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Area of reduced polygons

By MAREK LASSAK (Bydgoszcz)

Abstract. A convex body R of Euclidean space Ed is said to be reduced
if every convex body P ⊂ R different from R has thickness smaller than the
thickness ∆(R) of R. We prove that the area of every reduced polygon R is
smaller than 1

4π ·∆2(R) and that the factor 1
4π cannot be lessened. We conjecture

that the area of every planar reduced body is at most 1
4π · ∆2(R).

The minimum width of a convex body C of Euclidean d-space Ed is
called the thickness of C and it is denoted by ∆(C). We call a convex
body R ⊂ Ed reduced if for every convex body P ⊂ R different from
R we have ∆(P ) < ∆(R) (see [4]). In particular, every convex body of
constant width in Ed is a reduced body. We obtain another example of a
reduced body dissecting the ball into 2d congruent subsets by d pairwise
perpendicular hyperplanes passing through the center of the ball. If d = 2,
we call such a set a quarter of disk. We know that each reduced body in
Ed with smooth boundary is of constant width (see [3]). Let us add that
for every d ≥ 3 there are d-dimensional reduced bodies of a given thickness
and with arbitrarily large finite diameter (see [8]).

Every planar strictly convex reduced body is a body of constant width
(see [2]). Many other properties of planar reduced bodies are derived in [7].
In particular, there are given upper estimates of the diameter and the
perimeter of a reduced body of a given thickness. They are attained only
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for the quarter of disk. The quarter of disk also requires larger disk for
covering it than any other reduced body of the same thickness (see [8]).
Recall that every reduced polygon has and odd number of vertices (see [7]).
The simplest examples of reduced polygons are the regular odd-gons. The
only reduced triangles are the regular triangles but for larger number of
vertices we have a wide class of reduced odd-gons.

The below presented Theorem gives an estimate of the area of reduced
polygons. It is not clear if analogical question about the volume of reduced
polytopes makes sense because we do not know if d-dimensional reduced
polytopes exist for d ≥ 3; we only know that simplices are not reduced
(see [9]). At the end of this note we formulate a conjecture about the
maximum possible area of a planar reduced body. We also present an
estimate of the area of reduced bodies which is close to the value presented
in this conjecture.

Theorem. We have

area(R) <
1
4
π · ∆2(R)

for every reduced polygon R, and the factor 1
4π cannot be lessened in

general.

This theorem results immediately from the following lemma.

Lemma. Every reduced non-regular n-gon R has the area smaller

than the regular n-gon of width ∆(R).

Proof. For convenience of the reader, the below introduced notation
is consistent with the notation from [7]. Of course, n ≥ 3 and n is odd.
Consider a reduced n-gon R = v1v2 . . . vn (Figure 1 gives an illustration for
n = 5, see also Figure 2). Moreover, if k �∈ {1, . . . , n}, then by vk we mean
the vertex vm, wherem = k (mod n) andm ∈ {1, . . . , n}. From Theorem 7
of [7] it follows that the projection ti of vi on the straight line containing
the side vi+(n−1)/2 vi+(n+1)/2 is strictly between the vertices vi+(n−1)/2 and
vi+(n+1)/2. Let si be the point of the intersection of segments viti and
vi+(n+1)/2ti+(n+1)/2, where i = 1, . . . , n. For every i ∈ {1, . . . , n} denote
by Bi the “butterfly” being the union of the triangles visiti+(n+1)/2 and
vi+(n+1)/2siti.
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Figure 1

Of course, B1 ∪ · · · ∪Bn ⊂ R. In order to show the opposite inclusion,
we will show that every point p ∈ R belongs to B1 ∪ · · · ∪Bn. We present
every Bi as the union of chords which pass through si. All the chords
of successively B1, B1+(n+1)/2, B2, B2+(n+1)/2, . . . , B(n+1)/2 are in straight
lines which step by step rotate changing the centers of rotation; those cen-
ters successively are s1, s1+(n+1)/2, s2, s2+(n+1)/2, . . . , s(n+1)/2. We assume
that all the chords are oriented with origins in segments v1v2, v2v3, . . . ,
v(n−1)/2v(n+1)/2, v(n+1)/2t1. When we start from the chord v1t1, after total
rotation by π we arrive to the chord t1v1 which has opposite direction. Af-
ter the rotation by π, point p is in the opposite closed side of the oriented
chord (i.e. it changes the position between left and right sides). Since the
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described change of the chord is continuous, there is a position of the chord
which contains p. Hence p ∈ B1∪· · ·∪Bn. Consequently, R = B1∪· · ·∪Bn.

Denote by ψi the angle ∠visiti+(n+1)/2. From Theorem 3 of [7] we con-
clude that |viti+(n+1)/2| = ∆(R) · tan ψi

2 . Since the triangle visiti+(n+1)/2

has right angle at ti+(n+1)/2, we obtain |siti+(n+1)/2| = ∆(R) · tan ψi
2 ·

cotψi = ∆(R) · tan ψi

2 · 1−tan2(ψi/2)
2 tan(ψi/2)

= 1
2∆(R) · (1 − tan2 ψi

2 ). Hence the
area of each of the rectangular triangles visiti+(n+1)/2 and vi+(n+1)/2siti

is 1
4∆2(R) · (1 − tan2 ψi

2 ) tan ψi

2 . So the area of Bi equals to 1
2∆2(R) ·

(1 − tan2 ψi

2 ) tan ψi

2 . In other words, the area is 1
2∆2(R) · f(ψi), where

f(ψ) = (1 − tan2 ψ
2 ) tan ψ

2 .
Let us show that the above function f(ψ) is concave down in our

domain (0, π2 ). We find the first derivative f ′(ψ) = 1
2(1− 3 tan2 ψ

2 ) cos−2 ψ
2

and the second derivative f ′′(ψ) = 1
4 [−6 tan ψ

2 +2(1−3 tan2 ψ
2 ) cos ψ2 sin ψ

2 ]
cos−4 ψ

2 = −1
2 sin ψ

2 (3 − cos2 ψ
2 + 3 sin2 ψ

2 ) cos−5 ψ
2 = − sin ψ

2 (1 + 2 sin2 ψ
2 )

cos−5 ψ
2 . Clearly, the last expression is negative for 0 < ψ < π

2 , which
implies that the function f(ψ) is concave down in (0, π2 ).

Of course, ψ1 + · · · + ψn = π. Since R = B1 ∪ · · · ∪ Bn, we see that
the area of R is at most 1

2∆2(R)f(ψ1) + · · · + 1
2∆2(R)f(ψn) = n

2 ·∆2(R) ·
[ 1
nf(ψ1) + · · · + 1

nf(ψn)]. From the earlier established concavity down of
the function f(ψ) and from the classic Jensen’s inequality [5] we conclude
that the area of R is at most n

2 ·∆2(R)·f( 1
nψ1+· · ·+ 1

nψn) = n
2 ·∆2(R)·f(πn),

which is equal to the area of the regular n-gon of width ∆(R).
Since f(ψ) is not linear, the equality in the Jensen’s inequality is

possible only for ψ1 = · · · = ψn. This is why every non-regular reduced
n-gon has the area smaller than the regular n-gon. �

It is obvious that as n tends to infinity, the area of the regular n-gon
of thickness 1 (which, by Lemma, is the reduced n-gon of thickness 1 and
the maximum possible area) tends to 1

4π.
On the other hand, for every odd integer n ≥ 3 and every ε > 0 there

exists a non-degenerated reduced n-gon of thickness 1 whose area is less
than 1

3

√
3 + ε (the number 1

3

√
3 here equals to the area of the regular

triangle of thickness 1). In such an n-gon for n ∈ {5, 7, . . . }, the angles
ψ1, ψ2, ψ(n+3)/2 (as defined in the proof of Lemma) are almost 60◦ and
the rest from the angles ψ1, . . . , ψn are close to 0◦ (the case of a reduced
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heptagon is illustrated in Figure 2). So the shape of such a reduced n-gon
is ”close” to the shape of the regular triangle and the limit case is the n-gon
degenerated to the regular triangle of thickness 1. Let us add that the area
of every planar reduced body R is at least 1

3

√
3 · ∆2(R). This follows by

the well known Pál’s theorem ([10]) that every body of minimum width
w has area at least 1

3

√
3 · w2.

Figure 2

Proposition. Every planar reduced body R has area at most ∆2(R).

Proof. Recall the isoperimetric inequality

area (C) ≤ 1
2
· perim (C)∆(C) − 1

4
π · ∆2(C)

for every convex body C with area (C) ≥ 1
4π · ∆2(C) given in [6] and [1].
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Take also into account the inequality

perim (R) ≤ (2 +
1
2
π) · ∆(R)

proved in [7]. If area (R) ≥ 1
4π ·∆2(R), by those two inequalities we obtain

that area (R) ≤ 1
2 · perim (R) · ∆(R) − 1

4π · ∆2(R) ≤ 1
2(2 + 1

2π) · ∆(R) ·
∆(R) − 1

4π · ∆2(R) = ∆2(R). In the opposite case we have area(R) <
1
4π · ∆2(R) ≤ ∆2(R). �

Conjecture. Every planar reduced body R has area at most 1
4π ·

∆2(R) with equality only for each disk and each quarter of disk.
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