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On p-nilpotency of finite groups with some c-supplemented
subgroups of prime power order

By YANGMING LI (Hangzhou), YANMING WANG (Guangzhou)
and HUAQUAN WEI (Guangzhou)

Abstract. A subgroup H of a group G is said to be c-supplemented in G
if there exists a subgroup K of G such that G = HK and H ∩ K is contained
in HG, the core in G of H . In this paper we give some sufficient conditions of
p-nilpotency of a finite group under the assumption that some subgroups of prime
square order of the group are c-supplemented. These are the duals of some recent
results, such as Wang’s [14] and Guo and Shum’s [9].

1. Introduction

Let G be a finite group. The relationship between the properties of
subgroups of the Sylow subgroups of G and the structure of G has been
investigated by a number of authors (for example, see [4], [8], [12]–[15]).
In particular, Srinivasan [12] proved that a finite group is supersolvable
if every maximal subgroup of every Sylow subgroup is normal. Later on,
Wall [13] gave a complete classification of finite groups under the as-
sumption of Srinivasan. In [14] and [9], the finite group G in which some
maximal subgroups of the Sylow subgroups of G are c-supplemented were
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investigated. It is known, the concepts of maximal subgroup and minimal
subgroup are dual in finite group theory, so in the meanwhile, the struc-
ture of a finite group G in which some minimal subgroups of the Sylow
subgroups of G are c-supplemented was investigated (see [15]). Further-
more, in [14] Wang showed: Let G be a finite group and p the smallest
prime dividing |G|. If G is A4-free and every second maximal subgroup
of a Sylow p-subgroup of G is c-supplemented in G, then G/Op(G) is p-
nilpotent ([14, Theorem 4.2]). In [9], this was generalized as follows: Let
G be a finite group and p the smallest prime dividing |G|. If that G is
A4-free and every second maximal subgroup of a Sylow p-subgroup of G

is c-supplemented in G, then G is p-nilpotent ([9], Theorem 3.4). In this
paper we first continue the discussion in [14], [9]. Then we investigate the
structure of a group G with some subgroups of prime square order of a
Sylow subgroup, and the dual concept of 2-maximal subgroups of a Sylow
subgroup, of G c-supplemented in G. We get some sufficient conditions for
the p-nilpotency of a finite group.

Recall that a formation F of groups is a class of groups which is
closed under homomorphic images such that G/M ∩ N ∈ F whenever M ,
N are normal subgroups of a group G with G/M ∈ F and G/N ∈ F . A
formation F is said to be saturated if G/Φ(G) ∈ F implies that G ∈ F
(see [10, Ch VI]). It is easy to see that the class of groups with Sylow
tower of supersolvable type is a saturated formation. For a formation F ,
each group has a smallest normal subgroup N such that G/N is in F .
This uniquely determined normal subgroup of G is called the F-residual
subgroup of G and is denoted by GF . Usually N will denote the class of
all nilpotent groups.

Throughout this paper all groups are finite. Our notions and notation
are standard, see e.g. Robinson [11].

2. Preliminaries

Recall that a subgroup H of a group G is said to be c-supplemented
in G if there exists a subgroup K of G such that G = HK and H ∩ K ≤
coreG(H) = HG, or equivalently, H ∩ K = coreG(H) = HG, where HG is
the core in G of H ([4]). We first cite several lemmas that will be useful
in the sequel.
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Lemma 2.1 ([4, Lemma 2.1]). Let H be a subgroup of a group G.

Then the following statements hold:

(1) Let K be a subgroup of G such that H is contained in K. If H is

c-supplemented in G then H is c-supplemented in K;

(2) Let N be a normal subgroup of G such that N is contained in H.

Then H is c-supplemented in G if and only if H/N is c-supplemented in

G/N ;

(3) Let π be a set of primes. Let N be a normal π′-subgroup of G

and H a π-subgroup of G. If H is c-supplemented in G then HN/N is c-

supplemented in G/N . Furthermore, if N normalizes H, then the converse

statement also holds;

(4) Let L be a subgroup of G and H ≤ Φ(L). If H is c-supplemented

in G then H is normal in G and H ≤ Φ(G).

Lemma 2.2 ([14, Lemma 4.1]). Let G be a finite group and p a prime

dividing the order of G such that (|G|, p − 1) = 1. Assume that the order

of G is not divisible by p3 and G is A4-free. Then G is p-nilpotent.

Now we give a generalization of the above lemma.

Lemma 2.3. Let G be a group and p a prime dividing the order of G,

such that G is A4-free and (|G|, p − 1) = 1. Assume that N is a normal

subgroup of G with G/N p-nilpotent and the order of N not divisible by p3.

Then G is p-nilpotent.

Proof. Applying Lemma 2.2 to the subgroup N of G we have that
N is p-nilpotent. Then N has a normal p-complement Np′ , which is also
normal in G. Consider the factor group G/Np′ . If Np′ �= 1, then by
induction G/Np′ is p-nilpotent, thus G is p-nilpotent. So we can suppose
that N is a p-group of order not greater than p2. Since G/N is p-nilpotent,
G/N has a normal p-complement, H/N say. Then we can write H = NHp′

by the Schur–Zassenhaus Theorem. By Lemma 2.2, we have that H is p-
nilpotent, thus Hp′ is normal in H and then it is also normal in G. It
is easy to see that Hp′ is the p-complement of G, so G is p-nilpotent, as
desired. �

Lemma 2.4 ([10, IV, 5.4, p. 434]). Suppose that G is a group which

is not p-nilpotent but whose proper subgroups are all p-nilpotent. Then
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G is a group which is not nilpotent but whose proper subgroups are all

nilpotent.

Lemma 2.5 ([10, III,5.2, p. 281]). Suppose that G is a group which

is not nilpotent but whose proper subgroups are all nilpotent. Then

(i) G has a normal Sylow p-subgroup P for some prime p and G = PQ,

where Q is a non-normal cyclic q-subgroup for some prime q �= p;

(ii) P/Φ(P ) is a minimal normal subgroup of G/Φ(P );
(iii) If P is non-abelian and p �= 2, then the exponent of P is p;

(iv) If P is non-abelian and p = 2, then the exponent of P is 4;

(v) If P is abelian, then P is of exponent p;

(vi) Φ(P ) × Φ(Q) = Z(G) = Φ(G).

Lemma 2.6 ([9, Theorem 3.4]). Let G be a group and p the smallest

prime dividing |G|. Assume that G is A4-free and every second maximal

subgroup of a Sylow p-subgroup of G is c-supplemented in G. Then G is

p-nilpotent.

Lemma 2.7 ([15, Lemma 2.3]). Let G be a group. Assume that N

is a normal subgroup of G (N �= 1) such that N ∩ Φ(G) = 1, then the

Fitting subgroup F (N) of N is the direct product of the minimal normal

subgroups of G which are contained in F (N). In particular, if Φ(G) = 1,
then F (G) is the direct product of the minimal normal subgroups of G

which are contained in F (G).

Lemma 2.8 ([3, Theorem 1 and Proposition 1]). Let F be a saturated

formation. Assume that G is a group such that G does not belong to F
and there exists a maximal subgroup M of G such that M ∈ F and

G = MF (G), where F (G) is the Fitting subgroup of G. Then:

(1) GF/(GF )′ is a chief factor of G;

(2) GF is a p-subgroup for some prime p;

(3) GF has exponent p if p > 2 and exponent at most 4 if p = 2;
(4) GF is either elementary abelian or (GF )′ = Z(GF ) = Φ(GF ).

Lemma 2.9 ([8, Lemma 3.16]). Let F be the class of groups with

Sylow tower of supersolvable type and P a normal p-subgroup of a group

G such that G/P ∈ F for some prime p. If G is A4-free and |P | ≤ p2, then

G belongs to F .
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3. Main results

We first continue the discussion of Wang’s in [14] and Guo and
Shum’s in [9], that is, we investigate the structure of a finite group with
some c-supplemented 2-maximal subgroups of a Sylow p-subgroup, and
generalize some results of Guo and Shum, such as [9, Corollary 3.5 and 3.6].

Theorem 3.1. Let F be the class of groups with Sylow tower of super-

solvable type and N a normal subgroup of a group G such that G/N∈F .

Suppose G is A4-free. If for every prime p dividing the order of N and

P ∈ Sylp(N), every 2-maximal subgroup of P is c-supplemented in G, then

G belongs to F .

Proof. It is easy to see that N is a Sylow tower group of supersolvable
type by Lemmas 2.1 and 2.6. Let r be the largest prime in π(N) and
R ∈ Sylr(N). Then R is normal in G and (G/R)/(N/R) � G/N is a Sylow
tower group of supersolvable type. Let P = PR/R be a Sylow p-subgroup
of N/R with r �= p. We may assume that P is a Sylow p-subgroup of N .
If P1 is a 2-maximal subgroup of P , then, without loss of generality, we
may assume that P1 = P1R/R with P1 a 2-maximal subgroup of P . Since
P1 is c-supplemented in G, we know that P1 is c-supplemented in G/R by
Lemma 2.1 (3). Therefore, G/R satisfies the hypotheses of our theorem
for the normal subgroup N/R. Thus, by induction, G/R is a Sylow tower
group of supersolvable type, and of course, every 2-maximal subgroup of
R is c-supplemented in G.

If r is the largest prime dividing the order of G, then it is clear that G

is a Sylow tower group of supersolvable type. In this case, we may assume
that q is the largest prime dividing the order of G with q > r. Let Q be
a Sylow q-subgroup of G. Since G/R is a Sylow tower group, we see that
RQ is normal in G. By the Frattini argument we have G = RNG(Q).

If RQ < G, then RQ is a Sylow tower group of supersolvable type
by induction on |G|, thus Q � RQ, then G = NG(Q), i.e., Q is normal
in G. Now we consider the quotient group G/Q and its normal subgroup
NQ/Q. For any prime p dividing the order of NQ/Q, then p < q. For
any 2-maximal subgroup P2 of a Sylow p-subgroup P of NQ/N , we can
write P2 = P2Q/Q, where P2 is a 2-maximal subgroup of some Sylow
subgroup P of N . By the hypotheses, P2 is c-supplemented in G, then
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P2 is c-supplemented in G/Q by Lemma 2.1(3). So G/Q with its normal
subgroup NQ/N satisfies the hypotheses of our theorem. By induction,
G/Q is a Sylow tower group and therefore G must be a Sylow tower group
of supersolvable type.

So suppose G = RQ. Now let L be a minimal normal subgroup of G

with L ≤ R. Then it is easy to see that the quotient group G/L satisfies the
hypotheses of our theorem for the normal subgroup of R/L. By induction
we see that G/L is a Sylow tower group of supersolvable type. By a trivial
argument, we may assume that L is the unique minimal normal subgroup
of G which is contained in R. If L ≤ Φ(G), then it follows that G is a
Sylow tower group of supersolvable type. Thus, we may further assume
that R ∩ Φ(G) = 1 and therefore L = F (R) = R is an abelian minimal
normal subgroup of G by Lemma 2.7.

If R is a cyclic group of order r, then because Aut(R) is a cyclic group
of order r−1 and G/CG(P ) ≤ Aut(R), we see that |Q| | |CG(R)|, therefore
we may assume that Q ≤ CG(R) and then G = R×Q. Thus G is a Sylow
tower group of supersolvable type. If |R| > r2, then let R1 be a 2-maximal
subgroup of R. Now, by our hypotheses there exists a subgroup K of G

such that G = R1K and R1 ∩K = 1 since L is the unique minimal normal
subgroup of G contained in R. Thus R = R1(R ∩ K). Since R ∩ K is
normal in K and R is abelian, R ∩ K is a normal subgroup of G. The
minimality of R = L implies that R ∩ K = R, and therefore R1 = 1, a
contradiction. Hence R is an elementary abelian group of order r2. Since
R is normal in G, any element g of Q induces an automorphism σ of R.
When r = 2, if σ �= 1, noticing that |Aut(R)| = (r + 1)r(r − 1)2, the order
of σ must be 3 (q = r + 1 = 3) as q > r. Then R < σ >∼= A4, contrary to
the hypothesis. So suppose that r > 2, noticing that r + 1 is not a prime,
hence we see that σ = 1 and therefore G = R × Q, so G is a Sylow tower
group of supersolvable type. The proof is now complete. �

Corollary 3.2. Let G be a group which is A4-free, and N a normal

subgroup of G such that G/N is supersolvable. If, for every prime p

dividing the order of N and P ∈ Sylp(N), every 2-maximal subgroup of P

is c-supplemented in G, then G is supersolvable.

Corollary 3.3 ([9, Corollary 3.6]). Let G be a group of odd order,

and N a normal subgroup of G such that G/N is a Sylow tower group
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of supersolvable type. If, for every prime p dividing the order of N and

P ∈ Sylp(N), every 2-maximal subgroup of P is c-supplemented in G, then

G is a Sylow tower group of supersolvable type.

In the sequel, we discuss the influence of the properties of subgroups
of prime square order of a Sylow subgroup, and the dual concept of a
2-maximal subgroup of a Sylow subgroup, on the structure of G.

Theorem 3.4. Let G be a group and p a prime dividing the order

of G. Suppose that (|G|, p − 1) = 1 and G is A4-free. If there exists a

normal subgroup N of G such that G/N is p-nilpotent and every subgroup

of order p2 of every Sylow p-subgroup of N is c-supplemented in G, then

G is p-nilpotent.

Proof. Assume that the theorem is false and let G be a counterex-
ample of minimal order. Then we may make the following claims:

(i) The hypotheses are inherited by all proper subgroups of G, thus
G is a group which is not p-nilpotent but whose proper subgroups are all
p-nilpotent.

In fact, for all H < G, H/H ∩ N ∼= HN/N , thus H/H ∩ N is p-
nilpotent. If |H ∩ N |p ≤ p2, then H is p-nilpotent by Lemma 2.3. So
suppose that |H ∩ N |p > p2. Then we can take an arbitrary subgroup
P2 of order p2 of any Sylow p-subgroup of H ∩ N . Obviously P2 is also
a subgroup of order p2 of some Sylow p-subgroup of N . Thus it is c-
supplemented in G by the hypotheses and then it is c-supplemented in H

by Lemma 2.1. Hence H satisfies the hypotheses of the theorem. The
minimal choice of G implies that H is p-nilpotent, thus G is a group which
is not p-nilpotent but whose proper subgroups are all p-nilpotent.

(ii) G = PQ, where P � G and Q is not a normal subgroup of G.
Furthermore, p3 divides the order of P .

These can be induced by Lemmas 2.4, 2.5 and 2.2.

(iii) Every subgroup of order p2 of P is normal in G.
Suppose there exists a subgroup P2 of order p2 which is not normal

in G. By the hypotheses, P2 is c-supplemented in G, so there exists a
subgroup K of G such that G = P2K and P2 ∩ K = (P2)G < P2. Then
K is a proper subgroup of G, thus K is nilpotent. Denote K = Kp × Kp′ ,
then P = P2Kp. Now consider NG(Kp). Since K ≤ NG(Kp), we have
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that [G : NG(Kp)] ≤ p. If [G : NG(Kp)] = 1, then Kp is normal in G.
By Lemma 2.5 (ii), Kp ≤ Φ(P ) or Kp = P . If Kp ≤ Φ(P ), then P = P2,
contrary to (ii). If Kp = P , then K = G, a contradiction. Now suppose
that [G : NG(Kp)] = p, then we can write NG(Kp) = P1 × Kp′ , where P1

is a maximal subgroup of P containing Kp. Now NG(P1) contains P and
Kp′ , so P1 is normal in G, then, again by Lemma 2.5(ii), P1 ≤ Φ(P ) or
P1 = P , which implies that P = P2 or P1, a contradiction.

(iv) Every subgroup of order p2 of P is contained in Φ(P ), thus
in Z(G).

Suppose P2 is an arbitrary subgroup of order p2 of P , then P2 is normal
in G by (iii), therefore P2Φ(G) = P or P2Φ(P ) = Φ(P ) by Lemma 2.5(ii).
If P2Φ(G) = P , then P = P2, contrarily to (ii), so P2 is contained in Φ(P ),
hence it is contained in Z(G) by Lemma 2.5(vi).

(v) Φ(P ) = 1.
If Φ(P ) �= 1, we can pick an element a of order p in Φ(P ). If exp(P )= p,

then for any element b of P not in 〈a〉, 〈a〉〈b〉 is a group of order p2, so
〈a〉〈b〉 is contained in Z(G), thus P ≤ Z(G). Therefore G = P × Q, a
contradiction. So we may suppose that p = 2 and exp(P ) = 4. For any
element b of P not in 〈a〉, if b is of order 2, then 〈a〉〈b〉 is a group of
order 4, hence 〈a〉〈b〉 ≤ Φ(P ) by (iv), so b ∈ Φ(P ); if b is of order 4, then
〈b〉 is contained in Φ(P ) by (iv), which again implies b ∈ Φ(P ). Hence
P = Φ(P ) ≤ Z(G) and from here G = P × Q, a contradiction.

(vi) The final contradiction.
Take a ∈ P , then a is of order p. Now we can find an element b of

order p which is not in < a > by (ii), then the order of the subgroup
< a >< b > is p2, thus it is contained in Φ(P ) by (iv), which is contrary
to (v), the final contradiction.

If we choose the subgroup N in Theorem 3.4 as GN , the nilpotent
residual of G, then we can see that the following is an equivalent form of
Theorem 3.4. �

Corollary 3.5. Let p be a prime number dividing the order of a group

G such that (|G|, p− 1) = 1 and let G be A4-free. Suppose P is a Sylow p-

subgroup of G. If every subgroup of order p2 of P ∩GN is c-supplemented

in G, then G is p-nilpotent.
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Remark 3.6. We observe that the assumption (|G|, p − 1) = 1 cannot
be removed in Corollary 3.5. In fact, assume G is a non-cyclic group
of order 21 and p = 7. Then G is A4-free and there does not exist a
subgroup of order 72 in G, but G is not 7-nilpotent. It is easy to see that
the assumption that G is A4-free cannot be removed either in our result,
because A4 is a counterexample.

Corollary 3.7. Let G be a group. If, for every prime p dividing

the order of G and P ∈ Sylp(G), every subgroup of order p2 of P is c-

supplemented in G and G is A4-free, then G is a Sylow tower group of

supersolvable type.

Proof. It is clear that (|G|, p − 1) = 1 if p is the smallest prime
dividing the order of G and therefore Corollary 3.7 follows immediately
from Theorem 3.4. �

Now we generalize Corollary 3.7 as follows.

Theorem 3.8. Let F be the class of groups with Sylow tower of super-

solvable type and H a normal subgroup of a group G such that G/H ∈ F .

If G is A4-free and all subgroups of prime square order of every Sylow

subgroup of H are c-supplemented in G, then G is in F .

Proof. Suppose the result is false and let G be a counterexample of
minimal order. Then by Corollary 3.7, we can see that H has a Sylow tower
of supersolvable type. Let p be the largest prime in π(H) and P ∈ Sylp(H).
Then P is a normal subgroup of G. Now consider the factor group G/P .
It is easy to see that all subgroups of prime square order of every Sylow
subgroup of H/P are c-supplemented in G/P and G/P is A4-free. Thus,
by the minimal choice of G, we have G/P ∈ F and every subgroup of order
p2 of P is c-supplemented in G.

So GF is a p-subgroup. By [1, Theorem 3.5], there exists a maximal
subgroup M of G such that G = MF ′(G), where F ′(G) = Soc (G mod
Φ(G)) and G/MG /∈ F . Hence G = MGF = MF (G) (since GF is a p-
group). It is obvious that M satisfies the hypotheses of the theorem on
its normal subgroup M ∩P . By the minimal choice of G, we have that M

lies in F .
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Now, by Lemma 2.8, GF/(GF )′ is a chief factor of G, GF has exponent
p if p > 2 and exponent at most 4 if p = 2. Moreover, either GF or
(GF )′ = Φ(GF ) = Z(GF ) is elementary abelian.

Now we distinguish two cases:

Case 1 Φ(GF ) = 1.
In this case, GF is a minimal normal subgroup of G. If |GF | ≤ p2,

then G ∈ F by Lemma 2.9. So suppose |GF | ≥ p3, then we can take
a subgroup P2 of order p2 of GF and P2 is c-supplemented in G by the
hypotheses. So there exists a subgroup K of G such that G = P2K and
P2∩K = (P2)G = 1. Therefore GF = P2(K∩GF ). Since GF is elementary
abelian, it is easy to see that GF ∩K is normal in G, thus GF ∩K = 1 or
GF by the minimality of GF . If GF ∩ K = 1, then GF = P2 and it is of
order p2, while G ∈ F by Lemma 2.9, a contradiction. If GF ∩ K = GF ,
then P2 = P2 ∩ K = (P2)G = 1, a contradiction too.

Case 2 Φ(GF ) �= 1.
We consider two subcases.

Subcase 2.1. p = 2 and exp(GF ) = 4.
Now we can take an element x of order 4 in GF −Φ(GF ). Then there

exists a subgroup K of G such that G = 〈x〉K and 〈x〉∩K = 〈x〉G. Hence
GF = 〈x〉(K ∩ GF ). Note that x2 ∈ Φ(GF ), thus 〈x2〉(K ∩ GF ) is a
maximal subgroup of GF , so x normalizes 〈x2〉(K ∩ GF ). Since [x2,K] ≤
Φ(GF ) ≤ 〈x2〉(K∩GF ), we get that 〈x2〉(K∩GF ) is a normal subgroup of
G. Hence 〈x2〉(K ∩GF ) = Φ(GF ) or GF by the minimality of GF/Φ(GF ).
If 〈x2〉(K ∩ GF ) = Φ(GF ) then GF = 〈x〉, so G ∈ F by Lemma 2.9,
a contradiction. If 〈x2〉(K ∩ GF ) = GF then GF = K ∩ GF , so 〈x〉 =
〈x〉 ∩ K = 〈x〉G is normal in G, and then 〈x〉 = GF . By Lemma 2.9 we
have G ∈ F , another contradiction.

Subcase 2.2 exp(P ) = p.
Since GF �= Φ(GF ) �= 1, we can take two elements a and b of order p

such that a ∈ Φ(GF ) and b ∈ GF − Φ(GF ). Then 〈a〉〈b〉 is a subgroup of
GF of order p2, so there exists a subgroup K of G such that G = 〈a〉〈b〉K
and 〈a〉〈b〉 ∩ K = (〈a〉〈b〉)G. Hence GF = 〈a〉〈b〉(K ∩ GF ). Note that
〈a〉(K ∩ GF ) is a maximal subgroup of GF , so b normalizes 〈a〉(K ∩ GF ).
Since [a,K] ≤ Φ(GF ) ≤ 〈a〉(K∩GF ), we get that 〈a〉(K∩GF ) is a normal
subgroup of G. Hence 〈a〉(K ∩GF ) = Φ(GF ) or < c > (K ∩GF ) = GF by
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the minimality of GF/Φ(GF ). If 〈a〉(K∩GF ) = Φ(GF ), then GF = 〈b〉, so
G ∈ F by Lemma 2.9, a contradiction. If 〈a〉(K ∩ GF ) = GF then GF =
K ∩ GF , so 〈a〉〈b〉 = 〈a〉〈b〉 ∩ K = (〈a〉〈b〉)G is normal in G which implies
GF = 〈a〉〈b〉 = 〈b〉. By Lemma 2.9 we have G ∈ F , a contradiction. �

The following are immediate corollaries of Theorem 3.8.

Corollary 3.9. Let G be a group which is A4-free and N a normal

subgroup of G such that G/N is supersolvable. If for every prime p dividing

the order of H and P ∈ Sylp(H), every subgroup of order p2 of P is c-

supplemented in G, then G is supersolvable.

Corollary 3.10. Let G be a group of odd order and N a normal

subgroup of G such that G/N is a Sylow tower group of supersolvable

type. If all subgroups of prime square order of every Sylow subgroup of N

are c-supplemented in G, then G is a Sylow tower group of supersolvable

type.
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