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Some groups with n-central normal closures

By PRIMOŽ MORAVEC (Ljubljana)

Abstract. A group is said to be an n-Kappe group if it satisfies the law
[xn, y, y] = 1. We describe the structural similarities between n-central groups and
n-Kappe groups. In particular, we characterize 2-Kappe, 3-Kappe and metabelian
p-Kappe groups. We show that in each of these three cases, these groups are
closely related to groups with n-central normal closures.

1. Introduction

Given an integer n, a group G is said to be n-central if the factor
group G/Z(G) is a group of exponent n. The study of n-central groups
was introduced in [3] and it is also the subject of [9] and [13]. Note that
the variety of n-central groups is determined by the semigroup law xny =
yxn, which is equivalent to another semigroup law (xy)n = (yx)n. The
consideration of semigroups satisfying such conditions is the topic of [14].

For a group G define the set of right 2-Engel elements by R2(G) = {a ∈
G : [a, x, x] = 1 for every x ∈ G}. A well-known result of W. Kappe [10]
says that R2(G) is always a characteristic subgroup of G. Thus we define
a group G to be an n-Kappe group if G/R2(G) is a group of exponent n.
These groups arise naturally in connection with n-Bell groups (a group is
said to be n-Bell if it satisfies the identity [xn, y] = [x, yn]). For instance,
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356 Primož Moravec

it is shown in [1] that every n-Bell group is n(n−1)-Kappe and that every
finite n-Bell group is isomorphic to A × B × C, where A is an n-Kappe
group, B is an (n − 1)-Kappe group and C is a 2-Engel group.

The main purpose of this paper is the investigation of structural sim-
ilarities between n-central and n-Kappe groups. We use the results of [3],
[9] and [13] as guidelines for dealing with the question of n-Kappe groups
for special values of n and for special classes of groups. In particular, we
are mostly concerned with soluble n-Kappe groups. It is proved in [13]
that for every integer n there is an integer m > 1 depending only on n

such that every locally soluble n-central group is m-abelian (a group is said
to be m-abelian when it satisfies the law (xy)m = xmym). Since m-abelian
groups are closely related to m-Bell groups [1], the following result is not
unexpected.

Theorem 1. Let G be a locally soluble n-Kappe group. Then there

exists an integer m = f(n) > 1 such that G is m-Bell and m-Levi group.

Recall that a group is said to be m-Levi [7], if it satisfies the law
[xm, y] = [x, y]m. Note also that the proof of Theorem 1 depends on
the solution of the restricted Burnside problem [21], [22]. In the case of
metabelian groups, we prove that every metabelian n-Kappe group is 2n2-
Bell and 2n2-Levi; moreover, when n is odd, we can replace 2n2 by n2. It
is also shown by an example that this result is best possible at least in the
case when n is an odd prime.

In [9], there is a characterization of metabelian p-central p-groups,
which is extended to a characterization of metabelian p-central groups
in [13]. The corresponding result for metabelian p-Kappe groups is the
following.

Theorem 2. Let p be an odd prime and let G be a metabelian group.

The following conditions are equivalent.

(a) G is a p-Kappe group.

(b) [x, p+1y] = [x, py, x] = [x, y, y]p = 1 for any x, y ∈ G.

(c) G is nilpotent of class ≤ p + 1 and E2(G)p = 1.

Here we use the notation En(G) = 〈[x, ny] : x, y ∈ G〉, where the
commutator [x, ny] is defined inductively by [x, 0y] = x and [x, n+1y] =
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[
[x, ny], y

]
for n ≥ 0. The crucial step in proving this is a classification of

polycyclic n-Kappe groups as those groups which can be embedded in a
direct product of a finite soluble n-Kappe group and a finitely generated
torsion-free group of class ≤ 2. This enables the reduction of the prob-
lem to the consideration of p-groups. Consequently, we prove that every
metabelian p-Kappe group G has p-central normal closures. By this we
mean that the normal closure aG of element a in G is p-central for every
a ∈ G. The converse is not true in general; the group W constructed
in Example 1 of [9] is a metabelian group of exponent p2 with p-central
normal closures, yet it is not nilpotent.

Surprisingly, the case p = 2 is essentialy different from the case of
p-central groups. We prove that every 2-Kappe group is metabelian, yet
there are 2-Kappe groups which are not nilpotent. Nevertheless, we obtain
the following characterization of 2-Kappe groups.

Theorem 3. Let G be a group. The following statements are equiv-

alent.

(a) G is a 2-Kappe group.

(b) [x, y, y, y] = [x, y, y, x] = [x, y, y]2 = 1 for any x, y ∈ G.

(c) Every 2-generator subgroup of G is nilpotent of class ≤ 3 and

E2(G)2 = 1.

As a direct consequence we show that every 2-Kappe group has 2-
central normal closures. On the other hand, there are two-generator groups
of class 4 with 2-central normal closures, hence the converse does not
hold in general. Beside that, we compute the nilpotency classes of free
r-generator 2-Kappe groups. The result is as follows.

Theorem 4. Let r > 1 and let Gr be the free r-generator 2-Kappe

group. Then Gr is nilpotent of class r + 1.

In [9] it is proved that every 3-central group is nilpotent of class ≤ 4;
in fact, every 3-Bell group is also nilpotent of class ≤ 4 by [8]. Turning
our attention to 3-Kappe groups, we obtain the following result.

Theorem 5. Let G be a 3-Kappe group. Then we have:

(a) G is nilpotent of class ≤ 6.

(b) Every two-generator subgroup of G is nilpotent of class ≤ 4.
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The bounds for the nilpotency classes in Theorem 5 are best possible,
as calculations using the Nilpotent Quotient Algorithm [17] show. With
the help of this result, we are able to obtain a characterization of 3-Kappe
groups which yields that every 3-Kappe group has 3-central normal clo-
sures. This raises a question whether every n-Kappe group has n-central
normal closures. We show that this is not true in general, since there
exists a metabelian 4-Kappe group G = 〈a, b〉, where aG is not 4-central.
Moreover, there is a 4-Kappe group with derived length 3 which contains
a non-nilpotent normal closure.

In [7], the following sets were the objects of investigation:

E(G) = {n ∈ Z : (xy)n = xnyn for all x, y ∈ G},
B(G) = {n ∈ Z : [xn, y] = [x, yn] for all x, y ∈ G},
L(G) = {n ∈ Z : [xn, y] = [x, y]n for all x, y ∈ G}.

These sets are semigroups under multiplication and they always contain
zero. The main result of [7] is an arithmetic characterization of the sets
E(G), B(G) and L(G). It is shown there that each of these sets always
forms what is called a Levi system, which is, roughly speaking, a union
of idempotent residue classes modulo a certain integer m, which depends
on G. Using this information, we determine B(G) and L(G) where G is
the free 2-Kappe, free 3-Kappe, free 4-Kappe or free metabelian p-Kappe
group, respectively. It is interesting to note that these sets coincide with
E(G), where G is the free 2-central, free 3-central, free 4-central or free
metabelian p-central group, respectively; see [3] and [13].

The notation is mainly taken from [19]. The standard commutator
identities [18, Part 1, Section 2.1] will be used without further reference.

2. Proofs of results

At the beginning we state some well-known results which we use
throughout the paper. The first lemma is about 2-Engel groups; it was
proved by F. W. Levi [11]. Recall that a group is said to be n-Engel if it
satisfies the law [x, ny] = 1.
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Lemma 1 ([11]).

(a) If G is a 2-Engel group, then γ3(G)3 = γ4(G) = 1.

(b) Every 2-generator 2-Engel group is nilpotent of class ≤ 2.

(c) Every group of exponent three is 2-Engel.

The next result collects some facts about right 2-Engel elements of a
given group.

Lemma 2. Let G be any group, x, y, z ∈ G and a ∈ R2(G).

(a) The group aG is abelian.

(b) [a, [x, y]] = [a, x, y]2.

(c) [a, x]rs = [ar, xs] for all integers r and s.

(d) [a, x, y, z]2 = 1, hence a2 ∈ Z3(G).

Proof. The assertions (a) and (b) are proved in [10] and (c) follows
directly from (a). The identity [a, x, y, z]2 = 1 is proved in [18, Part 2,
p. 43]. �

The following lemma facilitates computations in metabelian groups.
We will use it without any further reference.

Lemma 3 ([9]). Let G be a metabelian group, x, y, z ∈ G and

c, d ∈ G′. Then we have:

(a) [c, x, y] = [c, y, x].

(b) [x, y, z] = [y, x, z]−1.

(c) [cd, x] = [c, x][d, x].

(d) [x, yn] =
∏

1≤i≤n[x, iy](
n
i).

(e) (xy−1)n = xn · ∏0<i+j<n[x, iy, jx](
n

i+j+1) · y−n.

A group G is said to be an Engel group when for every x, y ∈ G there
exists a nonnegative integer n = n(x, y) such that [x, ny] = 1. The next
result is elementary:

Lemma 4. Let G be a group. If the factor group G/R2(G) is locally

nilpotent, then G is locally nilpotent.
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Proof. Since G/R2(G) is locally nilpotent, it is also an Engel group,
hence G is an Engel group. Beside that, the group G is (2-Engel)-by-
(locally nilpotent), hence it is locally soluble and therefore locally nilpotent
by a result of Gruenberg; see [18, Part 2, p. 60]. �

Now we are in the position to prove Theorem 1.

Proof of Theorem 1. Clearly we may assume that G is a two-
generator soluble n-Kappe group. For any x ∈ G we have xn ∈ R2(G),
hence x2n ∈ Z3(G) by Lemma 2. This implies that G/Z3(G) is a finitely
generated soluble group of exponent 2n, therefore |G : Z3(G)| < ∞. By a
theorem of Baer [19, 14.5.1], γ4(G) is a finite group of exponent bounded
by a function of n. Since G/E2(G) is a 2-Engel group, we conclude that
γ4(G) ≤ E2(G) by Lemma 1. For any x, y ∈ G and for any integer l we
have [xl, y, y] ≡ [x, y, y]l mod γ4(G), hence [x, y, y]n ∈ γ4(G). We con-
clude that the abelian factor group E2(G)/γ4(G) is of exponent n, hence
E2(G) is a group of finite exponent k. By the solution of the restricted
Burnside problem [21], [22], k depends on n only.

Now let x, y ∈ G. Expansion of [xn, xy, xy] = 1 implies [xn, y, x] = 1,
hence [xn, y] ∈ Z(〈x, y〉). By Lemma 2 (c) we obtain [xn, y] ≡ [x, y]n

mod E2(G), which yields [x, y]n = [xn, y]e for some e ∈ E2(G). This
gives [x, y]nk = [xn, y]kek = [xn, y]k = [xnk, y]. By symmetry we have
[x, y]nk = [x, ynk], hence G is an (nk)-Bell group and also an (nk)-Levi
group. �

Note that the proof of Theorem 1 gives a very crude explicit bound for
m such that every soluble n-Kappe group is m-Bell and m-Levi. We can
substantially improve this bound at least in the case of metabelian groups.

Lemma 5. Every metabelian n-Kappe group G is also a 2n2-Levi

group and a 2n2-Bell group. Furthermore, if n is odd, then G is also

n2-Levi and n2-Bell.

Proof. Let x, y ∈ G. As G is metabelian, we get 1 = [[x, y]n, y, y] =
[x, y, y, y]n, hence exp E3(G) divides n. This yields

1 = [x, yn, y]n =
n∏

i=1

[x, i+1y]n(
n
i) = [x, y, y]n

2
,
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hence exp E2(G) | n2. As [x, yn] ∈ Z(〈x, y〉), we obtain

[x, y2n2
] = [x, yn]2n =

n∏

i=1

[x, iy]2n(n
i) = [x, y]2n2

= [x2n2
, y],

therefore G is 2n2-Bell and 2n2-Levi. When n is odd, it divides
(n
2

)
, hence

a similar manipulation as above gives [x, yn2
] = [x, y]n

2
= [xn2

, y], which
proves the second part. �

The following observation is of significant importance for our next
results:

Proposition 1. Let G be a finitely generated soluble n-Kappe group.

Then G is an extension of a periodic soluble n-Kappe group by a finitely

generated torsion-free group of class ≤ 2.

Proof. As in the proof of Theorem 1, we conclude that |γ4(G)| < ∞,
hence the elements of finite order form a characteristic subgroup T of the
group G. Since exp E2(G) < ∞, the factor group G/T is a torsion-free
2-Engel group. But we also have γ3(G/T )3 = 1 by Lemma 1, hence G/T

is of class ≤ 2. This proves the result. �

It is easily seen that every torsion-free locally soluble n-central group
is abelian [3]. The situation is similar for n-Kappe groups. More precisely,
we have:

Corollary 1. Every locally soluble torsion-free n-Kappe group is

nilpotent of class ≤ 2.

Corollary 2. Let G be a polycyclic group. Then G is an n-Kappe

group if and only if it is isomorphic to a subgroup of a direct product of

a finite soluble n-Kappe group and a finitely generated torsion-free group

of class ≤ 2.

Proof. Let G be a polycyclic n-Kappe group and let T be its torsion
subgroup. By Corollary 1, we may assume that T �= 1. Since T is finitely
generated, it is finite. The well-known result of Hirsch [19, 5.4.17] says
that G is residually finite, so for every non-trivial element a of T there
exists a normal subgroup Na � G of finite index such that a /∈ Na. Let
N =

⋂
a∈T\{1} Na. Clearly, |G : N | < ∞ and N ∩ T = 1. Hence G can
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be naturally embedded into (G/N) × (G/T ); here G/N is a finite soluble
n-Kappe group, whereas G/T is a finitely generated torsion-free group of
class ≤ 2 by Proposition 1. The converse statement is obvious. �

This result is particularly useful in the situation when G is a finitely
generated nilpotent p-Kappe group. In this case, G can be naturally em-
bedded into a direct product of a finite p-Kappe p-group and a finitely
generated 2-Engel group. As a consequence, we are able to obtain a char-
acterization of metabelian p-Kappe groups given by Theorem 2.

Proof of Theorem 2. Assume G is a metabelian p-Kappe group,
let x, y ∈ G and put H = 〈x, y〉. The factor group H/R2(H) is a metabelian
two-generator group of exponent p. By a result of Meier–Wunderli [12],
H/R2(H) is nilpotent of class ≤ p−1, hence the group H satisfies the iden-
tity of the form [x1, . . . , xp, xp+1, xp+1] = 1, where xi ∈ H. In particular,
G is (p + 1)-Engel and also satisfies the identity [x, py, x] = 1. Now we
have 1 = [y, xp, x] =

∏p
i=1[y, i+1x](

p
i) = [y, x, x]p, hence (a) implies (b).

Assume (b). Then we have [y, xp, y] =
∏p

i=1[y, ix, y](
p
i) = 1, hence (a)

and (b) are equivalent.
Next we prove that (a) and (b) imply (c). Since G is metabelian,

[x, y, y]p = 1 implies E2(G)p = 1. To prove that G is nilpotent of class
≤ p+1, we may obviously assume that G is finitely generated. By Lemma 4
and a result of Meier–Wunderli [12], G is nilpotent, hence it is also
polycyclic. By Corollary 2, G is isomorphic to a subgroup of a direct
product of a finite p-Kappe p-group and a finitely generated 2-Engel group.
Therefore we may restrict ourselves without loss of generality to the case
when G is a finite p-Kappe p-group. As G satisfies any two-variable identity
of the form [y1, . . . , yp, y, y] = 1, where yi ∈ {x, y}, it follows that every
two-generator subgroup of the group G is of class ≤ p + 1. In particular,
G satisfies the identity [x, y, y, y, p−2x] = 1. By the result of Gupta and
Newman [2], the factor group γp+2(G)/γp+3(G) has exponent e dividing
2(p + 2)(p − 2)!. Since e is prime to p, we have γp+2(G) = γp+3(G), hence
G is nilpotent of class ≤ p + 1.

As (c) clearly implies (b), the theorem is proved. �

We have proved that for an odd prime p every metabelian p-Kappe
group is nilpotent of class ≤ p + 1. We will show that this bound for
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the nilpotency class is best possible. Before embarking on an appropriate
example, we briefly recall the notion of a polycyclic presentation of a finitely
generated nilpotent group. This presentation is given by a finite number
of generators g1, . . . , gr and relations of the form

gmi
i = wii(gi+1, . . . , gr) for i ∈ I,

[gj , gi] = wij(gj+1, . . . , gr) for 1 ≤ i < j ≤ r.

Here mi are positive integers, wij(gk, . . . , gr) are group words in the gen-
erators gk, . . . , gr and I is a (possibly empty) set of indices. It is straight-
forward to see that every group with this kind of presentation is nilpotent.
Conversely, let G be a finitely generated nilpotent group. By refining the
lower central series of G one can obtain a normal series G = G1 > G2 >

· · · > Gr+1 = 1 with cyclic factors. Such a polycyclic series gives a rise to
a sequence of generators of G by choosing a generator gi for each cyclic
factor Gi/Gi+1. Let I be the set of all indices i such that Gi/Gi+1 is fi-
nite. Then G has a presentation of the above form. In a group given by
a polycyclic presentation each element in the group can be written as a
normal word ge1

1 · · · ger
r with ei ∈ Z and 0 ≤ ei < mi for i ∈ I. In general,

this presentation is not unique. A polycyclic presentation with the prop-
erty that the normal form of each element is uniquely determined is called
consistent.

Example 1. Let p be any odd prime, let F be the free group of rank
two and consider the group G = F/F

′′
γ3(F )pγp+2(F ). The group G is

metabelian of class p + 1 and γ3(G)p = 1. By Theorem 2, G is a two-
generator p-Kappe group. It is not difficult to see that the group G has
a consistent polycyclic presentation with generators a, b, x and xij, where
i, j ≥ 0, i + j ∈ {1 . . . , p − 1}, and the relations are [a, b] = x, [x, a] = x10,
[x, b] = x01, [xij, a] = xi+1,j and [xij , b] = xi,j+1 for i + j < p− 1, [xij, a] =
[xij , b] = 1 for i + j = p − 1, [xij, xkl] = [xij, x] = 1 and xp

ij = 1; here
xij = [a, b, ia, jb]. By Lemma 5, G is p2-Bell and p2-Levi.

Let k > 1 be the smallest integer such that G is a k-Levi group. Since
G is metabelian, we have

[a, b]k = [ak, b] =
k∏

i=1

[a, b, i−1a](
k
i) = [a, b]k

k−1∏

i=1

[a, b, ia](
k

i+1).
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Suppose k ≤ p and let ei be an integer between 0 and p − 1 such that
ei = −( k

i+1

)
mod p. Then the above equation yields

xk−1,0 =
k−2∏

i=1

xei
i0.

Since the left and the right side of this equation are written in the normal
form, this is clearly impossible because of the consistency of the presenta-
tion. Hence k > p, which together with the class restriction yields

p−1∏

i=1

x
( k

i+1)
i0 = 1.

Now the consistency of the presentation implies that p divides
(

k
i+1

)
for

every i = 1, . . . , p − 1. The smallest possible value for k is p2, hence G is
not n-Levi for any 1 < n < p2.

Using a similar argument, we can prove that [an, b] �= [a, bn] for any
1 < n < p2, hence G is not n-Bell for any 1 < n < p2.

The following definition is taken from [7]: Let q1, q2, . . . , qt be integers,
qi > 1 and gcd(qi, qj) = 1 for i �= j. Let B(q1, q2, . . . , qt) be the set of
integers which is the union of 2t residue classes modulo qi satisfying each a
system of congruences m ≡ δi mod qi, where i = 1, . . . , t and δi ∈ {0, 1}.
It is proved in [7] that each of the sets E(G), B(G) and L(G) is equal either
to Z, {0, 1} or to some B(q1, q2, . . . , qt) with qi > 2. This enables us to
formulate the following result:

Corollary 3. Let p be an odd prime. Then we have:

(a) If G is a metabelian p-Kappe group, then G has p-central normal

closures.

(b) If G is a metabelian p-Kappe group, then γ3(G)3p = γ4(G)p = 1.

(c) Let G be a free metabelian p-Kappe group with two or more genera-

tors. Then B(G) = L(G) = B(p2).

Proof. (a) Since the class of metabelian groups with p-central nor-
mal closures forms a finitely based variety of groups (see [15] and [16,
Theorem 36.11]), we may assume that G is finitely generated, hence it is
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polycyclic. By Corollary 2, G is isomorphic to a subgroup of P ×N , where
P is a finite p-Kappe p-group and N is a finitely generated 2-Engel group.
Therefore it suffices to show that both P and N have p-central normal
closures. As for the group P , this follows directly from [9, Theorem 14]
and from Theorem 2. Since N is 2-Engel, it has abelian normal closures
by Lemma 2, thus we have the result.

To prove (b), observe that G/E2(G) is a 2-Engel group, which yields
γ3(G/E2(G))3 = γ4(G/E2(G)) = 1 by Lemma 1. Therefore we have
γ3(G)3 ≤ E2(G) and γ4(G) ≤ E2(G), hence γ3(G)3p = γ4(G)p = 1 by
Theorem 2.

(c) By Lemma 5, G is p2-Bell and p2-Levi. Now Example 1 shows
that n = p2 is the smallest positive integer such that Gn ≤ R2(G) and
n ∈ B(G) (n ∈ L(G)). By Corollary 1 of [7], we have k2 ≡ k mod p2 for
every k ∈ B(G) (k ∈ L(G)). This congruence has two solutions, namely
k ≡ 0 mod p2 and k ≡ 1 mod p2, which proves that B(G) ⊆ B(p2) and
L(G) ⊆ B(p2).

Let t be an arbitrary integer. For x, y ∈ G we have [xp, y] ∈ Z(〈x, y〉),
hence [xpt, y] = [xp, y]t. Replacing x by xp, we get [xp2t, y] = [xp2

, y]t =
[x, y]p

2t = [x, yp2t], as p2 ∈ B(G)∩L(G). Since [xp2t, y] ∈ Z(〈x, y〉), we get

[xp2t+1, y] = [xp2t, y][x, y] = [x, y]p
2t+1 = [x, yp2t+1].

Thus we have proved that B(p2) ⊆ B(G) and B(p2) ⊆ L(G), as required.
�

Turning our attention to 2-Kappe groups, we first prove Theorem 3
which characterizes 2-Kappe groups in terms of certain Engel words:

Proof of Theorem 3. Suppose that G is a 2-Kappe group. Then
G/R2(G) has exponent two and hence it is abelian. Thus G satisfies the
law [x, y, z, z] = 1. In particular, G is 3-Engel, hence every 2-generator
subgroup is metabelian. Now we have 1 = [y, x2, x] = [y, x, x]2 and 1 =
[x2, y, y] = [x, y, y, x], hence (a) implies (b).

Assume G satisfies the laws [x, y, y, y] = [x, y, y, x] = [x, y, y]2 = 1.
Then every 2-generator subgroup of G is nilpotent of class ≤ 3. We claim
that E2(G) ≤ R2(G). For this, let x, y, z ∈ G. Since G is 3-Engel, the
subgroup H = 〈x, y, z〉 is nilpotent of class ≤ 5. Expanding the identity



366 Primož Moravec

[z, xy, xy, xy] = 1 modulo γ5(H), we get

[z, x, x, y][z, x, y, x][z, y, x, x][z, x, y, y][z, y, x, y][z, y, y, x] ≡ 1 mod γ5(H).

Replacing x by x−1 in this equtation, we obtain

[z, x, x, y]2[z, x, y, x]2[z, y, x, x]2 ≡ 1 mod γ5(H),

hence [z, x, y, x]2 ≡ 1 mod γ5(H).
The Hall–Witt identity [18, Part 1, Section 2.1] gives [z, [y, x, x]] ≡

[z, y, x, x][z, x, y, x]−2 [z, x, x, y] mod γ5(H), thus [z, [y, x, x]] ≡
[z, y, x, x][z, x, x, y] mod γ5(H). From this we conclude that [y, x, x, z] ≡
[z, y, x, x][z, x, x, y] mod γ5(H). Expansion of [yz, x, x, yz] = 1 gives
[z, x, x, y][y, x, x, z] ≡ 1 mod γ5(H), which further implies [z, y, x, x] ≡ 1
mod γ5(H). Replacing z by [z, y], using the class restriction and relabeling
the variables, we get [x, y, y, z, z] = 1, hence [x, y, y] ∈ R2(G).

For x, y, z, w ∈ G we now have [[x, y, y], [z,w,w]] = [x, y, y, [z,w], w]2 =
[[x, y, y]2, [z,w], w] = 1 by Lemma 2, thus E2(G) is abelian. This implies
E2(G)2 = 1, hence we have (c).

Now assume (c). Then we have [x2, y, y] = [x, y, y]2[x, y, x, y] = 1,
hence (c) implies (a). �

As a consequence, the following properties of 2-Kappe groups are de-
rived:

Corollary 4. Let G be a 2-Kappe group.

(a) G has 2-central normal closures.

(b) G is metabelian and we have γ3(G)6 = γ4(G)2 = 1.

(c) Suppose that G is a free 2-Kappe group with two or more generators.

Then B(G) = L(G) = B(4).

Proof. (a) This follows from [9, Theorem 8] and from Theorem 3.
(b) Let x, y, z, w ∈ G. Since [x, y] ∈ R2(G), we get [[x, y], [z,w]] =

[x, y, z, w]2 by Lemma 2. Besides that, γ4(G) ≤ E2(G) by Lemma 1. Since
E2(G) is abelian, we deduce that γ4(G)2 = 1, hence G is metabelian. The
relation γ3(G)6 = 1 follows now similarly as in the proof of Corollary 3.

(c) By (a) and [3], G has 4-abelian normal closures, hence we get

[x4, y] = x−4(xy)4 = (x−1xy)4 = [x, y]4 = [x, y4],
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therefore G is 4-Bell and 4-Levi. Now, the construction in Example 1 also
works for p = 2, hence n = 4 is the smallest positive integer such that
Gn ≤ R2(G) and n ∈ B(G) (n ∈ L(G)). The rest of the proof now follows
along the lines of the proof of (c) in Corollary 3. �

Theorem 3 also facilitates the computation of the nilpotency class of
the free 2-Kappe group Gr of rank r:

Proof of Theorem 4. From Theorem 3 it follows that G2 is of class
≤ 3. Now let r > 2 and suppose that the class of Gk is ≤ k + 1 for k < r.
Let X be a generating set of the group Gr and consider the commutator
of the form c = [x1, x2, . . . , xr+2], where xi ∈ X. Using the induction
hypothesis and the identity [x, y, z, z] = 1, it suffices to consider the com-
mutator of the form c = [x1, x2, x1, x2, x3, . . . , xr+2], where x3, . . . , xr+2

are pairwise distinct and are not equal to x1 or x2. Since G2 is of class
≤ 3, we have c = 1, hence Gr is of class ≤ r + 1.

Suppose there exists an r > 1 such that Gr is nilpotent of class ≤ r.
By a result of Heineken [4], every 2-Kappe group would be nilpotent.
On the other hand, consider the group G = C2 � A, the restricted wreath
product of a cyclic group of order two and an infinite elementary abelian
2-group A. Clearly G is a metabelian group. Let B be the base group of
G, let b ∈ B and x ∈ G. Since x2 ∈ B, we have 1 = [b, x2] = bx2

b, hence
[b, x, x] = bx2−2x+1 = bx2

b = 1. This proves that B ≤ R2(G). As G/B

is a group of exponent 2, we deduce that G is a 2-Kappe group. But G

is not nilpotent, since the fact that A is infinite implies Z(G) = 1. This
contradiction shows that the class of Gr is r + 1 precisely. �

Note that Theorem 4 yields the existence of non-nilpotent 2-Kappe
groups, which is not the case for 2-central groups [9, Theorem 7]. The
situation is quite different for 3-Kappe groups.

Proof of Theorem 5. Since every group of exponent three is nilpo-
tent by Lemma 1, it follows from Lemma 4 that every 3-Kappe group is
locally nilpotent. Let G be any finitely generated 3-Kappe group. Then
G is nilpotent, hence it is polycyclic. By Corollary 2, G can be embedded
into a direct product of a finite 3-Kappe 3-group and a finitely generated 2-
Engel group. Therefore we may assume that G is a finite 3-Kappe 3-group.
Now, since G/R2(G) is a group of exponent 3, it follows from Lemma 1
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that G/R2(G) is 2-Engel, hence G satisfies the law [x, y, y, z, z] = 1. As G

does not contain involutions, G is nilpotent of class ≤ 6 by [5]. Using [4],
we conclude that every 3-Kappe group is nilpotent of class ≤ 6, hence (a)
is proved.

Let G = 〈a, b〉 be a 2-generator 3-Kappe group. We may assume that
γ6(G) = 1. Since every group of exponent three is 2-Engel by Lemma 1 (c),
the factor group G/R2(G) is nilpotent of class ≤ 2 by Lemma 1 (b), hence
G satisfies the law [x, y, z, w,w] = 1. Let x1, . . . , x5 ∈ {a, b}. Expanding
the identity [x1, x2, x3, x4x5, x4x5] = 1 and using the class restriction, we
obtain

[x1, x2, x3, x4, x5] = [x1, x2, x3, x5, x4]−1. (1)

Beside that, we also have

[x1, x2, x3, x4, x5] = [x2, x1, x3, x4, x5]−1. (2)

Now the equations (1) and (2) imply that in order to establish that the
class of G is ≤ 4, we only have to show that the commutator [a, b, a, b, a]
is trivial. To see this, we expand the commutator [ab, ba] in two ways to
obtain

[ab, ba] = [ab, a][ab, b][ab, b, a] = [a, b, b][a, b, a][a, b, b, a]

and

[ab, ba] = [a, ba][a, ba, b][b, ba] = [a, b][a, b, a][a, b, b][a, b, a, b][b, a].

As [a, b, a]−1 = [b, a, a][a,b] and [a, b, b]−1 = [b, a, b][a,b], this further gives

[a, b, b, a] = [b, a, a][a,b][b, a, b][a,b][b, a, a]−1[b, a, b]−1[a, b, a, b].

Because of the class restriction [b, a, a] commutes with [b, a, b]. Since we
have [b, a, a][a,b] = [b, a, a][b, a, a, [a, b]] and [b, a, b][a,b] = [b, a, b][b, a, b, [a, b]],
we get [a, b, b, a] = [a, b, a, b][b, a, a, [a, b]][b, a, b, [a, b]], hence [a, b, a, b] ≡
[a, b, b, a] mod γ5(G). This means that [a, b, a, b, a] = 1, which concludes
the proof. �

Example 2. The bounds for the nilpotency class in Theorem 5 are best
possible. The group constructed in Example 1 for p = 3 is a two-generator
metabelian 3-Kappe group of class 4 precisely. To obtain a 3-Kappe group
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of class 6, one can use the Nilpotent Quotient Algorithm [17] implemented
in GAP [20]. Starting with the free group F of rank three, we use the
Nilpotent Quotient Algorithm to compute a consistent polycyclic presen-
tation of the factor group H = F/γ7(F ). In order to obtain a quotient
group of H which satisfies the identical relation [x3, y, y] = 1, we use a
result of Higman [6] which says that a finitely generated nilpotent group
of class ≤ c given by a polycyclic presentation with generating sequence
g1, . . . , gr satisfies an identity w(x1, . . . , xk) = 1 if w(h1, . . . , hk) = 1 for all
normal words h1, . . . , hk for which the sum of weights in given generators
is at most c. This enables us to enforce the identity [x3, y, y] = 1 on the
group H by simply adding a certain finite set of instances of this identity
to the presentation of H (this procedure is also a part of the Nilpotent
Quotient Algorithm). The resulting quotient group is a 3-Kappe group of
class 6 with derived length 3.

Corollary 5.

(a) A group G is 3-Kappe if and only if 〈x, y〉 is nilpotent of class ≤ 4 and

[x, y, y]3 = 1 for any x, y ∈ G.

(b) Let G be a free 3-Kappe group with two or more generators. Then

B(G) = L(G) = B(9).

(c) Every 3-Kappe group has 3-central normal closures.

Proof. As every 2-generator 3-Kappe group is metabelian and nilpo-
tent of class ≤ 4, (a) and (b) follow directly from Theorem 2 and Corol-
lary 3.

Let G be a 3-Kappe group and let x, y, z, w ∈ G. By means of expan-
sion in the free nilpotent group of class 6 and rank 4, we obtain

[xy, xz, xw, x] = c−1
1 c2c3c

−1
4 c−1

5 c−1
6 c7c8,

where c1 = [x, z, 3x], c2 = [x, y, 3x], c3 = [x, z, x,w, 2x], c4 = [x, z, 2x,w, x],
c5 = [x, y, z, 3x], c6 = [x, y, x,w, 2x], c7 = [x, y, x, z, 2x], c8 = [x, y, 2x,w, x].
As 〈x, y〉 and 〈x, z〉 are of class ≤ 4, we have c1 = c2 = 1. By Lemma 1,
G satisfies the law [x1, x2, x3, x4, x5, x5] = 1, hence c3 = c5 = c6 = c7 = 1.
Consider now the identity [x, y, x, x, xw, xw] = 1. Expanding and using
the class restriction, we conclude that c8 = 1, and consequently c4 = 1.
This yields that G satisfies the law [xy, xz, xw, x] = 1. Using Theorem 4.3
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of [15], we see that aG is nilpotent of class ≤ 3 for any a ∈ G. Observing
(a), we get [ax, a]3 = [a, x, a]3 = 1 for any x, a ∈ G, hence γ2(aG)3 = 1. It
follows from [9, Theorem 9] that aG is 3-central for any a ∈ G, hence the
result follows. �

In view of Corollaries 3, 4 and 5, it seems appropriate to ask whether
every (metabelian) n-Kappe group has n-central normal closures. The
next example shows that this is not true for metabelian 4-Kappe groups.

Example 3. Let D be a group with commuting generators x, y1, y2,
z1, z2, z3, w1, . . . w4, v1, . . . , v5 which satisfy the following additional re-
lations: y4

i = vi+1vi+2 for i = 1, 2, z2
i = vivi+1vi+2 for i = 1, 2, 3 and

w2
i = v2

j = 1 for i = 1, . . . , 4 and j = 1, . . . , 5. Let A = [D]〈a〉 be the
semidirect product of D with the infinite cyclic group 〈a〉 where a induces
the following automorphism on D: [x, a] = y2, [yi, a] = zi+1, [zi, a] = wi+1,
[wi, a] = vi+1 and [vi, a] = 1. Let G = [A]〈b〉, where b is an element of
infinite order acting on A in the following way: [a, b] = x, [x, b] = y1,
[yi, b] = zi, [zi, b] = wi, [wi, b] = vi and [vi, b] = 1. Clearly, G = 〈a, b〉
is metabelian and nilpotent of class 6. It is lengthy to prove that G is
a 4-Kappe group; we only give an outline of this verification. First of
all, note that vi ∈ Z(G) for i = 1, . . . , 5 and wi ∈ γ5(G) ≤ Z2(G) for
i = 1, . . . , 4. This also implies z2

i ∈ Z(G) for i = 1, 2, 3. For g, h ∈ G

we obtain [y2
i , g, h] = [yi, g, h]2 ∈ γ5(G)2 = 1, hence y2

1, y
2
2 ∈ Z2(G). In

particular, we have (G′)2 ≤ R2(G). Now, if g is an arbitrary element of G,
then a repeated use of Lemma 3 (e) gives g4 = a4mb4nc2

1c2, where m and n

are integers, c1 ∈ G′ and c2 ∈ γ5(G). Hence it suffices to show that a4 and
b4 are 2-Engel elements. Using Lemma 3, we conclude that this reduces to
proving that the commutators [a4, b, b], [a4, b, a], [b4, a, a] and [b4, a, b] are
trivial. This follows readily from the presentation of G, hence G is a 4-
Kappe group. On the other hand, we have [[a, b]4, a] = [a, b, a]4 = y4

2 �= 1,
hence aG is not 4-central.

We conclude this paper by some remarks on 4-Kappe groups:

Remark. Since every 2-generator metabelian group of exponent four
is nilpotent of class ≤ 4, it follows in particular that every metabelian
4-Kappe group is 6-Engel. Observing Corollary 1 of [9], we conclude that
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every normal closure of an element of a metabelian 4-Kappe group is nilpo-
tent of class ≤ 5. In fact, this bound is sharp as Example 3 shows; namely,
we have [ab, 4a] �= 1, hence the class of aG is 5 precisely. On the other hand,
there exists a 4-Kappe group with derived length 3 which is not a Fitting
group. The appropriate example can already be found in [18, Part 2, p. 4]
and will be briefly restated here. Consider the group G = (C2 � A) � C2,
where C2 is the cyclic group of order two and A is an infinite elementary
abelian 2-group. Following the lines of the second part of the proof of
Theorem 4, we conclude that G is a 4-Kappe group. On the other hand,
there is an element x ∈ G such that xG is not nilpotent of any class [18].

Remark. By Lemma 4, every 4-Kappe group is locally nilpotent. Thus
it is possible to obtain the polycyclic presentation of the free 2-generator
4-Kappe group G with the help of the Nilpotent Quotient Algorithm [17].
The group G is of class 8 with derived length 3; the construction is similar
to that from Example 2. It can be seen from the presentation of G that
n = 16 is the smallest positive integer greater than 1 such that G is n-Bell
and n-Levi (note that the group G constructed in Example 3 is also 16-Bell
and 16-Levi and it is not n-Bell (n-Levi) for any 1 < n < 16). As above,
we conclude that B(G) = L(G) = B(16).
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