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Composition operators between weighted inductive limits
of spaces of holomorphic functions

By JOSÉ BONET (Valencia), MIGUEL FRIZ (Valencia) and

ENRIQUE JORDÁ (Alcoy)

Abstract. Composition operators between weighted inductive limits of Ba-
nach spaces of holomorphic functions defined on open subsets of the complex plane
are studied. The continuity and compactness of composition operators between
weighted Banach spaces of type H∞ on arbitrary open subsets of C is treated
first.

1. Introduction:
Notation and preliminaries

Weighted Banach spaces of holomorphic functions and their countable
inductive limits arise in several areas of analysis. The references [4]–[7],
[14], [15] are examples of recent literature on this subject. Composition
operators between weighted Banach spaces of holomorphic functions have
been studied by Bonet, Domański, Lindström, Taskinen, Contre-

ras and Hernández-Dı́az in [10]–[12], [16]. Bonet and Friz have stud-
ied composition operators between weighted Fréchet spaces of holomorphic
functions in [13]. There is a vast literature about composition operators on
Banach spaces of holomorphic functions. We refer the reader to [17], [22].
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Our aim in this paper is to study composition operators between countable
inductive limits of weighted Banach spaces of holomorphic functions. To
do this, we study some properties of weighted Banach spaces of holomor-
phic functions on arbitrary open subsets of C and composition operators
between them. The results obtained in this way might be of independent
interest. The techniques of our proofs are related to methods developed
in [5], [12], [14]. Weighted inductive limits of spaces of entire functions
appear as Fourier Laplace transforms of spaces of ultradistributions. To
our knowledge, this is the first attempt to study composition operators on
inductive limits of spaces of holomorphic functions. Our main results are
Theorems 8 and 14.

Our notation for locally convex spaces and functional analysis is stan-
dard. We refer the reader to [19]–[21]. If A is a subset of a locally convex
space E, we denote by Γ(A) its absolutely convex hull. Given a sequence
(En)n of Banach spaces such that En ↪→ En+1 continuously for each n,
we denote by E := indnEn its inductive limit, i.e. its union endowed with
the strongest locally convex topology for which the injections En ↪→ E are
continuous. These spaces are called (LB)-spaces [2]. E is called regular if
every bounded subset B of E is contained and bounded in some En, and E
is called boundedly retractive if for for each bounded subset B of E there is
n such that En contains B and E and En endow the same topology on B.
A linear mapping T : E → F between two locally convex spaces is said
to be compact if there exists a 0-neighbourhood U in E such that T (U)
is relatively compact in F , Montel if it maps bounded sets into relatively
compact sets and bounded if there is a 0-neighbourhood U in E such that
T (U) is bounded. If E is a Banach space T is bounded (Montel) if and
only if it is continuous (compact).

If G is an open subset of C, we denote by H(G) the space of all
holomorphic functions on G endowed with the topology τ0 of uniform con-
vergence on the compact subsets of G. We denote by D the open unit disc
centered at zero. Let G1 and G2 be two open subsets of C. If E and F

are two spaces of holomorphic functions defined on G1 and G2 respectively
and ϕ : G2 → G1 is a holomorphic function such that f ◦ ϕ ∈ F for each
f ∈ E, then the composition operator with symbol ϕ is Cϕ : E → F ,
f �→ f ◦ ϕ.
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For our notation on weighted spaces and weighted inductive limits, see
[8] and [3]. A weight on G is a function v : G→ R which is strictly positive
and continuous. The weighted spaces of holomorphic functions with O and
o-growth conditions are defined as

Hv(G) :=
{
f ∈ H(G) : ‖f‖v := sup

z∈G
v(z)|f(z)| <∞}

and
Hv0(G) := {f ∈ H(G) : vf vanishes at infinity on G}.

Both of them are Banach spaces endowed with the norm ‖ · ‖v . This norm
topology is stronger than the one induced by τ0 in these spaces. We recall
that g : G → C vanishes at infinity on G if for each ε > 0 there exists a
compact set K ⊂ G such that |g(z)| < ε for each z ∈ G \K. We denote
by Bv and Bv0 the closed unit balls of these spaces. We remark that Bv
is compact for the compact open topology τ0. Given a weight v on G, the
associated weight is defined by

ṽ(z) :=
1

‖δz‖Hv(G)′
,

where δz is the evaluation at z and

‖δz‖Hv(G)′ = max{ |f(z)| : f ∈ H(G), |f | ≤ 1/v}.

Observation 1. If Hv(G) 	= {0}, then 0 < v(z) ≤ ṽ(z) < ∞ for each
z ∈ G, Hv(G) = Hṽ(G) and the norms ‖ · ‖v and ‖ · ‖ṽ coincide.

Proof. It is clear that 0 < v ≤ ṽ ≤ ∞ on G (see [5, 1.12]). If f ∈
Hv(G) is a nonzero function, then for each z0 ∈ G there exists k ∈ N∪{0}
such that the function g(z) := f(z)/(z−z0)k is holomorphic and g(z0) 	= 0.
The continuity of v implies that g ∈ Hv(G). Thus δz0(g) = g(z0) 	= 0 and
ṽ(z0) < ∞. The equality between the Banach spaces and their norms is
shown in [5, 1.12]. �

Hṽ0(G) is always a closed subspace of Hv0(G), but these two spaces
do not coincide in general. If G = C and v(z) = 1/max(1, |z|n+1/2) for
z ∈ C with n ∈ N, then ṽ(z) = 1/max(1, |z|n) (cf. [5, 1.3]). Therefore
g(z) = zn ∈ Hv0(G) \Hṽ0(G).
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A weight v defined on a balanced open set G (i.e G = C or G is
an open disc centered at zero) is called radial if v(z) = v(λz) for each
z ∈ G and each λ ∈ C with |λ| = 1. Bierstedt and Summers showed
in [9] that Hv(G) is canonically isomorphic to the bidual Hv0(G)′′ if and
only if the unit ball Bv of Hv(G) coincides with the closure Bv0

co of the
unit ball Bv0 of Hv0 in the compact open topology τ0. We consider this
biduality condition in many cases throughout this paper. If G is balanced
and v radial, Bierstedt, Bonet and Galbis showed in [4, 1.5 (c)] that,
if Hv0(G) contains the polynomials, then the polynomials are dense in
Hv0(G) and Bv = Bv0

co.
It follows from results in [4] and [12] that if v is radial, G is balanced

and Hv0(G) contains the polynomials, then Hv0(G) = Hṽ0(G). This re-
sult leads naturally to the question whether there exists a relation between
the biduality condition Bv = Bv0

co and the equality Hv0(G) = Hṽ0(G).
We see below that the two conditions are not related in general.

Example 2. Let G := {z ∈ C : 0 < |z| < 2} and let vn : G→ (0,∞) be
defined by vn(z) = 1 if 0 < |z| ≤ 1 and vn(z) = (2 − |z|)n if 1 < |z| < 2,
n ∈ N. It is easy to see that f1(z) := 1 ∈ Bvn, and, for 1 ≤ |z0| < 2,
f2(z) := 1/(2 − (z0/|z0|)z)n ∈ Bvn. Therefore vn = ṽn and H(vn)0(G) =
H(ṽn)0(G).

Each g ∈ H(vn)0(G) can be holomorphically extended to 0 by defining
g(0) = 0. If we assume g ∈ B(vn)0, then |g(z)| ≤ 1 for each z ∈ D. Thus,
we can apply Schwarz’s Lemma [1, 2.1.29] to obtain |g(z)| ≤ |z| for each
z ∈ D. This yields, for 0 < |z| < 1,

1 = ṽn(z) = max{|g(z)| : g ∈ Bvn} > sup{|g(z)| : g ∈ B(vn)0}

and B(vn)0
co
� Bvn.

Remark 3. Example 2 was already given in [14, p. 95]. It is clear that,
contrary to the final assertion in this article, H(vn)0(G) = H(ṽn)0(G) for
each n ∈ N. Thus, the example already given in the paper [14] shows that
[14, Theorem 3 (a)] as stated is false. However, [14, Theorem 3 (b)] is
correct as a careful inspection of the given proof shows. This is precisely
the argument which inspires our proof of (iii) → (iv) in Theorem 8 and
Theorem 10 below.
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Example 4. Let G := {z ∈ C : 0 < |z| < 2}, vn(z)= |z|3/2 if 0< |z|< 1
and vn(z) = (2 − |z|)n if 1 ≤ |z| < 2. A similar argument to the one used
in the previous example shows that ṽn(z) = (2 − |z|)n for 1 ≤ |z| < 2.
The function f0(z) := 1/z is in Bvn and consequently ṽn(z) ≤ |z| for 0 <
|z| < 1. If g ∈ Bv, then h(z) := z2g(z) satisfies h(z) ≤ |z|1/2 ≤ 1 for each
0 < |z| ≤ 1. Then we can extend h holomorphically as h(0) = 0, and the
Schwarz’s Lemma yields |h(z)| ≤ |z|, or equivalently |g(z)| ≤ 1/|z|. Hence
ṽn(z) = |z| for 0 < |z| < 1. Thus, f0(z) = 1/z ∈ H(vn)0(G) \H(ṽn)0(G).

Every function f ∈ Hvn(G) admits a Laurent development around
zero of the form f(z) =

∑∞
n=−1 anz

n. We fix f ∈ Bvn and z0 ∈ G. Let
g(z) := zf(z). We proceed as in the proof of [4, 1.5]. We denote by pk(z)
(k = 0, 1, . . . ) the Taylor Polynomial of g centered at zero of degree k and
by [Cm(g)](z) (m = 0, 1, . . . ) the Cesàro means of the Taylor polynomials
of g about zero; that is

[Cm(g)](z) =
1

m+ 1

m∑
i=0

(
i∑

k=0

pk(z)

)
, z ∈ G.

We apply [4, 1.1] to obtain

|[Cm(g)](z0)| ≤ max
|λ|=1

|g(λz0)| = max
|λ|=1

|z0| |f(λz0)|.

Since vn is radial, it follows

vn(z0)
|[Cm(g)](z0)|

|z0| ≤ max
|λ|=1

vn(λz0)|f(λz0)| ≤ 1.

Hence hm(z) := [Cm(g)](z)/z ∈ Bv. Moreover hm(z) =
∑m

k=−1 bkz
k for

some bk ∈ C, k = −1, 0, . . . ,m. This yields hm(z) ∈ H(vn)0(G). Thus,
(hm)m is a sequence in B(vn)0 which is pointwise (or τ0) convergent to f .
Therefore B(vn)0

co
= Bvn.
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2. Composition operators between weighted Banach spaces
of holomorphic functions

on arbitrary open subsets of C.

Let G1 and G2 open and connected subsets of C, let v and w (continu-
ous) weights on G1 and G2 respectively and let ϕ : G2 → G1 a holomorphic
function. We consider the composition operator Cϕ : H(G1) → H(G2),
Cϕ(f) = f ◦ ϕ. The following result is an extension of [12, 2.1].

Proposition 5. The following conditions are equivalent for the com-

position operator Cϕ:

(a) Cϕ : Hv(G1) → Hw(G2) is continuous,

(b) Cϕ(Hv(G1)) ⊂ Hw(G2),

(c) supz∈G2
w̃(z)/ṽ(ϕ(z)) <∞,

(d) supz∈G2
w(z)/ṽ(ϕ(z)) <∞.

Proof. (a) ⇐⇒ (b) follows from the Closed Graph Theorem since
Cϕ : (H(G1), τ0) → (H(G2), τ0) is continuous. The inequality w ≤ w̃ on
G2 yields (c) =⇒ (d).

To see (d) =⇒ (a), since ‖f‖v = ‖f‖ṽ, we have

‖Cϕ(f)‖w = sup
z∈G2

w(z)|Cϕf(z)| ≤ sup
z∈G2

w(z)
ṽ(ϕ(z))

‖f‖v.

To show (a) =⇒ (c), assume that (a) holds, suppose that (c) fails and
choose a sequence (zn)n ⊂ G2 such that w̃(zn) > nṽ(ϕ(zn)) and a sequence
(fn)n ⊂ Hv(G1) such that 1 = ‖fn‖v = ‖fn‖ṽ = ṽ(ϕ(zn))fn(ϕ(zn)) for
each n ∈ N. By (a), there exists C > 0 such that, for each n ∈ N,
supz∈G2

w̃(z)|fn(ϕ(z))| = supz∈G2
w(z)|fn ◦ ϕ(z)| < C. For each n ∈ N

w̃(zn)|fn(ϕ(zn))| =
w̃(zn)
ṽ(ϕ(zn))

ṽ(ϕ(zn))|fn(ϕ(zn))| > n,

a contradiction. �

Observation 6. (1) Condition (d) is optimal in the above proposi-
tion in the sense that we cannot replace ṽ by v. For instance, for G

and v as in Example 4, take G1 = G2 = G, w = ṽ and ϕ(z) = z.
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Cϕ : Hv(G1) → Hw(G2) is an isometric isomorphism which satisfies
supz∈G2

w(z)/v(ϕ(z)) = ∞.

(2) The same example shows that there exist continuous composi-
tion operators Cϕ : Hv(G1) → Hw(G2) such that the restriction Cϕ :
Hv0(G1) → Hw0(G2) is not continuous becauseCϕ(Hv0(G1)) � Hw0(G2).

(3) In general the continuity of Cϕ : Hv0(G1) → Hw0(G2) does not
imply that of Cϕ : Hv(G1) → Hw(G2). For G1 = G2 = D (the unit disc
in C), v(z) := 1, w(z) := 1/|1 − z| and ϕ(z) := z we have Hv0(G1) = {0}
and then Cϕ : Hv0(G1) → Hw0(G2) is continuous. In this case Hv(G1) is
the Hardy space H∞(D) that is not contained in Hw(G2).

Proposition 7. (1) If Cϕ : Hv0(G1) → Hw0(G2) is continuous and

Bv0
co = Bv, then Cϕ : Hv(G1) → Hw(G2) is continuous.

(2) Suppose that Cϕ :Hv(G1)→Hw(G2) is continuous andHv0(G1)=
Hṽ0(G1). If either

(i) ϕ−1(K) is relatively compact in G2 for each compact subset K of G1

or

(ii) w vanishes at ∞ on G2,

then Cϕ : Hv0(G1) → Hw0(G2) is continuous.

Proof. (1) Let M > 0 such that Cϕ(Bv0) ⊂ MBw0. We fix f ∈
Bv. By hypothesis, there exists a sequence (fn)n ⊂ Bv0 which converges
to f for the compact open topology. Then ‖(Cϕ(fn))‖w ≤ M for each n.
Passing to the limit, we obtain w(z)|f ◦ ϕ(z)| ≤ M for each z ∈ G2. This
yields Cϕ(Bv) ⊂MBw(G2).

(2) If (i) holds, we apply the equivalence between (a) and (c) in Propo-
sition 5 to obtain M such that w̃ ≤ M(ṽ ◦ ϕ) on G2. We fix ε > 0. If
f ∈ Hṽ0(G1) there exists K ⊂ G1 such that ṽ(ϕ(z))|f(ϕ(z))| < ε/M for
every z ∈ G2 such that ϕ(z) ∈ G1 \K. This implies w̃(z)|f ◦ϕ(z)| < ε for
each z ∈ G2\ϕ−1(K). Hence Cϕ(Hv0(G1)) = Cϕ(Hṽ0(G1)) ⊂ Hw̃0(G2) ⊂
Hw0(G2).

Now we assume (ii) and we apply the equivalence between (a) and
(d) in Proposition 5 to choose M ≥ 1 such that w ≤ M(ṽ ◦ ϕ) on G2.
We fix f ∈ Hv0(G1) = Hṽ0(G1). For each ε > 0 there exists a compact
subset K1 ⊂ G1 such that ṽ(z)|f(z)| < ε/M for each z ∈ G1 \ K1. By
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our assumption on w, we can choose a compact subset K2 ⊂ G2 such that
w(z) < ε/maxλ∈K1(1+ |f(λ)|) for each z ∈ G2 \K2. An easy computation
shows that w(z)|f ◦ ϕ(z)| < ε for every z ∈ G2 \K2. �

Theorem 8. Consider the following assertions:

(i) Cϕ : Hv(G1) → Hw0(G2) is compact.

(ii) Cϕ : Hv(G1) → Hw(G2) is compact and Cϕ(Hv0(G1)) ⊂ Hw0(G2).

(iii) Cϕ : Hv0(G1) → Hw0(G2) is compact.

(iv) For each ε > 0 there exists a compact subset K2 ⊂ G2 such that
w(z)

ṽ(ϕ(z)) < ε for every z ∈ G2 \K2.

Then (i) =⇒ (ii), (ii) =⇒ (iii) and (iv) =⇒ (i). If we assume

Bv0
co = Bv, then (iii) =⇒ (iv) and all the conditions are equivalent.

Proof. (i) =⇒ (ii) and (ii) =⇒ (iii) are trivial.

(iv) =⇒ (i): Let f ∈ Hv(G1) = Hṽ(G1) satisfy ‖f‖v = ‖f‖ṽ ≤ 1
and let ε > 0. Select K2 ⊂ G2 as in (iv). For each z ∈ G2 \K2

|w(z)Cϕf(z)| = w(z)|f(ϕ(z))|

≤ sup
z∈G2\K2

w(z)
ṽ(ϕ(z))

ṽ(ϕ(z))|f(ϕ(z))| < ε.

This implies Cϕ(Hv(G1)) ↪→ Hw0(G2). To see that Cϕ is compact we
use the following claim whose proof we omit because it is analogous to the
one of [17, 3.11].

Claim. Cϕ is compact if and only if for each sequence (fn)n which
is bounded in Hv(G1) and convergent to 0 in (H(G1), τ0) the sequence
Cϕ(fn) converges to 0 in Hw0(G2).

Let ε > 0 and let (fn)n be a sequence in Bv which tends to 0 in H(G1)
endowed with the compact open topology. We apply (iv) to get a compact
subset K2 ⊂ G2 such that w(z) ≤ ε

2 ṽ(ϕ(z)) whenever z ∈ G2 \K2. Hence

w(z)|fn(ϕ(z))| ≤ w(z)
ṽ(ϕ(z))

ṽ(ϕ(z))|fn(ϕ(z))| < ε

2
(1)
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for each z ∈ G2 \ K2 and for each n ∈ N. The compactness of ϕ(K2)
permits us to choose n0 ∈ N such that if n ≥ n0, then

|fn(ρ)| ≤ ε

2maxz∈K2 w(z)
(2)

for each ρ ∈ ϕ(K2). From (1) and (2) it follows that, for each n ≥ n0,

‖Cϕfn‖w = sup
z∈G2

w(z)|fn(ϕ(z))|

≤ sup
z∈G2\K2

w(z)|fn(ϕ(z))| + sup
z∈K2

w(z)|fn(ϕ(z))| < ε.

We assume Bv0
co = Bv to show (iii) =⇒ (iv). We suppose that Cϕ :

Hv0(G1) → Hw0(G2) is compact. For each g ∈ Hw0(G2) and each z ∈ G2

we have |〈w(z)δz , g〉| = w(z)|g(z)| ≤ ‖g‖w (we denote by δz the evaluation
at z). Hence, by the Banach–Steinhaus theorem, the set A := {w(z)δz :
z ∈ G2} is bounded in Hw0(G1)′. We apply that the transpose map
Ct

ϕ : Hw0(G2)′b → Hv0(G1)′b is compact to obtain that Ct
ϕ(A) is relatively

compact. This set coincides with {w(z)δϕ(z) : z ∈ G2}. We denote by B its
absolutely convex closed hull. Since B is compact in Hv0(G1), the norm
topology on it coincides with the one induced by σ(Hv0(G1)′,Hv0(G1)).
We fix ε > 0. There exist f1, ..., fs ∈ Hv0(G1) such that

B ∩ {f1, . . . , fs}◦ ⊂ {ψ ∈ B : ‖ψ‖Hv0(G1)′ < ε}.
By hypothesis, fj ◦ ϕ ∈ Hw0(G2), j = 1, . . . , s. Let K2 be a compact
subset of G2 such that

w(z)|fj ◦ ϕ(z)| < 1, j = 1, . . . , s, z ∈ G2 \K2.

Thus, for each z ∈ G2 \ K2 we have w(z)δϕ(z) ∈ B ∩ {f1, . . . , fs}◦. This
yields

‖w(z)δϕ(z)‖Hv0(G1)′ < ε, z ∈ G2 \K2. (3)

Since Bv = Bv0
co, we conclude ‖δϕ(z)‖Hv0(G1)′ = ‖δϕ(z)‖Hv(G1)′ = 1

ṽ(ϕ(z)) ,
and therefore (3) is equivalent to condition (iv). �

Remark 9. For each n ∈ N, let G and vn be as in the Example 2, and
let wn be defined on D as an extension of vn such that wn(0) = 1. It is
immediate that Hvn(G) � Hwn(D) isometrically as Banach spaces. Since
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H(wn)0(D) contains the polynomials, B(wn)0
co

= Bwn by [4, 1.5 (c)].
Therefore Theorem 8 implies that the injections Hwn(D) ↪→ Hwm(D) are
compact whenever n < m, and then the injections Hvn(G) ↪→ Hvm(G)
are also compact. Since vn ≥ vm we also have H(vn)0(G) ↪→ H(vm)0(G).
However vm/ṽn is identically 1 on a punctured neighbourhood of 0. This
shows that, in general, (ii) does not imply (iv) in Theorem 8.

3. Composition operators on weighted
inductive limits

Here V = (vn)n will always denote a decreasing sequence of weights on
an open subset G of C. The weighted (LB)-space of holomorphic functions
with O-growth conditions associated with V is the locally convex inductive
limit

VH(G) := indnHvn(G);

An alternative description of this space can be given by considering the
sequence Ṽ = (ṽn)n, i.e. VH(G) � ṼH(G) topologically.

The weighted (LB)-space of holomorphic functions with o-growth con-
ditions is defined analogously by

V0H(G) := indnH(vn)0(G).

We remark that in general V0H(G) � Ṽ0H(G) algebraically.
Our first result is connected with the problem of the projective de-

scriptions for this space (cf. [3]). Given a decreasing sequence V = (vn)n
of weights, Bierstedt, Meise and Summers introduced the system of
weights V associated with V by

V := {v : G→ [0,∞) : v upper semicontinuous and

v/vn bounded in G for each n ∈ N}.

The projective hull HV (G) of the inductive limit is defined by

HV (G) :=
{
f ∈ H(G) : ‖f‖v := sup

z∈G
v|f(z)| <∞∀v ∈ V

}
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endowed with the locally convex topology defined by the system of semi-
norms {‖ · ‖v, v ∈ V }. In [8] it is proved that VH(G) = HV (G) holds
algebraically, the injection VH(G) ↪→ HV (G) is continuous and both
spaces have the same bounded sets. A decreasing sequence V = (vn)n
of weights on G is said to satisfy property (S) if for each n ∈ N there
exists m > n such that vn/vm vanishes at infinity on G. If V satisfies
(S), then VH(G) = V0H(G) is a (DFS) space. VH(G) being a (DFS)
space, even Montel, is a sufficient condition to have the topological equal-
ity VH(G) = HV (G), and this happens whenever V = (vn)n or Ṽ = (ṽn)n
satisfies (S) (cf. [8, 5]). The next result constitutes an extension of [5, 3.5],
and it is a partial answer to Problem 1 in [3]. It should be compared with
[14, Theorem 3 (b)].

Theorem 10. If V = (vn)n is a decreasing sequence of weights on G

such that Bvn = B(ṽn)0
co

for each n ∈ N, then VH(G) is a (DFS) space

if and only if the sequence Ṽ = (ṽn)n satisfies (S).

Proof. VH(G) = ṼH(G) is a (DFS) space if and only if for each
n ∈ N there exists m > n such that i : Hṽn → Hṽm is compact. Since
H(ṽn)0 ⊆ H(ṽm)0, the result is an immediate consequence of the equiva-
lence between the conditions (ii) and (iv) in Theorem 8 and [5, 1.2 (v)]. �

Remark 11. If we take V = (vn)n and G as in Example 4, a similar
argument to the one used in Remark 9 (a) shows that the injections i :
Hvn(G) → Hvm(G) are compact whenever n < m. Thus, the space
VH(G) is a (DFS) space such that Bvn = B(vn)0

co
for each n ∈ N and Ṽ

does not satisfy (S) because ṽm(z)/ṽn(z) = 1 for each z ∈ D \ {0} and for
each m,n ∈ N.

Let G1 and G2 be two complex domains, let V = (vn)n and W = (wn)n
two sequences of weights on G1 and G2 respectively and let ϕ : G2 → G1

a holomorphic mapping.

Proposition 12. (1) The following conditions are equivalent:

(a) Cϕ : VH(G1) → WH(G2) is continuous,

(b) Cϕ(VH(G1)) ⊂ WH(G2),

(c) for each n ∈ N there exists m ∈ N such that Cϕ : Hvn(G1) →
Hwm(G2) is continuous,
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(d) for each n ∈ N there exists m ∈ N such that supz∈G2

wm(z)
ṽn(z) <∞.

(2) The following conditions are equivalent:

(a) Cϕ : VH(G1) → WH(G2) is bounded,

(b) there exists m ∈ N such that for all n ∈ N Cϕ : Hvn(G1) → Hwm(G2)
is continuous,

(c) there exists m ∈ N such that supz∈G2

wm(z)
ṽn(z) <∞ for each n ∈ N.

Proof. In (1) the equivalence between the conditions (a) and (b) is a
consequence of the Closed Graph Theorem. Given a mapping T between
two (LB) spaces E = indnEn and F = indn Fn, a straightforward applica-
tion of the Grothendieck factorization theorem [20, Theorem 24.33] shows
that T is continuous if and only if for each n there exists m such that
T : En → Fm is continuous. The conclusion follows from Proposition 5.

To prove (2) we observe that, in the general case, a mapping be-
tween (LB)-spaces T : E := indnEn → F := indn Fn, F being regular, is
bounded if and only if there exists m such that T : En → Fm is continuous
for each n ∈ N. Indeed, if T : E → F is bounded then the regularity of F
implies that there exists m such that T : E → Fm is bounded, and then
the conclusion follows from the continuity of the inclusion En ↪→ E for
each n. Conversely, if such m can be found, for each n ∈ N there exists
αn such that αnT (Bn) ⊂ B, Bn being the unit ball of En and B being the
unit ball of Fm. Therefore, if we denote by U the absolutely convex hull of
∪nαnBn, we have that U is a 0-neighbourhood in E such that T (U) ⊂ B,
and T is bounded. Now, the equivalences are immediately obtained from
Proposition 5. �

A sequence V = (vn)n of weights on G is said to be regularly decreasing
if for each n there exists m > n such that for each subset Y of G

inf
Y

vm

vn
> 0 =⇒ inf

Y

vk

vn
> 0 for all k ≥ m.

To obtain results about composition operators which are compact or Mon-
tel we require the range space WH(G2) to be boundedly retractive. It
is well known that if a sequence V of weights on G is regularly decreas-
ing, then both VH(G) and V0H(G) are boundedly retractive and therefore
V0H(G) is complete [8].
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Lemma 13. Let T : E := indnEn → F := indn Fn be a linear

mapping between two Hausdorff (LB) spaces such that F is boundedly

retractive. Then T is compact if and only if there exists m ∈ N such that

T : En → Fm is compact for each n ∈ N, and T is Montel if and only if for

each n ∈ N there exists m ∈ N such that T : En → Fm is compact.

Proof. We show the characterization of the compact operators. First
suppose that m as in the statement exists. Let Bn and B the unit balls of
En and Fm respectively. Even without the assumption that F is bound-
edly retractive, we have that (T (Bn))n is a sequence of relatively compact
subsets of Fm and then we can get a sequence (αn)n of positive numbers
such that αnT (Bn) ⊂ (1/n)B. The set K :=

⋃
n αnT (Bn) is easily seen

to be relatively (sequentially) compact in Fm. Hence U := Γ(
⋃

n αnBn) is
a 0-neighbourhood in E such that T (U) is relatively compact in F . Con-
versely, if T : E → F is compact and F is boundedly retractive, then
there is m ∈ N and a 0-neighbourhood U in E such that T (U) is a com-
pact subset of Fm. Hence T : E → Fm is compact. This implies that
T : En → Fm is compact for each n ∈ N. A similar argument works for
Montel operators. �

Theorem 14. Assume that WH(G2) is boundedly retractive.

(1) Consider the following conditions:

(i) Cϕ : VH(G1) → W0H(G2) is compact.

(ii) Cϕ : VH(G1) → WH(G2) is compact and Cϕ : V0H(G1)) → W0H(G2)
is bounded.

(iii) Cϕ : V0H(G1) → W0H(G2) is compact.

(iv) There exists m ∈ N such that Cϕ : H(vn)0(G1) → H(wm)0(G2) is

compact for each n ∈ N.

(v) There exists m ∈ N such that for each n ∈ N and for each ε > 0 there

exists a compact subset K2 of Ω2 such that

sup
z∈G2\K2

wm(z)
ṽn ◦ ϕ(z)

< ε.

Then (i) =⇒ (ii), (ii) =⇒ (iii), (iii) =⇒ (iv) and (v) =⇒ (i). If in

addition we assume that B(vn)0
co

= Bvn for each n∈N, then (iv) =⇒ (v)
and all the conditions are equivalent.
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(2) Consider the following conditions:

(i) Cϕ : VH(G1) → W0H(G2) is Montel.

(ii) Cϕ : VH(G1) → WH(G2) is Montel and Cϕ(V0H(G1)) ↪→ W0H(G2).

(iii) Cϕ : V0H(G1) → W0H(G2) is Montel.

(iv) For each n ∈ N there exists m ∈ N such that Cϕ : H(vn)0(G1) →
H(wm)0(G2) is compact.

(v) For each n ∈ N there exists m ∈ N such that for each ε > 0 there

exists a compact subset K2 of Ω2 such that

sup
z∈G2\K2

wm(z)
ṽn ◦ ϕ(z)

< ε.

Then (i) =⇒ (ii), (ii) =⇒ (iii), (iii) =⇒ (iv) and (v) =⇒ (i). If in

addition we assume that B(vn)0
co

= Bvn for each n ∈ N, then (iv) =⇒
(v) and all the conditions are equivalent.

Proof. We only prove (1), since (2) can be obtained similarly.
(i) =⇒ (ii) is a consequence of the continuous injections V0H(G2) ↪→

VH(G2) and W0H(G2) ↪→ WH(G2), and (iii) =⇒ (iv) follows from
Proposition 12 since W0H(G) is boundedly retractive. Now, (v) =⇒ (i)
follows from Theorem 8 and Proposition 12.

(ii) =⇒ (iii): By Lemma 13, there exists m ∈ N such that, for each
n ∈ N, Cϕ : Hvn(G1) → Hwm(G2) is compact. Since Cϕ : V0H(G1)) →
W0H(G2) is bounded and W0H(G) is boundedly retractive, we can get
p > m such that Cϕ : H(vn)0(G1) → H(wp)0(G2) is continuous for each
n ∈ N. Therefore Cϕ : H(vn)0(G1) → H(wp)0(G2) is compact for each
n ∈ N, and the result follows from Lemma 13.

If we assume B(vn)0
co

= Bvn for each n ∈ N, then (iv) =⇒ (v)
follows from Theorem 8. �
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[12] J. Bonet, P. Domański, M. Lindström and J. Taskinen, Composition operators
between weighted vector-valued Banach spaces of analytic mappings, J. Austral.
Math. Soc. 64 (1998), 101–118.

[13] J. Bonet and M. Friz, Weakly compact composition operators on locally convex
spaces, Math. Nachr. 245 (2002), 26–44.

[14] J. Bonet and D. Vogt, Weighted spaces of holomorphic functions and sequence
spaces, Note di Matematica 17 (1997), 87–97.

[15] J. Bonet and D. Vogt, On the topological description of weighted inductive limits
of spaces of holomorphic and harmonic functions, Arch. Math. (Basel) 72 (1999),
360–366.

[16] M. D. Contreras and G. Hernandez-Dı́az, Weighted composition operators in
weighted Banach spaces of analytic functions, J. Austral. Math. Soc. (Serie A) 69
(1) (2000), 41–60.

[17] C. Cowen and B. MacClauer, Composition Operators on Spaces of Analytic
Functions, CRC Press, Boca Raton, 1995.

[18] M. Friz, Operadores wedge entre espacios localmente convexos, Tesis doctoral,
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