Some groups with \boldsymbol{n}-central normal closures

By PRIMOŽ MORAVEC (Ljubljana)

Abstract

A group is said to be an n-Kappe group if it satisfies the law $\left[x^{n}, y, y\right]=1$. We describe the structural similarities between n-central groups and n-Kappe groups. In particular, we characterize 2 -Kappe, 3 -Kappe and metabelian p-Kappe groups. We show that in each of these three cases, these groups are closely related to groups with n-central normal closures.

1. Introduction

Given an integer n, a group G is said to be n-central if the factor group $G / Z(G)$ is a group of exponent n. The study of n-central groups was introduced in [3] and it is also the subject of [9] and [13]. Note that the variety of n-central groups is determined by the semigroup law $x^{n} y=$ $y x^{n}$, which is equivalent to another semigroup law $(x y)^{n}=(y x)^{n}$. The consideration of semigroups satisfying such conditions is the topic of [14].

For a group G define the set of right 2-Engel elements by $R_{2}(G)=\{a \in$ $G:[a, x, x]=1$ for every $x \in G\}$. A well-known result of W. Kappe [10] says that $R_{2}(G)$ is always a characteristic subgroup of G. Thus we define a group G to be an n-Kappe group if $G / R_{2}(G)$ is a group of exponent n. These groups arise naturally in connection with n-Bell groups (a group is said to be n-Bell if it satisfies the identity $\left[x^{n}, y\right]=\left[x, y^{n}\right]$). For instance,

Mathematics Subject Classification: 20F45, 20F50.

Key words and phrases: n-central groups, n-Kappe groups, normal closures.
This work was supported by the Ministry of Education, Science and Sport of Slovenia. The author is most indebted to the referees for many valuable suggestions.
it is shown in [1] that every n-Bell group is $n(n-1)$-Kappe and that every finite n-Bell group is isomorphic to $A \times B \times C$, where A is an n-Kappe group, B is an $(n-1)$-Kappe group and C is a 2 -Engel group.

The main purpose of this paper is the investigation of structural similarities between n-central and n-Kappe groups. We use the results of [3], [9] and [13] as guidelines for dealing with the question of n-Kappe groups for special values of n and for special classes of groups. In particular, we are mostly concerned with soluble n-Kappe groups. It is proved in [13] that for every integer n there is an integer $m>1$ depending only on n such that every locally soluble n-central group is m-abelian (a group is said to be m-abelian when it satisfies the law $(x y)^{m}=x^{m} y^{m}$). Since m-abelian groups are closely related to m-Bell groups [1], the following result is not unexpected.

Theorem 1. Let G be a locally soluble n-Kappe group. Then there exists an integer $m=f(n)>1$ such that G is m-Bell and m-Levi group.

Recall that a group is said to be m-Levi [7], if it satisfies the law $\left[x^{m}, y\right]=[x, y]^{m}$. Note also that the proof of Theorem 1 depends on the solution of the restricted Burnside problem [21], [22]. In the case of metabelian groups, we prove that every metabelian n-Kappe group is $2 n^{2}$ Bell and $2 n^{2}$-Levi; moreover, when n is odd, we can replace $2 n^{2}$ by n^{2}. It is also shown by an example that this result is best possible at least in the case when n is an odd prime.

In [9], there is a characterization of metabelian p-central p-groups, which is extended to a characterization of metabelian p-central groups in [13]. The corresponding result for metabelian p-Kappe groups is the following.

Theorem 2. Let p be an odd prime and let G be a metabelian group. The following conditions are equivalent.
(a) G is a p-Kappe group.
(b) $\left[x,{ }_{p+1} y\right]=\left[x,{ }_{p} y, x\right]=[x, y, y]^{p}=1$ for any $x, y \in G$.
(c) G is nilpotent of class $\leq p+1$ and $E_{2}(G)^{p}=1$.

Here we use the notation $E_{n}(G)=\langle[x, n y]: x, y \in G\rangle$, where the commutator $\left[x,{ }_{n} y\right]$ is defined inductively by $[x, 0 y]=x$ and $\left[x,{ }_{n+1} y\right]=$
$[[x, n y], y]$ for $n \geq 0$. The crucial step in proving this is a classification of polycyclic n-Kappe groups as those groups which can be embedded in a direct product of a finite soluble n-Kappe group and a finitely generated torsion-free group of class ≤ 2. This enables the reduction of the problem to the consideration of p-groups. Consequently, we prove that every metabelian p-Kappe group G has p-central normal closures. By this we mean that the normal closure a^{G} of element a in G is p-central for every $a \in G$. The converse is not true in general; the group W constructed in Example 1 of [9] is a metabelian group of exponent p^{2} with p-central normal closures, yet it is not nilpotent.

Surprisingly, the case $p=2$ is essentialy different from the case of p-central groups. We prove that every 2 -Kappe group is metabelian, yet there are 2-Kappe groups which are not nilpotent. Nevertheless, we obtain the following characterization of 2-Kappe groups.

Theorem 3. Let G be a group. The following statements are equivalent.
(a) G is a 2-Kappe group.
(b) $[x, y, y, y]=[x, y, y, x]=[x, y, y]^{2}=1$ for any $x, y \in G$.
(c) Every 2-generator subgroup of G is nilpotent of class ≤ 3 and $E_{2}(G)^{2}=1$.
As a direct consequence we show that every 2-Kappe group has 2 central normal closures. On the other hand, there are two-generator groups of class 4 with 2 -central normal closures, hence the converse does not hold in general. Beside that, we compute the nilpotency classes of free r-generator 2 -Kappe groups. The result is as follows.

Theorem 4. Let $r>1$ and let G_{r} be the free r-generator 2-Kappe group. Then G_{r} is nilpotent of class $r+1$.

In [9] it is proved that every 3 -central group is nilpotent of class ≤ 4; in fact, every 3 -Bell group is also nilpotent of class ≤ 4 by [8]. Turning our attention to 3 -Kappe groups, we obtain the following result.

Theorem 5. Let G be a 3 -Kappe group. Then we have:
(a) G is nilpotent of class ≤ 6.
(b) Every two-generator subgroup of G is nilpotent of class ≤ 4.

The bounds for the nilpotency classes in Theorem 5 are best possible, as calculations using the Nilpotent Quotient Algorithm [17] show. With the help of this result, we are able to obtain a characterization of 3-Kappe groups which yields that every 3 -Kappe group has 3 -central normal closures. This raises a question whether every n-Kappe group has n-central normal closures. We show that this is not true in general, since there exists a metabelian 4-Kappe group $G=\langle a, b\rangle$, where a^{G} is not 4-central. Moreover, there is a 4 -Kappe group with derived length 3 which contains a non-nilpotent normal closure.

In [7], the following sets were the objects of investigation:

$$
\begin{aligned}
& \mathcal{E}(G)=\left\{n \in \mathbb{Z}:(x y)^{n}=x^{n} y^{n} \text { for all } x, y \in G\right\}, \\
& \mathcal{B}(G)=\left\{n \in \mathbb{Z}:\left[x^{n}, y\right]=\left[x, y^{n}\right] \text { for all } x, y \in G\right\}, \\
& \mathcal{L}(G)=\left\{n \in \mathbb{Z}:\left[x^{n}, y\right]=[x, y]^{n} \text { for all } x, y \in G\right\} .
\end{aligned}
$$

These sets are semigroups under multiplication and they always contain zero. The main result of [7] is an arithmetic characterization of the sets $\mathcal{E}(G), \mathcal{B}(G)$ and $\mathcal{L}(G)$. It is shown there that each of these sets always forms what is called a Levi system, which is, roughly speaking, a union of idempotent residue classes modulo a certain integer m, which depends on G. Using this information, we determine $\mathcal{B}(G)$ and $\mathcal{L}(G)$ where G is the free 2 -Kappe, free 3 -Kappe, free 4 -Kappe or free metabelian p-Kappe group, respectively. It is interesting to note that these sets coincide with $\mathcal{E}(G)$, where G is the free 2 -central, free 3 -central, free 4 -central or free metabelian p-central group, respectively; see [3] and [13].

The notation is mainly taken from [19]. The standard commutator identities [18, Part 1, Section 2.1] will be used without further reference.

2. Proofs of results

At the beginning we state some well-known results which we use throughout the paper. The first lemma is about 2-Engel groups; it was proved by F. W. Levi [11]. Recall that a group is said to be n-Engel if it satisfies the law $\left[x,{ }_{n} y\right]=1$.

Lemma 1 ([11]).
(a) If G is a 2-Engel group, then $\gamma_{3}(G)^{3}=\gamma_{4}(G)=1$.
(b) Every 2-generator 2-Engel group is nilpotent of class ≤ 2.
(c) Every group of exponent three is 2-Engel.

The next result collects some facts about right 2-Engel elements of a given group.

Lemma 2. Let G be any group, $x, y, z \in G$ and $a \in R_{2}(G)$.
(a) The group a^{G} is abelian.
(b) $[a,[x, y]]=[a, x, y]^{2}$.
(c) $[a, x]^{r s}=\left[a^{r}, x^{s}\right]$ for all integers r and s.
(d) $[a, x, y, z]^{2}=1$, hence $a^{2} \in Z_{3}(G)$.

Proof. The assertions (a) and (b) are proved in [10] and (c) follows directly from (a). The identity $[a, x, y, z]^{2}=1$ is proved in $[18$, Part 2 , p. 43].

The following lemma facilitates computations in metabelian groups. We will use it without any further reference.

Lemma 3 ([9]). Let G be a metabelian group, $x, y, z \in G$ and $c, d \in G^{\prime}$. Then we have:
(a) $[c, x, y]=[c, y, x]$.
(b) $[x, y, z]=[y, x, z]^{-1}$.
(c) $[c d, x]=[c, x][d, x]$.
(d) $\left[x, y^{n}\right]=\prod_{1 \leq i \leq n}\left[x,{ }_{i} y\right]^{\binom{n}{i}}$.
(e) $\left(x y^{-1}\right)^{n}=x^{n} \cdot \prod_{0<i+j<n}\left[x,{ }_{i} y,{ }_{j} x\right]^{\binom{n}{i+j+1}} \cdot y^{-n}$.

A group G is said to be an Engel group when for every $x, y \in G$ there exists a nonnegative integer $n=n(x, y)$ such that $\left[x,{ }_{n} y\right]=1$. The next result is elementary:

Lemma 4. Let G be a group. If the factor group $G / R_{2}(G)$ is locally nilpotent, then G is locally nilpotent.

Proof. Since $G / R_{2}(G)$ is locally nilpotent, it is also an Engel group, hence G is an Engel group. Beside that, the group G is (2-Engel)-by(locally nilpotent), hence it is locally soluble and therefore locally nilpotent by a result of Gruenberg; see [18, Part 2, p. 60].

Now we are in the position to prove Theorem 1.
Proof of Theorem 1. Clearly we may assume that G is a twogenerator soluble n-Kappe group. For any $x \in G$ we have $x^{n} \in R_{2}(G)$, hence $x^{2 n} \in Z_{3}(G)$ by Lemma 2. This implies that $G / Z_{3}(G)$ is a finitely generated soluble group of exponent $2 n$, therefore $\left|G: Z_{3}(G)\right|<\infty$. By a theorem of Baer [19, 14.5.1], $\gamma_{4}(G)$ is a finite group of exponent bounded by a function of n. Since $G / E_{2}(G)$ is a 2-Engel group, we conclude that $\gamma_{4}(G) \leq E_{2}(G)$ by Lemma 1. For any $x, y \in G$ and for any integer l we have $\left[x^{l}, y, y\right] \equiv[x, y, y]^{l} \bmod \gamma_{4}(G)$, hence $[x, y, y]^{n} \in \gamma_{4}(G)$. We conclude that the abelian factor group $E_{2}(G) / \gamma_{4}(G)$ is of exponent n, hence $E_{2}(G)$ is a group of finite exponent k. By the solution of the restricted Burnside problem [21], [22], k depends on n only.

Now let $x, y \in G$. Expansion of $\left[x^{n}, x y, x y\right]=1$ implies $\left[x^{n}, y, x\right]=1$, hence $\left[x^{n}, y\right] \in Z(\langle x, y\rangle)$. By Lemma 2 (c) we obtain $\left[x^{n}, y\right] \equiv[x, y]^{n}$ $\bmod E_{2}(G)$, which yields $[x, y]^{n}=\left[x^{n}, y\right] e$ for some $e \in E_{2}(G)$. This gives $[x, y]^{n k}=\left[x^{n}, y\right]^{k} e^{k}=\left[x^{n}, y\right]^{k}=\left[x^{n k}, y\right]$. By symmetry we have $[x, y]^{n k}=\left[x, y^{n k}\right]$, hence G is an $(n k)$-Bell group and also an $(n k)$-Levi group.

Note that the proof of Theorem 1 gives a very crude explicit bound for m such that every soluble n-Kappe group is m-Bell and m-Levi. We can substantially improve this bound at least in the case of metabelian groups.

Lemma 5. Every metabelian n-Kappe group G is also a $2 n^{2}$-Levi group and a $2 n^{2}$-Bell group. Furthermore, if n is odd, then G is also n^{2}-Levi and $n^{2}-$ Bell.

Proof. Let $x, y \in G$. As G is metabelian, we get $1=\left[[x, y]^{n}, y, y\right]=$ $[x, y, y, y]^{n}$, hence $\exp E_{3}(G)$ divides n. This yields

$$
1=\left[x, y^{n}, y\right]^{n}=\prod_{i=1}^{n}\left[x,{ }_{i+1} y\right]^{n\binom{n}{i}}=[x, y, y]^{n^{2}}
$$

hence $\exp E_{2}(G) \mid n^{2}$. As $\left[x, y^{n}\right] \in Z(\langle x, y\rangle)$, we obtain

$$
\left[x, y^{2 n^{2}}\right]=\left[x, y^{n}\right]^{2 n}=\prod_{i=1}^{n}\left[x,{ }_{i} y\right]^{2 n\binom{n}{i}}=[x, y]^{2 n^{2}}=\left[x^{2 n^{2}}, y\right]
$$

therefore G is $2 n^{2}$-Bell and $2 n^{2}$-Levi. When n is odd, it divides $\binom{n}{2}$, hence a similar manipulation as above gives $\left[x, y^{n^{2}}\right]=[x, y]^{n^{2}}=\left[x^{n^{2}}, y\right]$, which proves the second part.

The following observation is of significant importance for our next results:

Proposition 1. Let G be a finitely generated soluble n-Kappe group. Then G is an extension of a periodic soluble n-Kappe group by a finitely generated torsion-free group of class ≤ 2.

Proof. As in the proof of Theorem 1, we conclude that $\left|\gamma_{4}(G)\right|<\infty$, hence the elements of finite order form a characteristic subgroup T of the group G. Since $\exp E_{2}(G)<\infty$, the factor group G / T is a torsion-free 2-Engel group. But we also have $\gamma_{3}(G / T)^{3}=1$ by Lemma 1 , hence G / T is of class ≤ 2. This proves the result.

It is easily seen that every torsion-free locally soluble n-central group is abelian [3]. The situation is similar for n-Kappe groups. More precisely, we have:

Corollary 1. Every locally soluble torsion-free n-Kappe group is nilpotent of class ≤ 2.

Corollary 2. Let G be a polycyclic group. Then G is an n-Kappe group if and only if it is isomorphic to a subgroup of a direct product of a finite soluble n-Kappe group and a finitely generated torsion-free group of class ≤ 2.

Proof. Let G be a polycyclic n-Kappe group and let T be its torsion subgroup. By Corollary 1, we may assume that $T \neq 1$. Since T is finitely generated, it is finite. The well-known result of Hirsch [19, 5.4.17] says that G is residually finite, so for every non-trivial element a of T there exists a normal subgroup $N_{a} \triangleleft G$ of finite index such that $a \notin N_{a}$. Let $N=\bigcap_{a \in T \backslash\{1\}} N_{a}$. Clearly, $|G: N|<\infty$ and $N \cap T=1$. Hence G can
be naturally embedded into $(G / N) \times(G / T)$; here G / N is a finite soluble n-Kappe group, whereas G / T is a finitely generated torsion-free group of class ≤ 2 by Proposition 1. The converse statement is obvious.

This result is particularly useful in the situation when G is a finitely generated nilpotent p-Kappe group. In this case, G can be naturally embedded into a direct product of a finite p-Kappe p-group and a finitely generated 2 -Engel group. As a consequence, we are able to obtain a characterization of metabelian p-Kappe groups given by Theorem 2.

Proof of Theorem 2. Assume G is a metabelian p-Kappe group, let $x, y \in G$ and put $H=\langle x, y\rangle$. The factor group $H / R_{2}(H)$ is a metabelian two-generator group of exponent p. By a result of Meier-Wunderli [12], $H / R_{2}(H)$ is nilpotent of class $\leq p-1$, hence the group H satisfies the identity of the form $\left[x_{1}, \ldots, x_{p}, x_{p+1}, x_{p+1}\right]=1$, where $x_{i} \in H$. In particular, G is $(p+1)$-Engel and also satisfies the identity $\left[x,{ }_{p} y, x\right]=1$. Now we have $\left.1=\left[y, x^{p}, x\right]=\prod_{i=1}^{p}\left[y,{ }_{i+1} x\right]^{(p}{ }_{i}^{p}\right)=[y, x, x]^{p}$, hence (a) implies (b).

Assume (b). Then we have $\left[y, x^{p}, y\right]=\prod_{i=1}^{p}\left[y,{ }_{i} x, y\right]^{\binom{p}{i}}=1$, hence (a) and (b) are equivalent.

Next we prove that (a) and (b) imply (c). Since G is metabelian, $[x, y, y]^{p}=1$ implies $E_{2}(G)^{p}=1$. To prove that G is nilpotent of class $\leq p+1$, we may obviously assume that G is finitely generated. By Lemma 4 and a result of Meier-Wunderli [12], G is nilpotent, hence it is also polycyclic. By Corollary 2, G is isomorphic to a subgroup of a direct product of a finite p-Kappe p-group and a finitely generated 2 -Engel group. Therefore we may restrict ourselves without loss of generality to the case when G is a finite p-Kappe p-group. As G satisfies any two-variable identity of the form $\left[y_{1}, \ldots, y_{p}, y, y\right]=1$, where $y_{i} \in\{x, y\}$, it follows that every two-generator subgroup of the group G is of class $\leq p+1$. In particular, G satisfies the identity $[x, y, y, y, p-2 x]=1$. By the result of Gupta and Newman [2], the factor group $\gamma_{p+2}(G) / \gamma_{p+3}(G)$ has exponent e dividing $2(p+2)(p-2)$!. Since e is prime to p, we have $\gamma_{p+2}(G)=\gamma_{p+3}(G)$, hence G is nilpotent of class $\leq p+1$.

As (c) clearly implies (b), the theorem is proved.
We have proved that for an odd prime p every metabelian p-Kappe group is nilpotent of class $\leq p+1$. We will show that this bound for
the nilpotency class is best possible. Before embarking on an appropriate example, we briefly recall the notion of a polycyclic presentation of a finitely generated nilpotent group. This presentation is given by a finite number of generators g_{1}, \ldots, g_{r} and relations of the form

$$
\begin{gathered}
g_{i}^{m_{i}}=w_{i i}\left(g_{i+1}, \ldots, g_{r}\right) \quad \text { for } i \in I, \\
{\left[g_{j}, g_{i}\right]=w_{i j}\left(g_{j+1}, \ldots, g_{r}\right) \quad \text { for } 1 \leq i<j \leq r .}
\end{gathered}
$$

Here m_{i} are positive integers, $w_{i j}\left(g_{k}, \ldots, g_{r}\right)$ are group words in the generators g_{k}, \ldots, g_{r} and I is a (possibly empty) set of indices. It is straightforward to see that every group with this kind of presentation is nilpotent. Conversely, let G be a finitely generated nilpotent group. By refining the lower central series of G one can obtain a normal series $G=G_{1}>G_{2}>$ $\cdots>G_{r+1}=1$ with cyclic factors. Such a polycyclic series gives a rise to a sequence of generators of G by choosing a generator g_{i} for each cyclic factor G_{i} / G_{i+1}. Let I be the set of all indices i such that G_{i} / G_{i+1} is finite. Then G has a presentation of the above form. In a group given by a polycyclic presentation each element in the group can be written as a normal word $g_{1}^{e_{1}} \cdots g_{r}^{e_{r}}$ with $e_{i} \in \mathbb{Z}$ and $0 \leq e_{i}<m_{i}$ for $i \in I$. In general, this presentation is not unique. A polycyclic presentation with the property that the normal form of each element is uniquely determined is called consistent.

Example 1. Let p be any odd prime, let F be the free group of rank two and consider the group $G=F / F^{\prime \prime} \gamma_{3}(F)^{p} \gamma_{p+2}(F)$. The group G is metabelian of class $p+1$ and $\gamma_{3}(G)^{p}=1$. By Theorem $2, G$ is a twogenerator p-Kappe group. It is not difficult to see that the group G has a consistent polycyclic presentation with generators a, b, x and $x_{i j}$, where $i, j \geq 0, i+j \in\{1 \ldots, p-1\}$, and the relations are $[a, b]=x,[x, a]=x_{10}$, $[x, b]=x_{01},\left[x_{i j}, a\right]=x_{i+1, j}$ and $\left[x_{i j}, b\right]=x_{i, j+1}$ for $i+j<p-1,\left[x_{i j}, a\right]=$ $\left[x_{i j}, b\right]=1$ for $i+j=p-1,\left[x_{i j}, x_{k l}\right]=\left[x_{i j}, x\right]=1$ and $x_{i j}^{p}=1$; here $x_{i j}=\left[a, b,{ }_{i} a,{ }_{j} b\right]$. By Lemma $5, G$ is p^{2}-Bell and p^{2}-Levi.

Let $k>1$ be the smallest integer such that G is a k-Levi group. Since G is metabelian, we have

$$
[a, b]^{k}=\left[a^{k}, b\right]=\prod_{i=1}^{k}\left[a, b,{ }_{i-1} a\right]^{\binom{k}{i}}=[a, b]^{k} \prod_{i=1}^{k-1}\left[a, b,{ }_{i} a\right]^{\binom{k}{i+1}} .
$$

Suppose $k \leq p$ and let e_{i} be an integer between 0 and $p-1$ such that $e_{i}=-\binom{k}{i+1} \bmod p$. Then the above equation yields

$$
x_{k-1,0}=\prod_{i=1}^{k-2} x_{i 0}^{e_{i}}
$$

Since the left and the right side of this equation are written in the normal form, this is clearly impossible because of the consistency of the presentation. Hence $k>p$, which together with the class restriction yields

$$
\prod_{i=1}^{p-1} x_{i 0}^{\binom{k}{i+1}}=1
$$

Now the consistency of the presentation implies that p divides $\binom{k}{i+1}$ for every $i=1, \ldots, p-1$. The smallest possible value for k is p^{2}, hence G is not n-Levi for any $1<n<p^{2}$.

Using a similar argument, we can prove that $\left[a^{n}, b\right] \neq\left[a, b^{n}\right]$ for any $1<n<p^{2}$, hence G is not n-Bell for any $1<n<p^{2}$.

The following definition is taken from [7]: Let $q_{1}, q_{2}, \ldots, q_{t}$ be integers, $q_{i}>1$ and $\operatorname{gcd}\left(q_{i}, q_{j}\right)=1$ for $i \neq j$. Let $B\left(q_{1}, q_{2}, \ldots, q_{t}\right)$ be the set of integers which is the union of 2^{t} residue classes modulo q_{i} satisfying each a system of congruences $m \equiv \delta_{i} \bmod q_{i}$, where $i=1, \ldots, t$ and $\delta_{i} \in\{0,1\}$. It is proved in [7] that each of the sets $\mathcal{E}(G), \mathcal{B}(G)$ and $\mathcal{L}(G)$ is equal either to $\mathbb{Z},\{0,1\}$ or to some $B\left(q_{1}, q_{2}, \ldots, q_{t}\right)$ with $q_{i}>2$. This enables us to formulate the following result:

Corollary 3. Let p be an odd prime. Then we have:
(a) If G is a metabelian p-Kappe group, then G has p-central normal closures.
(b) If G is a metabelian p-Kappe group, then $\gamma_{3}(G)^{3 p}=\gamma_{4}(G)^{p}=1$.
(c) Let G be a free metabelian p-Kappe group with two or more generators. Then $\mathcal{B}(G)=\mathcal{L}(G)=B\left(p^{2}\right)$.

Proof. (a) Since the class of metabelian groups with p-central normal closures forms a finitely based variety of groups (see [15] and [16, Theorem 36.11]), we may assume that G is finitely generated, hence it is
polycyclic. By Corollary 2, G is isomorphic to a subgroup of $P \times N$, where P is a finite p-Kappe p-group and N is a finitely generated 2 -Engel group. Therefore it suffices to show that both P and N have p-central normal closures. As for the group P, this follows directly from [9, Theorem 14] and from Theorem 2. Since N is 2-Engel, it has abelian normal closures by Lemma 2 , thus we have the result.

To prove (b), observe that $G / E_{2}(G)$ is a 2-Engel group, which yields $\gamma_{3}\left(G / E_{2}(G)\right)^{3}=\gamma_{4}\left(G / E_{2}(G)\right)=1$ by Lemma 1 . Therefore we have $\gamma_{3}(G)^{3} \leq E_{2}(G)$ and $\gamma_{4}(G) \leq E_{2}(G)$, hence $\gamma_{3}(G)^{3 p}=\gamma_{4}(G)^{p}=1$ by Theorem 2.
(c) By Lemma 5, G is p^{2}-Bell and p^{2}-Levi. Now Example 1 shows that $n=p^{2}$ is the smallest positive integer such that $G^{n} \leq R_{2}(G)$ and $n \in \mathcal{B}(G)(n \in \mathcal{L}(G))$. By Corollary 1 of $[7]$, we have $k^{2} \equiv k \bmod p^{2}$ for every $k \in \mathcal{B}(G)(k \in \mathcal{L}(G))$. This congruence has two solutions, namely $k \equiv 0 \bmod p^{2}$ and $k \equiv 1 \bmod p^{2}$, which proves that $\mathcal{B}(G) \subseteq B\left(p^{2}\right)$ and $\mathcal{L}(G) \subseteq B\left(p^{2}\right)$.

Let t be an arbitrary integer. For $x, y \in G$ we have $\left[x^{p}, y\right] \in Z(\langle x, y\rangle)$, hence $\left[x^{p t}, y\right]=\left[x^{p}, y\right]^{t}$. Replacing x by x^{p}, we get $\left[x^{p^{2} t}, y\right]=\left[x^{p^{2}}, y\right]^{t}=$

$$
\left[x^{p^{2} t+1}, y\right]=\left[x^{p^{2} t}, y\right][x, y]=[x, y]^{p^{2} t+1}=\left[x, y^{p^{2} t+1}\right] .
$$

Thus we have proved that $B\left(p^{2}\right) \subseteq \mathcal{B}(G)$ and $B\left(p^{2}\right) \subseteq \mathcal{L}(G)$, as required.

Turning our attention to 2-Kappe groups, we first prove Theorem 3 which characterizes 2-Kappe groups in terms of certain Engel words:

Proof of Theorem 3. Suppose that G is a 2-Kappe group. Then $G / R_{2}(G)$ has exponent two and hence it is abelian. Thus G satisfies the law $[x, y, z, z]=1$. In particular, G is 3 -Engel, hence every 2 -generator subgroup is metabelian. Now we have $1=\left[y, x^{2}, x\right]=[y, x, x]^{2}$ and $1=$ $\left[x^{2}, y, y\right]=[x, y, y, x]$, hence (a) implies (b).

Assume G satisfies the laws $[x, y, y, y]=[x, y, y, x]=[x, y, y]^{2}=1$. Then every 2 -generator subgroup of G is nilpotent of class ≤ 3. We claim that $E_{2}(G) \leq R_{2}(G)$. For this, let $x, y, z \in G$. Since G is 3 -Engel, the subgroup $H=\langle x, y, z\rangle$ is nilpotent of class ≤ 5. Expanding the identity
$[z, x y, x y, x y]=1$ modulo $\gamma_{5}(H)$, we get
$[z, x, x, y][z, x, y, x][z, y, x, x][z, x, y, y][z, y, x, y][z, y, y, x] \equiv 1 \bmod \gamma_{5}(H)$.
Replacing x by x^{-1} in this equtation, we obtain

$$
[z, x, x, y]^{2}[z, x, y, x]^{2}[z, y, x, x]^{2} \equiv 1 \quad \bmod \gamma_{5}(H),
$$

hence $[z, x, y, x]^{2} \equiv 1 \bmod \gamma_{5}(H)$.
The Hall-Witt identity [18, Part 1, Section 2.1] gives $[z,[y, x, x]] \equiv$ $[z, y, x, x][z, x, y, x]^{-2}[z, x, x, y] \bmod \gamma_{5}(H)$, thus $[z,[y, x, x]] \equiv$ $[z, y, x, x][z, x, x, y] \bmod \gamma_{5}(H)$. From this we conclude that $[y, x, x, z] \equiv$ $[z, y, x, x][z, x, x, y] \bmod \gamma_{5}(H)$. Expansion of $[y z, x, x, y z]=1$ gives $[z, x, x, y][y, x, x, z] \equiv 1 \bmod \gamma_{5}(H)$, which further implies $[z, y, x, x] \equiv 1$ $\bmod \gamma_{5}(H)$. Replacing z by $[z, y]$, using the class restriction and relabeling the variables, we get $[x, y, y, z, z]=1$, hence $[x, y, y] \in R_{2}(G)$.

For $x, y, z, w \in G$ we now have $[[x, y, y],[z, w, w]]=[x, y, y,[z, w], w]^{2}=$ $\left[[x, y, y]^{2},[z, w], w\right]=1$ by Lemma 2, thus $E_{2}(G)$ is abelian. This implies $E_{2}(G)^{2}=1$, hence we have (c).

Now assume (c). Then we have $\left[x^{2}, y, y\right]=[x, y, y]^{2}[x, y, x, y]=1$, hence (c) implies (a).

As a consequence, the following properties of 2-Kappe groups are derived:

Corollary 4. Let G be a 2-Kappe group.
(a) G has 2-central normal closures.
(b) G is metabelian and we have $\gamma_{3}(G)^{6}=\gamma_{4}(G)^{2}=1$.
(c) Suppose that G is a free 2-Kappe group with two or more generators. Then $\mathcal{B}(G)=\mathcal{L}(G)=B(4)$.

Proof. (a) This follows from [9, Theorem 8] and from Theorem 3.
(b) Let $x, y, z, w \in G$. Since $[x, y] \in R_{2}(G)$, we get $[[x, y],[z, w]]=$ $[x, y, z, w]^{2}$ by Lemma 2. Besides that, $\gamma_{4}(G) \leq E_{2}(G)$ by Lemma 1 . Since $E_{2}(G)$ is abelian, we deduce that $\gamma_{4}(G)^{2}=1$, hence G is metabelian. The relation $\gamma_{3}(G)^{6}=1$ follows now similarly as in the proof of Corollary 3.
(c) By (a) and [3], G has 4-abelian normal closures, hence we get

$$
\left[x^{4}, y\right]=x^{-4}\left(x^{y}\right)^{4}=\left(x^{-1} x^{y}\right)^{4}=[x, y]^{4}=\left[x, y^{4}\right],
$$

therefore G is 4-Bell and 4-Levi. Now, the construction in Example 1 also works for $p=2$, hence $n=4$ is the smallest positive integer such that $G^{n} \leq R_{2}(G)$ and $n \in \mathcal{B}(G)(n \in \mathcal{L}(G))$. The rest of the proof now follows along the lines of the proof of (c) in Corollary 3.

Theorem 3 also facilitates the computation of the nilpotency class of the free 2-Kappe group G_{r} of rank r :

Proof of Theorem 4. From Theorem 3 it follows that G_{2} is of class ≤ 3. Now let $r>2$ and suppose that the class of G_{k} is $\leq k+1$ for $k<r$. Let X be a generating set of the group G_{r} and consider the commutator of the form $c=\left[x_{1}, x_{2}, \ldots, x_{r+2}\right]$, where $x_{i} \in X$. Using the induction hypothesis and the identity $[x, y, z, z]=1$, it suffices to consider the commutator of the form $c=\left[x_{1}, x_{2}, x_{1}, x_{2}, x_{3}, \ldots, x_{r+2}\right]$, where x_{3}, \ldots, x_{r+2} are pairwise distinct and are not equal to x_{1} or x_{2}. Since G_{2} is of class ≤ 3, we have $c=1$, hence G_{r} is of class $\leq r+1$.

Suppose there exists an $r>1$ such that G_{r} is nilpotent of class $\leq r$. By a result of Heineken [4], every 2-Kappe group would be nilpotent. On the other hand, consider the group $G=C_{2} \ A$, the restricted wreath product of a cyclic group of order two and an infinite elementary abelian 2 -group A. Clearly G is a metabelian group. Let B be the base group of G, let $b \in B$ and $x \in G$. Since $x^{2} \in B$, we have $1=\left[b, x^{2}\right]=b^{x^{2}} b$, hence $[b, x, x]=b^{x^{2}-2 x+1}=b^{x^{2}} b=1$. This proves that $B \leq R_{2}(G)$. As G / B is a group of exponent 2 , we deduce that G is a 2 -Kappe group. But G is not nilpotent, since the fact that A is infinite implies $Z(G)=1$. This contradiction shows that the class of G_{r} is $r+1$ precisely.

Note that Theorem 4 yields the existence of non-nilpotent 2-Kappe groups, which is not the case for 2 -central groups [9, Theorem 7]. The situation is quite different for 3-Kappe groups.

Proof of Theorem 5. Since every group of exponent three is nilpotent by Lemma 1, it follows from Lemma 4 that every 3-Kappe group is locally nilpotent. Let G be any finitely generated 3 -Kappe group. Then G is nilpotent, hence it is polycyclic. By Corollary 2, G can be embedded into a direct product of a finite 3 -Kappe 3 -group and a finitely generated 2 Engel group. Therefore we may assume that G is a finite 3 -Kappe 3 -group. Now, since $G / R_{2}(G)$ is a group of exponent 3 , it follows from Lemma 1
that $G / R_{2}(G)$ is 2-Engel, hence G satisfies the law $[x, y, y, z, z]=1$. As G does not contain involutions, G is nilpotent of class ≤ 6 by [5]. Using [4], we conclude that every 3 -Kappe group is nilpotent of class ≤ 6, hence (a) is proved.

Let $G=\langle a, b\rangle$ be a 2-generator 3-Kappe group. We may assume that $\gamma_{6}(G)=1$. Since every group of exponent three is 2 -Engel by Lemma 1 (c), the factor group $G / R_{2}(G)$ is nilpotent of class ≤ 2 by Lemma 1 (b), hence G satisfies the law $[x, y, z, w, w]=1$. Let $x_{1}, \ldots, x_{5} \in\{a, b\}$. Expanding the identity $\left[x_{1}, x_{2}, x_{3}, x_{4} x_{5}, x_{4} x_{5}\right]=1$ and using the class restriction, we obtain

$$
\begin{equation*}
\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right]=\left[x_{1}, x_{2}, x_{3}, x_{5}, x_{4}\right]^{-1} . \tag{1}
\end{equation*}
$$

Beside that, we also have

$$
\begin{equation*}
\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right]=\left[x_{2}, x_{1}, x_{3}, x_{4}, x_{5}\right]^{-1} . \tag{2}
\end{equation*}
$$

Now the equations (1) and (2) imply that in order to establish that the class of G is ≤ 4, we only have to show that the commutator $[a, b, a, b, a]$ is trivial. To see this, we expand the commutator $[a b, b a]$ in two ways to obtain

$$
[a b, b a]=[a b, a][a b, b][a b, b, a]=[a, b, b][a, b, a][a, b, b, a]
$$

and

$$
[a b, b a]=[a, b a][a, b a, b][b, b a]=[a, b][a, b, a][a, b, b][a, b, a, b][b, a] .
$$

As $[a, b, a]^{-1}=[b, a, a]^{[a, b]}$ and $[a, b, b]^{-1}=[b, a, b]^{[a, b]}$, this further gives

$$
[a, b, b, a]=[b, a, a]^{[a, b]}[b, a, b]^{[a, b]}[b, a, a]^{-1}[b, a, b]^{-1}[a, b, a, b] .
$$

Because of the class restriction $[b, a, a]$ commutes with $[b, a, b]$. Since we have $[b, a, a]^{[a, b]}=[b, a, a][b, a, a,[a, b]]$ and $[b, a, b]^{[a, b]}=[b, a, b][b, a, b,[a, b]]$, we get $[a, b, b, a]=[a, b, a, b][b, a, a,[a, b]][b, a, b,[a, b]]$, hence $[a, b, a, b] \equiv$ $[a, b, b, a] \bmod \gamma_{5}(G)$. This means that $[a, b, a, b, a]=1$, which concludes the proof.

Example 2. The bounds for the nilpotency class in Theorem 5 are best possible. The group constructed in Example 1 for $p=3$ is a two-generator metabelian 3 -Kappe group of class 4 precisely. To obtain a 3 -Kappe group
of class 6, one can use the Nilpotent Quotient Algorithm [17] implemented in GAP [20]. Starting with the free group F of rank three, we use the Nilpotent Quotient Algorithm to compute a consistent polycyclic presentation of the factor group $H=F / \gamma_{7}(F)$. In order to obtain a quotient group of H which satisfies the identical relation $\left[x^{3}, y, y\right]=1$, we use a result of Higman [6] which says that a finitely generated nilpotent group of class $\leq c$ given by a polycyclic presentation with generating sequence g_{1}, \ldots, g_{r} satisfies an identity $w\left(x_{1}, \ldots, x_{k}\right)=1$ if $w\left(h_{1}, \ldots, h_{k}\right)=1$ for all normal words h_{1}, \ldots, h_{k} for which the sum of weights in given generators is at most c. This enables us to enforce the identity $\left[x^{3}, y, y\right]=1$ on the group H by simply adding a certain finite set of instances of this identity to the presentation of H (this procedure is also a part of the Nilpotent Quotient Algorithm). The resulting quotient group is a 3-Kappe group of class 6 with derived length 3 .

Corollary 5.

(a) A group G is 3-Kappe if and only if $\langle x, y\rangle$ is nilpotent of class ≤ 4 and $[x, y, y]^{3}=1$ for any $x, y \in G$.
(b) Let G be a free 3-Kappe group with two or more generators. Then $\mathcal{B}(G)=\mathcal{L}(G)=B(9)$.
(c) Every 3-Kappe group has 3-central normal closures.

Proof. As every 2-generator 3-Kappe group is metabelian and nilpotent of class ≤ 4, (a) and (b) follow directly from Theorem 2 and Corollary 3.

Let G be a 3 -Kappe group and let $x, y, z, w \in G$. By means of expansion in the free nilpotent group of class 6 and rank 4, we obtain

$$
\left[x^{y}, x^{z}, x^{w}, x\right]=c_{1}^{-1} c_{2} c_{3} c_{4}^{-1} c_{5}^{-1} c_{6}^{-1} c_{7} c_{8}
$$

where $c_{1}=\left[x, z,{ }_{3} x\right], c_{2}=\left[x, y,{ }_{3} x\right], c_{3}=\left[x, z, x, w,{ }_{2} x\right], c_{4}=\left[x, z,{ }_{2} x, w, x\right]$, $c_{5}=\left[x, y, z,{ }_{3} x\right], c_{6}=\left[x, y, x, w,{ }_{2} x\right], c_{7}=\left[x, y, x, z,{ }_{2} x\right], c_{8}=\left[x, y,{ }_{2} x, w, x\right]$. As $\langle x, y\rangle$ and $\langle x, z\rangle$ are of class ≤ 4, we have $c_{1}=c_{2}=1$. By Lemma 1, G satisfies the law $\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{5}\right]=1$, hence $c_{3}=c_{5}=c_{6}=c_{7}=1$. Consider now the identity $[x, y, x, x, x w, x w]=1$. Expanding and using the class restriction, we conclude that $c_{8}=1$, and consequently $c_{4}=1$. This yields that G satisfies the law $\left[x^{y}, x^{z}, x^{w}, x\right]=1$. Using Theorem 4.3
of [15], we see that a^{G} is nilpotent of class ≤ 3 for any $a \in G$. Observing (a), we get $\left[a^{x}, a\right]^{3}=[a, x, a]^{3}=1$ for any $x, a \in G$, hence $\gamma_{2}\left(a^{G}\right)^{3}=1$. It follows from [9, Theorem 9] that a^{G} is 3 -central for any $a \in G$, hence the result follows.

In view of Corollaries 3,4 and 5 , it seems appropriate to ask whether every (metabelian) n-Kappe group has n-central normal closures. The next example shows that this is not true for metabelian 4-Kappe groups.

Example 3. Let D be a group with commuting generators x, y_{1}, y_{2}, $z_{1}, z_{2}, z_{3}, w_{1}, \ldots w_{4}, v_{1}, \ldots, v_{5}$ which satisfy the following additional relations: $y_{i}^{4}=v_{i+1} v_{i+2}$ for $i=1,2, z_{i}^{2}=v_{i} v_{i+1} v_{i+2}$ for $i=1,2,3$ and $w_{i}^{2}=v_{j}^{2}=1$ for $i=1, \ldots, 4$ and $j=1, \ldots, 5$. Let $A=[D]\langle a\rangle$ be the semidirect product of D with the infinite cyclic group $\langle a\rangle$ where a induces the following automorphism on $D:[x, a]=y_{2},\left[y_{i}, a\right]=z_{i+1},\left[z_{i}, a\right]=w_{i+1}$, $\left[w_{i}, a\right]=v_{i+1}$ and $\left[v_{i}, a\right]=1$. Let $G=[A]\langle b\rangle$, where b is an element of infinite order acting on A in the following way: $[a, b]=x,[x, b]=y_{1}$, $\left[y_{i}, b\right]=z_{i},\left[z_{i}, b\right]=w_{i},\left[w_{i}, b\right]=v_{i}$ and $\left[v_{i}, b\right]=1$. Clearly, $G=\langle a, b\rangle$ is metabelian and nilpotent of class 6. It is lengthy to prove that G is a 4-Kappe group; we only give an outline of this verification. First of all, note that $v_{i} \in Z(G)$ for $i=1, \ldots, 5$ and $w_{i} \in \gamma_{5}(G) \leq Z_{2}(G)$ for $i=1, \ldots, 4$. This also implies $z_{i}^{2} \in Z(G)$ for $i=1,2,3$. For $g, h \in G$ we obtain $\left[y_{i}^{2}, g, h\right]=\left[y_{i}, g, h\right]^{2} \in \gamma_{5}(G)^{2}=1$, hence $y_{1}^{2}, y_{2}^{2} \in Z_{2}(G)$. In particular, we have $\left(G^{\prime}\right)^{2} \leq R_{2}(G)$. Now, if g is an arbitrary element of G, then a repeated use of Lemma 3 (e) gives $g^{4}=a^{4 m} b^{4 n} c_{1}^{2} c_{2}$, where m and n are integers, $c_{1} \in G^{\prime}$ and $c_{2} \in \gamma_{5}(G)$. Hence it suffices to show that a^{4} and b^{4} are 2-Engel elements. Using Lemma 3, we conclude that this reduces to proving that the commutators $\left[a^{4}, b, b\right],\left[a^{4}, b, a\right],\left[b^{4}, a, a\right]$ and $\left[b^{4}, a, b\right]$ are trivial. This follows readily from the presentation of G, hence G is a 4 Kappe group. On the other hand, we have $\left[[a, b]^{4}, a\right]=[a, b, a]^{4}=y_{2}^{4} \neq 1$, hence a^{G} is not 4-central.

We conclude this paper by some remarks on 4-Kappe groups:
Remark. Since every 2-generator metabelian group of exponent four is nilpotent of class ≤ 4, it follows in particular that every metabelian 4 -Kappe group is 6 -Engel. Observing Corollary 1 of [9], we conclude that
every normal closure of an element of a metabelian 4-Kappe group is nilpotent of class ≤ 5. In fact, this bound is sharp as Example 3 shows; namely, we have $\left[a^{b},{ }_{4} a\right] \neq 1$, hence the class of a^{G} is 5 precisely. On the other hand, there exists a 4 -Kappe group with derived length 3 which is not a Fitting group. The appropriate example can already be found in [18, Part 2, p. 4] and will be briefly restated here. Consider the group $G=\left(C_{2} \imath A\right) \imath C_{2}$, where C_{2} is the cyclic group of order two and A is an infinite elementary abelian 2-group. Following the lines of the second part of the proof of Theorem 4, we conclude that G is a 4 -Kappe group. On the other hand, there is an element $x \in G$ such that x^{G} is not nilpotent of any class [18].

Remark. By Lemma 4, every 4-Kappe group is locally nilpotent. Thus it is possible to obtain the polycyclic presentation of the free 2 -generator 4-Kappe group G with the help of the Nilpotent Quotient Algorithm [17]. The group G is of class 8 with derived length 3 ; the construction is similar to that from Example 2. It can be seen from the presentation of G that $n=16$ is the smallest positive integer greater than 1 such that G is n-Bell and n-Levi (note that the group G constructed in Example 3 is also 16-Bell and 16 -Levi and it is not n-Bell (n-Levi) for any $1<n<16$). As above, we conclude that $\mathcal{B}(G)=\mathcal{L}(G)=B(16)$.

References

[1] R. Brandl and L.-C. Kappe, On n-Bell groups, Comm. Algebra 17 (1989), 787-807.
[2] N. D Gupta and M. F. Newman, On metabelian groups, J. Austral. Math. Soc. 6 (1966), 362-368.
[3] N. D. Gupta and A. H. Rhemtulla, A note on centre-by-finite-exponent varieties of groups, J. Austral. Math. Soc. 11 (1970), 33-36.
[4] H. Heineken, Über ein Levisches Nilpotenzkriterium, Arch. Math. 12 (1961), 176-178.
[5] H. Heineken, Bounds for the nilpotency class of a group, J. London Math. Soc. 37 (1962), 456-458.
[6] G. Higman, Some remarks on varieties of groups, Quart. J. Math. Oxford Ser. (2) 10 (1959), 165-178.
[7] L.-C. Kappe, On n-Levi groups, Arch. Math. 47 (1986), 198-210.
[8] L. C. Kappe and R. F. Morse, Groups with 3-abelian normal closures, Arch. Math. 51 (1988), 104-110.
[9] L.-C. Kappe and R. F. Morse, Levi-properties in metabelian groups, Contemp. Math. 109 (1990), 59-72.
[10] W. P. Kappe, Die A-Norm einer Gruppe, Illinois J. Math. 5 (1961), 187-197.
[11] F. W. Levi, Groups in which the commutator operation satisfies certain algebraic conditions, J. Indian Math. Soc. (N.S.) 6 (1942), 87-97.
[12] H. Meier-Wunderli, Metabelsche Gruppen, Comment. Math. Helv. 25 (1951), 1-10.
[13] P. Moravec, On power endomorphisms of n-central groups, (Submitted).
[14] P. Moravec, On n-central semigroups, Semigroup Forum 68 (2004), 477-487.
[15] R. F. Morse, Levi-properties generated by varieties, Contemp. Math. 169 (1994), 467-474.
[16] H. Neumann, Varieties of groups, Springer-Verlag, Berlin, 1967.
[17] W. Nickel, Computing nilpotent quotients of finitely presented groups, Geometric and computational perspectives on infinite groups, Vol. 25, Amer. Math. Soc. DIMACS Series, (G. Baumslag et al., eds.), DIMACS, New Brunswick, 1995, 175-191.
[18] D. J. S. Robinson, Finiteness conditions and generalized soluble groups, Part 1 \& 2, Springer-Verlag, New York - Berlin, 1972.
[19] D. J. S. Robinson, A Course in the Theory of Groups, 2nd edn, Springer-Verlag, New York, 1996.
[20] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.3, 2002, http://www.gap-system.org.
[21] E. I. Zelmanov, The solution of the restricted Burnside problem for groups of odd order, Izv. Math. USSR 36 (1991), 41-60.
[22] E. I. Zelmanov, The solution of the restricted Burnside problem for 2-groups, Mat. Sb. 182 (1991), 568-592.

PRIMOŽ MORAVEC
DEPARTMENT OF MATHEMATICS
INSTITUTE OF MATHEMATICS, PHYSICS AND MECHANICS
JADRANSKA 19, 1000 LJUBLJANA
SLOVENIA
E-mail: primoz.moravec@fmf.uni-lj.si
(Received February 19, 2004; revised December 3, 2004)

