Publ. Math. Debrecen

67/3-4 (2005), 419-421

A remark on a paper of L. Molnár

By JOSO VUKMAN (Maribor) and IRENA KOSI-ULBL (Maribor)

Abstract

The purpose of this note is to prove the following result: Let R be a 2 -torsion free semiprime ring and let $T: R \rightarrow R$ be an additive mapping, such that $T(x y x)=T(x) y x$ holds for all pairs $x, y \in R$. In this case T is a left centralizer.

Throughout this note R will represent an associative ring. A ring R is 2 -torsion free in case $2 x=0$ implies $x=0$ for any $x \in R$. An additive mapping $T: R \rightarrow R$ is called a left centralizer in case $T(x y)=T(x) y$ holds for all pairs $x, y \in R$. An additive mapping $T: R \rightarrow R$ is called left Jordan centralizer in case $T\left(x^{2}\right)=T(x) x$ holds for all $x \in R$. The definition of a right centralizer and a right Jordan centralizer should be self-explanatory. Obviously, any left centralizer is a left Jordan cenrtralizer. Zalar [2] has proved that any left Jordan centralizer on a 2 -torsion free semiprime ring is a left centralizer. Molnar [1] has proved the following result: Let R be a 2-torsion free prime ring and let $T: R \rightarrow R$ be an additive mapping. If $T(x y x)=T(x) y x$ holds for every $x, y \in R$, then T is a left centralizer.

It is our aim in this note to prove the result below, which generalizes Molnar's result we have just mentioned above.

[^0]Theorem. Let R be a 2 -torsion free semiprime ring and let $T: R \rightarrow R$ be an additive mapping. If $T(x y x)=T(x) y x$ holds for every $x, y \in R$, then T is a left centralizer.

Proof. The linearization of the relation

$$
\begin{equation*}
T(x y x)=T(x) y x, \quad x, y \in R \tag{1}
\end{equation*}
$$

gives

$$
T(x y z+z y x)=T(x) y z+T(z) y x, \quad x, y, z \in R .
$$

For $z=x^{2}$ the relation above gives

$$
\begin{equation*}
T\left(x y x^{2}+x^{2} y x\right)=T(x) y x^{2}+T\left(x^{2}\right) y x, \quad x, y \in R . \tag{2}
\end{equation*}
$$

On the other hand the substitution $x y+y x$ for y in the relation (1) gives

$$
\begin{equation*}
T\left(x^{2} y x+x y x^{2}\right)=T(x) y x^{2}+T(x) x y x, \quad x, y \in R . \tag{3}
\end{equation*}
$$

Subtracting (3) from (2), we arrive at

$$
\begin{equation*}
A(x) y x=0, \quad x, y \in R, \tag{4}
\end{equation*}
$$

where $A(x)$ stands for $T\left(x^{2}\right)-T(x) x$. It is our aim to prove that

$$
\begin{equation*}
A(x)=0, \quad x \in R . \tag{5}
\end{equation*}
$$

For this purpose we write in the relation (4) $x y A(x)$ for y, which gives $A(x) x y A(x) x=0, x, y \in R$, whence it follows

$$
\begin{equation*}
A(x) x=0, \quad x \in R, \tag{6}
\end{equation*}
$$

by semiprimeness of R. Multiplying the relation (4) from the left side by x and from the right side by $A(x)$, we obtain $x A(x) y x A(x)=0, x, y \in R$, which leads to

$$
\begin{equation*}
x A(x)=0, \quad x \in R . \tag{7}
\end{equation*}
$$

The linearization of the relation (6) gives

$$
A(x) y+B(x, y) x+A(y) x+B(x, y) y=0, \quad x, y \in R,
$$

where $B(x, y)$ denotes $T(x y+y x)-T(x) y-T(y) x$. Putting in the above relation $-x$ for x and comparing the relation so obtained with the above relation we arrive at

$$
A(x) y+B(x, y) x=0, \quad x, y \in R
$$

Right multiplication of the above relation by $A(x)$ gives because of (7) $A(x) y A(x)=0, x, y \in R$, whence it follows (5). We have therefore proved that $T\left(x^{2}\right)=T(x) x$ holds for all $x \in R$. In other words, T is a left Jordan centralizer. Now Proposition 1.4 in [2] completes the proof of the theorem.

References

[1] L. Molnár, On centralizers of an H^{*}-algebra, Publ. Math. Debrecen 46, 1-2 (1995), 89-95.
[2] B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolinae 32 (1991), 609-614.

JOSO VUKMAN
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF MARIBOR
PEF, KOROŠKA 160
2000 MARIBOR
SLOVENIA
E-mail: joso.vukman@uni-mb.si

IRENA KOSI-ULBL
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF MARIBOR
PEF, KOROŠKA 160
2000 MARIBOR
SLOVENIA
E-mail: irena.kosi@uni-mb.si
(Received April 19, 2004)

[^0]: Mathematics Subject Classification: 16E99.
 Key words and phrases: prime ring, semiprime ring, left (right) centralizer, left (right) Jordan centralizer.
 This research has been supported by the Research Council of Slovenia.

