difference polynomials
with quadratic factors in characteristic 0.

We shall use the following notations: For a field F we let F denote,
as usual, a fixed algebraic closure of F. If F is an extension of the field F,
then we denote by [E : F| the degree of E over F, i.e. the dimension
of E considered as a vector space over F. If f(z) € F[t][x] has degree
d < 4 then we denote by K its splitting field over the rational field k. We
denote by Tr the trace of K over k. We denote by IV the norm of K over
k, provided the degree of the extension [K : k] # 6. Observe that when
[K : k] = 6 we denote by N the square root of the norm, instead of the
norm itself. Concerning differentiation, we denote by the same classical
symbol ()’ the canonical extension to K of the derivation relative to ¢ in k,
and the derivation itself.

The derivation relative to x will be denoted by 9/dx.

First of all we recall the definition of additive polynomials:

Definition 1. A polynomial A € F[z] where F is some field and z is
an indeterminate is called additive if

Az +y) = A(z) + A(y)
for all z,y € F.

2. We may assume that s is not a square

Lemma 1. Let m > 1 be an odd integer. Assume that s = r? is a

nonconstant square in F[t]\F where F' is a perfect field of characteristic 2.
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If the difference polynomial T = 2™ +g(x)*+s € F[t][x], where g(x) € F[z]
is a polynomial of degree < m/2, has a factor f(x) € F[t][z] of degree d
with 0 < d < 4, then all coefficients of f(x) are squares in F[t] and f(22)'/?
divides (T(22))"/? = 2™ + g1(2)? + s, where the coefficients of g are the
squares of the coefficients of g .

PROOF. We may assume that f(z) is monic and irreducible. Set e =
[K : k]. Let ¢ € F[t] denote the coefficient of any monomial appearing in
f(x). Tt suffices to prove that c is a square in k. Observe that every root
a € K of f(x) is a square in K, since s is a square in F[t] and

Oé((Oé(m_l)/Q)g) — 5+g(a)2.

It follows from the relations between coefficients and roots of f(x) that
cisasquarein K. Thus cis a square in F'[t] when e € {1,3}. Otherwise, let
us consider first the case when d = deg(f) = 2. Then e = 2, and assuming
the separability of the extension K over k, one obtains immediately that
f(z) = 22 + ax + b where b is a nonzero square in K so that a # 0.

We explain in more detail why the extension K over k cannot be
inseparable, i.e. we always have a # 0.

Assume that for some Q(z) € F|[t][z] we have

™+ g(x)? +r? = (2® + b)Q(2). (1)
We claim that o € F[t]. Indeed, since a? = b, it follows from (1) that

h(b) + r?

where the coefficients of h are the squares of the coefficients of g, proving
the claim.
Since ¢ is a square in K = k[a] one has

c=(y+za)? =y* +a?2? (2)

for some y, z € k. Taking the trace Tr in (2) one has 0 = ¢+ ¢ = Tr(c) =
22a?, so that z = 0 and ¢ = y?, with y € F[t].

Now, we treat the case in which d = deg(f) = 3, so that e € {3,6}.
We may assume that e = 6 and that K = k(v, 3) where 3% + 3 = g, and
v +ay+b=0, for some a,b, g € k.
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Assume that ¢ = 22 for some z € K:
z=ag+ a1y + azy’ + (bo + b1y + b27*) 8
where the a;’s and b;’s are in k. After some computation we get
_ 2 2 2, 12 2
¢ =ag + gbg + ury +uzy” +byB + uaBy + us 4y, (3)

where the u;’s are certain quadratic polynomials in the a;’s and b;’s with
coefficients in {a, b, g}. It follows immediately from (3) that by = 0 so that
c = a? as claimed.

Set T/f(x) = to + tix + ... + tya™ with ¢, # 0 and t, € FJt]
for all 0 < n < m. Since trivially T = (T/f(x))f(x), it follows that
to is also a square in F'[t]. It follows by induction on n that all these
coefficients ¢, of T/ f(x) are also squares in F[t], so that f(z2)'/? divides
(T(22))'/? = 2™ 4 g1(x)? + 5'/% in F[t][z], where the coefficients of g are
the squares of the coefficients of g;.

This completes the proof of the lemma. ]

3. T has at most one root in F[t]

Theorem 1. Let F' be a perfect field of characteristic 2. Suppose
m > 3 is odd and 0 # g(x) € Flx] is an additive polynomial of degree
d < (m —1)/2, with g(0) = 0. Let s be a nonconstant polynomial in
F[t]\F. If the difference polynomial T = z™ + g(x)? + s € F|[t][x] has a
root r € F[t], then r is the only root of T in Ft].

Proor. This follows immediately from Theorem 2. O

In the special case when g(z) = z, there are two other proofs of this
result, a direct one, omitted for brevity, and another proof that is a corol-
lary of the “abc” theorem for rational fields, i.e. a corollary of Mason’s
theorem, (see e.g. [6]).

This latter proof is sketched below:

By Lemma 1, we do assume that s is not a square in F'[t]. Suppose
that v is another root of 7' in F[t]. Set d = gecd(r,v) and let ri,v; in
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F[t] be defined by r = dry, v = dvy, so that ged(r1,v1) = 1. After some
computation we get

o+ ooy = s (R, (@)

dm—?

then (since ' # 0 and v # 0), the “abc¢” theorem applied to A = ri*,
B =", C = A+ B in (4) implies:

mdeg(r1) < n(r1) +n(vr) + 2n(ry + v1)
< deg(r1) + deg(r1) + 2deg(r1) = 4deg(r1)

where n(P) means the number of distinct roots of P € F[t] in k; i.e. we
get the contradiction m < 4.

4. T has no quadratic factors in F[t][x] provided m > 3

The following lemma, discovered by the referee, is the key to obtain a
neat proof of the main result of the section.

Lemma 2. Let f,g € F[z], where F is a field of characteristic 2,
m = deg(f) is odd and n = deg(g) is positive. If f(xz) — g(t) has in F[t,x]
a factor 2% + a(t)x + b(t), then ab # 0 and

deg(b) = 2deg(a).

PROOF. Since m is odd, the equation f(z) — ¢g(t) = 0 has in the
algebraic closure of F(t), m distinct zeros x;, with the expansions at oo
given by Cﬂﬁ’yl/ mn/m + T}, where (, is a primitive root of unity of order m
in F, v is the leading coefficient of g, and T} is the sum of terms of lower
degree than n/m. Since by the assumption

2® +a(t)z +b(t) | f(z) - g(t),
we have for some i # j

22 +a(t)z +b(t) = (x+z)(x +x;) = 22 + (2 + 25)7 + 2375,
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thus at t = o0
a(t) = (G + )™ ™ L T+ Ty, b(t) = CHymenm U

where U is the sum of terms of degree lower that 2n/m.
However, ¢\ +|, ¢l #0 since ¢¢ # ¢, and also (i #0. This gives
ab# 0 and deg(b) = 2deg(a), thereby completing the proof of the lemma.
O

The following lemma presents some necessary conditions that a possi-
ble quadratic factor f(z) € F[t][z] of T must satisfy.

Lemma 3. Let F' be a perfect field of characteristic 2. Let m > 1 be
an odd integer. Let s € F[t]\F be a polynomial that is not a square in
F[t]. Let T be the polynomial T = 2™+ g(z)? + s € F|t][x] where m > 3 is
an odd integer and g(x) € F[z] is a nonzero additive polynomial of degree
d < m/2 with g(0) = 0. Assume that f(z) = 2% + ax + b € F[t][z] having
roots «, 3 € K, is a factor of T. We have

a) U™ = (s + g(a)g(8))* + (9() + 9(8))*s.

b) ab’ # 0.

) B = (o) + g0 ()2 + Vo + (a)20),
d) a € Ft] is not constant, i.e. a ¢ F.

ProOOF. From
o™ =s+g(a)?, A" =s+g(B),

we get
" = (s + g(2)g(8))* + (9(c) + 9(8))*s

which proves a).

First of all observe that g(«) + ¢g(8) and g(a)g(8) are polynomials in
a, b so that they are elements of F[t]. To prove that b’ # 0, assume that b
is a square in F'[t]. If g(a) = g(a) + g() # 0 then from a) it follows that
s is also a square, which is impossible. If g(a) = 0 then either a = 0 which
is impossible by Lemma 2, or a is a nonzero constant in /. By Lemma 2
this implies that b is also a nonzero constant in F'. Observing that

T =2™+ g(x)? + s = (2 + ax + b) A(t, x)
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for some polynomial A € F|[t][z], we get on differentiating relative to ¢
above:

s = (2% + ax + b)% (5)

which implies, by putting x = a in both sides of (5),
s =0.

But this is impossible. Result b) follows.
In order to prove c) we set h = g(a) + g(f#) and we differentiate
a? = aa + b relative to t to obtain

da=da+. (6)
On the other hand, since @™ = g(a)? + s and ™ = g(3)? + s one has
§ = am—i—l +/8m+1 — (Oé+ﬂ),8m + (am +,8m)04 — (aﬂ)ﬂm_l —|—h2a (7)

so that (recalling that m+1 and m — 1 are even), we get by differentiating
(7) relative to t:
§ =0= ﬁm_l(ﬁa)’ —I—o/aZ.

But B3a = fa + B2, so that (3a)’ = (Ba)’ = b’ and we obtain
BN =d'h?, o™ = B'h’ (8)
This together with (6) gives
B Wa =h*(da+V), o™ Wa=hdB+1). (9)

On multiplying the corresponding sides of the equations in (9), one obtains
c) since af = b, while g(a) + g(8) = h and a + 8 = a.
To prove d), assume that a # 0 is constant so that ' = 0. From c¢) it
follows that
b a? = g(a)*,

since b’ # 0 by b). But this means that b is constant, contrary to b). This
proves d). O

Now we are ready to present our main result.
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Theorem 2. Let s be a nonconstant polynomial in F[t]\F where F
is a perfect field of characteristic 2. Let m > 3 be an odd integer and
g(x) € Fx] an additive polynomial of degree d < (m —1)/2 with g(0) = 0.
Then the polynomial T = 2™ + g(z)? + s € F[t][z] has no factors of
degree 2.

PRroOF. First of all, using Lemma 1, we may assume that s is not a
square. Assume, contrary to the conclusion, that T has some factor of
degree 2 in Ft][z].

More precisely, assume that ¢ = 2% + ax + b € F[t][z] divides T. Set
h = g(a). We distinguish two cases:

Case 1. a’ = 0, so that by Lemma 3 ¢) and by Lemma 3 b), we get
b 1a? = h*. So
(m — 1) deg(b) + 2deg(a) = 4deg(h) < 4ddeg(a).
This implies by Lemma 3 d) and by Lemma 2 the contradiction m < 2d.

Case 2. a' # 0. Observe that b’ # 0 by Lemma 3 b). We shall
denote by dy = deg(a), dy = deg(b), and by d3 = deg(a’), dy = deg(V’) the
degrees of the derivatives of a, b relative to t. Taking degrees relative to ¢
in Lemma 3 ¢) we get

(m — 1)dy + 2d4 + 2dy < 4ddy + max(2dy,dy + d3 + dy,2ds + da).  (10)

Observe that we have
a) 2 <2d; = ds by Lemma 3 b) and Lemma 2,
b) 2 < d4 < dy since by Lemma 3 b) b # 0 so that it has even degree,
c) 4 < 2ds < 2dy = dy since a # 0 and by Lemma 3 b) and Lemma 2,
)

d) 0 < 2dy < 2ds, dg + d3 + di < 2ds, 2d3 + 2d; < 2ds, from a), b), C)
above and Lemma 2. O

Thus (10) implies
(m — 1)da + 2d4 + 2d; < 4dd; + 2da,
so that, using Lemma 2, we get
(m—1)dy <44 (m—1)dy < (2d —1)(2dy) 4 2d2 < (2d + 1)ds,

i.e. we obtain the contradiction m — 1 < 2d + 1 < m.
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5. Conjecturally, T' has no cubic factors in F[t][x]

The key to obtain the proof that our difference polynomial T' = z™ +
g(x)? + s € F[t][x] has no quadratic factors in F[t][z], (see Theorem 2),
resides in the use of Lemma 2; i.e. it relies on the fact that we can prove
that for a possible irreducible quadratic factor ¢ = x2 + ax + b € F[t][z] of
T we have

deg(b) = 2 deg(a).

In other words, we can say that a kind of “homogeneity” must occur in q.
Moreover, we may say that only this new property “earned by ¢” implies
the nonexistence of such q.

We were unable to prove the natural analogous property for possible
cubic factors in F'[t][z] of T

Conjecture 1. Let m > 3 be an odd integer and let F' be a perfect
field of characteristic 2. Assume that q(x) = 23 +az?+br+c € F[t][x] is an
irreducible factor of the difference polynomial T = x™ + g(x)?+s € F[t][x]
where m > 3 is an odd integer, s is an element of F[t] that is not a square,
and g(z) € F[z] \ {0} is an additive polynomial of degree d < (m — 1)/2
with ¢(0) = 0.

We have abc # 0 and
a) deg(c) = 3 deg(a);
b) deg(b) = 2 deg(a).

Assuming Conjecture 1, it may be proved that d < (m — 4)/2 implies
that T has no cubic factors in F[t][x]. This will be included in a future

paper.
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