On the derived length of Lie solvable group algebras

By TIBOR JUHÁSZ (Debrecen)

Dedicated to Professor Adalbert Bovdi on his 70th birthday

Abstract

Let G be a nilpotent group with cyclic commutator subgroup of order p^{n} and let F be a field of characteristic p. It is shown here that the Lie derived length of the group algebra $F G$ is at $\operatorname{most}\left\lceil\log _{2}\left(p^{n}+1\right)\right\rceil$. Furthermore, this bound is achived if and only if one of the following conditions is satisfied: (i) p is odd; (ii) $p=2$ and $n \leq 2$; (iii) $p=2, n \geq 3$ and the nilpotency class of G is at most n.

1. Introduction

Let G be a group and F a field. The group algebra $F G$ may be considered as a Lie algebra, with the usual bracket operation. Define the Lie derived series and the strong Lie derived series of the group algebra $F G$ respectively as follows: let $\delta^{[0]}(F G)=\delta^{(0)}(F G)=F G$ and

$$
\begin{aligned}
\delta^{[n+1]}(F G) & =\left[\delta^{[n]}(F G), \delta^{[n]}(F G)\right], \\
\delta^{(n+1)}(F G) & =\left[\delta^{(n)}(F G), \delta^{(n)}(F G)\right] F G,
\end{aligned}
$$

where $[X, Y]$ is the additive subgroup generated by all Lie commutators $[x, y]=x y-y x$ with $x \in X$ and $y \in Y$. We say that $F G$ is Lie solvable if there exists $m \in \mathbb{N}$ such that $\delta^{[m]}(F G)=0$ and the number

[^0]$\mathrm{dl}_{L}(F G)=\min \left\{m \in \mathbb{N} \mid \delta^{[m]}(F G)=0\right\}$ is called the Lie derived length of $F G$. Similarly, $F G$ is said to be strongly Lie solvable of derived length $\mathrm{dl}^{L}(F G)=m$ if $\delta^{(m)}(F G)=0$ and $\delta^{(m-1)}(F G) \neq 0$. According to a result of Passi, Passman and Sehgal [6] a group algebra $F G$ is Lie solvable if and only if one of the following conditions holds: (i) G is abelian; (ii) $\operatorname{char}(F)=p$ and the commutator subgroup G^{\prime} of G is a finite p-group; (iii) $\operatorname{char}(F)=2$ and G has a subgroup H of index 2 whose commutator subgroup H^{\prime} is a finite 2 -group. It is easy to check that a group algebra $F G$ is strongly Lie solvable if either G is abelian or $\operatorname{char}(F)=p$ and G^{\prime} is a finite p-group.

Let G be a group with commutator subgroup of order p^{n} and $\operatorname{char}(F)=p$. Shalev [8] showed that

$$
\mathrm{dl}_{L}(F G) \leq\left\lceil\log _{2}\left(2 t\left(G^{\prime}\right)\right)\right\rceil
$$

where $t\left(G^{\prime}\right)$ denotes the nilpotent index of the augmentation ideal of $F G^{\prime}$ and $\lceil r\rceil$ the upper integral part of a real number r. Moreover, Lemma 2.2 in $[8]$ states that if G is nilpotent of class 2 then $\mathrm{dl}_{L}(F G) \leq\left\lceil\log _{2}\left(t\left(G^{\prime}\right)+1\right)\right\rceil$. In particular, according to Proposition 2.3 in [8], if G is nilpotent of class 2 and G^{\prime} is cyclic of order p^{n}, then

$$
\mathrm{dl}_{L}(F G)=\left\lceil\log _{2}\left(p^{n}+1\right)\right\rceil
$$

In this paper our goal is to generalize the above results of Shalev for the case when the nilpotency class of G is not necessary 2 . We obtain the following.

Theorem 1. Let G be a nilpotent group with cyclic commutator subgroup of order p^{n} and let F be a field of characteristic p. Then $\mathrm{dl}_{L}(F G) \leq\left\lceil\log _{2}\left(p^{n}+1\right)\right\rceil$ with equality if and only if one of the following conditions holds:
(i) p is odd;
(ii) $p=2$ and G^{\prime} is of order less than 8;
(iii) $p=2, n \geq 3$ and G has nilpotency class at most n.

Moreover, if $\operatorname{char}(F)=2$ we can extend our result as follows.

Corollary 1. Let G be a nilpotent group with commutator subgroup of order 2^{n} and let F be a field of characteristic 2 . Then $\mathrm{dl}_{L}(F G)=n+1$ if and only if one of the following conditions holds:
(i) G^{\prime} is the noncyclic group of order 4 and $\gamma_{3}(G) \neq 1$;
(ii) G^{\prime} is cyclic of order less than 8;
(iii) G^{\prime} is cyclic, $n \geq 3$ and G has nilpotency class at most n.

In this paper $\omega(F G)$ denotes the augmentation ideal of $F G$; for a normal subgroup $H \subseteq G$ we understand by $\Im(H)$ the ideal $F G \cdot \omega(F H)$. For $x, y, x_{1}, x_{2}, \ldots, x_{n} \in G$ let $x^{y}=y^{-1} x y,(x, y)=x^{-1} x^{y}$, and the commutator $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is defined inductively to be $\left(\left(x_{1}, x_{2}, \ldots, x_{n-1}\right), x_{n}\right)$. By $\zeta(G)$ we mean the center of the group G, by $\gamma_{n}(G)$ the n-th term of the lower central series of G with $\gamma_{1}(G)=G$. Furthermore, denote by C_{n} the cyclic group of order n. The n-th term of the upper Lie power series of $F G$ is denoted by $(F G)^{(n)}$ which is the associative ideal generated by all Lie commutators $[x, y]$ with $x \in F G^{(n-1)}$ and $y \in F G$, where $F G^{(1)}=F G$.

We shall use freely the identities

$$
[x, y z]=[x, y] z+y[x, z], \quad[x y, z]=x[y, z]+[x, z] y,
$$

and for units a, b, c the commutator identities

$$
\begin{aligned}
& (a, b c)=(a, c)(a, b)^{c}=(a, c)(a, b)(a, b, c) ; \\
& (a b, c)=(a, c)^{b}(b, c)=(a, c)(a, c, b)(b, c),
\end{aligned}
$$

and that $[a, b]=b a((a, b)-1)$.

2. Preliminaries

We begin with a statement of independent interest about the strong Lie derived length of group algebras which generalizes the Corollary 4 of Bagiński's paper [1].

Proposition 1. Let G be a nilpotent group whose commutator subgroup G^{\prime} is a finite p-group and let $\operatorname{char}(F)=p$. If $\gamma_{3}(G) \subseteq\left(G^{\prime}\right)^{p}$ then

$$
\mathrm{dl}^{L}(F G)=\left\lceil\log _{2}\left(t\left(G^{\prime}\right)+1\right)\right\rceil .
$$

Proof. We show by induction on n that

$$
\delta^{(n)}(F G) \subseteq(F G)^{\left(2^{n}\right)} \quad \text { for all } n \geq 0
$$

Evidently, $\delta^{(0)}(F G)=(F G)^{(1)}$ and assume that $\delta^{(n)}(F G) \subseteq(F G)^{\left(2^{n}\right)}$ for some n. By elementary properties of upper Lie power series,

$$
\begin{aligned}
\delta^{(n+1)}(F G) & =\left[\delta^{(n)}(F G), \delta^{(n)}(F G)\right] F G \subseteq\left[(F G)^{\left(2^{n}\right)},(F G)^{\left(2^{n}\right)}\right] F G \\
& \subseteq(F G)^{\left(2^{n+1}\right)} F G=(F G)^{\left(2^{n+1}\right)} .
\end{aligned}
$$

In view of $\gamma_{3}(G) \subseteq\left(G^{\prime}\right)^{p}$, Theorem 3.1(i) from [3] states that $(F G)^{\left(2^{n}\right)}=$ $\Im\left(G^{\prime}\right)^{2^{n}-1}$. Furthermore, Lemma 2.2 in $[7]$ asserts $\Im\left(G^{\prime}\right)^{2^{n}-1} \subseteq \delta^{(n)}(F G)$ for all $n \geq 1$ and we have $\delta^{(n)}(F G)=\mathfrak{I}\left(G^{\prime}\right)^{2^{n}-1}$. It is easy to see that $\delta^{(n)}(F G)=0$ if and only if $2^{n}-1 \geq t\left(G^{\prime}\right)$, therefore $n \geq \log _{2}\left(t\left(G^{\prime}\right)+1\right)$, which implies the statement.

Remark 1. (i) Since $\delta^{[n]}(F G) \subseteq \delta^{(n)}(F G)$ for all n, Proposition 1 yields an upper bound on the Lie derived length. Furthermore, if G is nilpotent with cyclic commutator subgroup of order p^{n}, then the condition $\gamma_{3}(G) \subseteq\left(G^{\prime}\right)^{p}$ holds and thus

$$
\mathrm{dl}_{L}(F G) \leq\left\lceil\log _{2}\left(p^{n}+1\right)\right\rceil .
$$

But, as we will see, the equality does not always hold.
(ii) As the following examples show, Proposition 1 breaks down without the condition $\gamma_{3}(G) \subseteq\left(G^{\prime}\right)^{p}$.

- Let G be a group with $G^{\prime}=C_{2} \times C_{2}$ such that $\gamma_{3}(G) \neq 1$ and let $\operatorname{char}(F)=2$. Then $\gamma_{3}(G) \nsubseteq\left(G^{\prime}\right)^{2}$ and, by Theorem 3 and Theorem 6 from [5], dl ${ }^{L}(F G)>2$. So dl ${ }^{L}(F G) \neq\left\lceil\log _{2}\left(t\left(G^{\prime}\right)+1\right)\right\rceil$, because now $\left\lceil\log _{2}\left(t\left(G^{\prime}\right)+1\right)\right\rceil=2$.
- Let G be a group with $G^{\prime}=C_{3} \times C_{3} \times C_{3}$ such that $\gamma_{3}(G) \neq 1$ and let $\operatorname{char}(F)=3$. Then $\gamma_{3}(G) \nsubseteq\left(G^{\prime}\right)^{3}$ and, by Theorem 2.3 from [7], $\mathrm{dl}^{L}(F G)>3$. It follows that d1 ${ }^{L}(F G) \neq\left\lceil\log _{2}\left(t\left(G^{\prime}\right)+1\right)\right\rceil$, because $\left\lceil\log _{2}\left(t\left(G^{\prime}\right)+1\right)\right\rceil=3$.

The next lemma will be used in the proof of the theorem.
Lemma 1. Let G be a nilpotent group with cyclic commutator subgroup of order p^{n} and let $\operatorname{char}(F)=p$. Then for all $m, k \geq 1$
(i) $\left[\omega^{m}\left(F G^{\prime}\right), \omega(F G)\right] \subseteq \Im\left(G^{\prime}\right)^{m+p-1}$;
(ii) $\left[\Im\left(G^{\prime}\right)^{m}, \mathfrak{I}\left(G^{\prime}\right)^{k}\right] \subseteq \Im\left(G^{\prime}\right)^{m+k+1}$.

Proof. (i) We use induction on m. For every $y \in G^{\prime}$ and $g \in G$ we have

$$
[y-1, g-1]=[y, g]=g y((y, g)-1) \in \mathfrak{I}\left(\gamma_{3}(G)\right) \subseteq \Im\left(G^{\prime}\right)^{p} .
$$

This shows that the statement (i) holds for $m=1$, because the elements of the form $g-1$ with $1 \neq g \in G$ constitute an F-basis of $\omega(F G)$.

Now, assume that $\left[\omega^{m}\left(F G^{\prime}\right), \omega(F G)\right] \subseteq \Im\left(G^{\prime}\right)^{m+p-1}$ for some m. Then

$$
\begin{aligned}
& {\left[\omega^{m+1}\left(F G^{\prime}\right), \omega(F G)\right]} \\
& \quad \subseteq \omega^{m}\left(F G^{\prime}\right)\left[\omega\left(F G^{\prime}\right), \omega(F G)\right]+\left[\omega^{m}\left(F G^{\prime}\right), \omega(F G)\right] \omega\left(F G^{\prime}\right) \\
& \quad \subseteq \omega^{m}\left(F G^{\prime}\right) \mathfrak{I}\left(G^{\prime}\right)^{p}+\mathfrak{I}\left(G^{\prime}\right)^{m+p-1} \omega\left(F G^{\prime}\right) \subseteq \mathfrak{I}\left(G^{\prime}\right)^{m+p},
\end{aligned}
$$

and the proof of (i) is complete.
(ii) The statement (ii) is a consequence of (i), because

$$
\mathfrak{I}\left(G^{\prime}\right)=\omega(F G) \omega\left(F G^{\prime}\right)+\omega\left(F G^{\prime}\right) .
$$

Let G be a group with commutator subgroup $G^{\prime}=\left\langle x \mid x^{2^{n}}=1\right\rangle$, where $n \geq 3$. It is well known that the automorphism group aut $\left(G^{\prime}\right)$ of G^{\prime} is a direct product of the cyclic group $\langle\alpha\rangle$ of order 2 and the cyclic group $\langle\beta\rangle$ of order 2^{n-2} where the action of these automorphisms on G^{\prime} is given by $\alpha(x)=x^{-1}, \beta(x)=x^{5}$. For $g \in G$, let τ_{g} denote the restriction to G^{\prime} of the inner automorphism $h \mapsto h^{g}$ of G. The map $G \rightarrow \operatorname{aut}(G)$, $g \mapsto \tau_{g}$ is a homomorphism whose kernel coincides with the centralizer $C=C_{G}\left(G^{\prime}\right)$. Clearly, the map $\varphi: G / C \rightarrow \operatorname{aut}\left(G^{\prime}\right)$ given by $\varphi(g C)=\tau_{g}$ is a monomorphism.

The subset

$$
G_{\beta}=\{g \in G \mid \varphi(g C) \in\langle\beta\rangle\}
$$

of G will play an important role in the sequel. It is easy to check that G_{β} is a subgroup of index not greater than 2 and $g \in G_{\beta}$ if and only if $x^{g}=x^{5^{i}}$ for some $i \in \mathbb{Z}$.

Lemma 2. Let G be a group with cyclic commutator subgroup of order 2^{n}, where $n \geq 3$ and let $\operatorname{char}(F)=2$. Then
(i) $(y, g) \in\left(G^{\prime}\right)^{4}$ for all $y \in G^{\prime}$ and $g \in G_{\beta}$;
(ii) $\left[\omega^{m}\left(F G^{\prime}\right), \omega\left(F G_{\beta}\right)\right] \subseteq \Im\left(G^{\prime}\right)^{m+3}$.

Proof. Let $g \in G_{\beta}$ and $y \in G^{\prime}$.
(i) Clearly, $(y, g)=y^{-1} y^{g}=y^{-1+5^{i}}$ for some $i \geq 0$ and $-1+5^{i} \equiv 0$ $(\bmod 4)$. Therefore, $(y, g) \in\left(G^{\prime}\right)^{4}$.
(ii) Using (i) we have that

$$
[y-1, g-1]=[y, g]=g y((y, g)-1) \in \mathfrak{I}\left(G^{\prime}\right)^{4}
$$

from which (ii) follows for $m=1$. One can now finish the proof by induction, as in Lemma 1(i).

Lemma 3. Let G be a group with commutator subgroup $G^{\prime}=\langle x|$ $\left.x^{2^{n}}=1\right\rangle$, where $n \geq 3$. Then the following are equivalent:
(i) $G_{\beta}=G$.
(ii) G has nilpotency class at most n.

Proof. First of all, note that G is a nilpotent group of class at most $n+1$.
(i) \Rightarrow (ii) By Lemma 2(i), $\gamma_{3}(G) \subseteq\left(G^{\prime}\right)^{4}$, so $\left|\gamma_{2}(G) / \gamma_{3}(G)\right| \geq 4$ and the class of G is at most n.
(ii) \Rightarrow (i) Suppose that G has nilpotency class at most n, but $G_{\beta} \neq G$. We claim that $x^{2^{k-2}} \in \gamma_{k}(G)$ for all $k \geq 2$. Indeed, this is clear for $k=2$ and assume its truth for some $k \geq 2$. If $g \in G \backslash G_{\beta}$ then $\left(x^{2^{k-2}}, g\right) \in$ $\gamma_{k+1}(G)$ and $\left(x^{2^{k-2}}, g\right)=x^{2^{k-2}\left(-1-5^{i}\right)}=\left(x^{2^{k-1}}\right)^{j}$ with some i and odd j. This means that $x^{2^{k-1}} \in \gamma_{k+1}(G)$, as desired. Therefore, $\gamma_{n+1}(G) \neq 1$, which is a contradiction.

Lemma 4. Let G be a group with commutator subgroup $G^{\prime}=\langle x|$ $\left.x^{2^{n}}=1\right\rangle$, where $n \geq 3$. If G has nilpotency class $n+1$ then $(g, h) \in\left(G^{\prime}\right)^{2}$ for all $g, h \in G_{\beta}$.

Proof. If the lemma were not true we could choose the elements $g, h \in G_{\beta}$ so that $(g, h)=x$. By definition of G_{β} we may additionally
assume that $(g, x)=1$. Lemma 3 states that $G \backslash G_{\beta} \neq \emptyset$; let y be in $G \backslash G_{\beta}$. Evidently, $(g, y)=x^{i}$ for some i. Using the equalities

$$
g^{h}=g x, \quad g^{h^{-1}}=g\left(x^{-1}\right)^{h^{-1}}, \quad g^{y}=g x^{i}, \quad g^{y^{-1}}=g\left(x^{-i} y^{y^{-1}}\right.
$$

it is easy to check

$$
\begin{aligned}
g & =g^{(h, y)}=g^{h^{-1} y^{-1} h y}=\left(g\left(x^{-1}\right)^{h^{-1}}\right)^{y^{-1} h y}=g^{y^{-1} h y} x^{-1} \\
& =\left(g\left(x^{-i}\right)^{y^{-1}}\right)^{h y} x^{-1}=\left(g x\left(x^{-i}\right)^{y^{-1} h}\right)^{y} x^{-1}=g x^{i} x^{y}\left(x^{-i}\right)^{y^{-1} h y} x^{-1} \\
& =g(x, y)\left(x^{-i}, h^{y}\right),
\end{aligned}
$$

which is a contradiction. Indeed, keeping in mind that $y \in G \backslash G_{\beta}$ and $h \in$ G_{β} we have $(x, y)=x^{-1-5^{j}} \in\left\langle x^{2}\right\rangle \backslash\left\langle x^{4}\right\rangle$ and $\left(x^{-i}, h^{y}\right)=x^{i\left(1-5^{l}\right)} \in\left\langle x^{4}\right\rangle$, thus $(x, y)\left(x^{-i}, h^{y}\right) \neq 1$.

The author wishes to thank C. Bagiv́ski for the elementary proof of the previous lemma.

Lemma 5. Let G be a group with commutator subgroup $G^{\prime}=\langle x|$ $\left.x^{2^{n}}=1\right\rangle$, where $n \geq 3$ and let $\operatorname{char}(F)=2$. If G has nilpotency class $n+1$ then $\mathrm{dl}_{L}(F G) \leq n$.

Proof. Clearly, the set of the Lie commutators $[a, b]$ with $a, b \in G$ spans the F-space $\delta^{[1]}(F G)$. Since $[a, b]=g^{h}+g$ with $g=b a$ and $h=b$, while of course $g^{h}+g=[a, b]$ with $a=h^{-1} g$ and $b=h$ whenever $g, h \in G$, this spanning set for $\delta^{[1]}(F G)$ can also be described as the set of the elements $g^{h}+g$ with $g, h \in G$. It follows that the Lie commutators $\left[g_{1}{ }^{h_{1}}+g_{1}, g_{2}{ }^{h_{2}}+g_{2}\right]$, where $g_{1}, g_{2}, h_{1}, h_{2} \in G$, span $\delta^{[2]}(F G)$. We shall compute these Lie commutators. It is easy to check that

$$
\begin{align*}
& {\left[g_{1}^{h_{1}}+g_{1}, g_{2}^{h_{2}}+g_{2}\right]=g_{2} g_{1}\left(\left(\left(g_{1}, g_{2}\right)+1\right)\left(\left(g_{2}, h_{2}\right)+1\right)\left(\left(g_{1}, h_{1}\right)+1\right)\right.} \\
& \quad+\left(g_{2}, h_{2}\right)\left(\left(g_{2}, h_{2}, g_{1}\right)+1\right)\left(\left(g_{1}, h_{1}\right)+1\right) \tag{1}\\
& \left.\quad+\left(g_{1}, g_{2}\right)\left(g_{1}, h_{1}\right)\left(\left(g_{1}, h_{1}, g_{2}\right)+1\right)\left(\left(g_{2}, h_{2}\right)+1\right)\right)
\end{align*}
$$

Firstly, if neither g_{1} nor g_{2} are in G_{β} then

$$
\begin{equation*}
\left[g_{1}^{h_{1}}+g_{2}, g_{2}^{h_{2}}+g_{2}\right]=b \varrho_{3} \tag{2}
\end{equation*}
$$

for some $b \in G_{\beta}$ and $\varrho_{3} \in \omega^{3}\left(F G^{\prime}\right)$. Indeed, it is clear from the definition of G_{β} that then $g_{2} g_{1} \in G_{\beta}$. Furthermore, the second factor on the right-hand side of (1) always belongs to $\omega^{3}\left(F G^{\prime}\right)$, because $\gamma_{3}(G) \subseteq\left(G^{\prime}\right)^{2}$.

Secondly, if g_{1} or g_{2}, say g_{1}, belongs to G_{β}, then we claim that

$$
\begin{equation*}
\left[g_{1}^{h_{1}}+g_{1}, g_{2}^{h_{2}}+g_{2}\right]=g \varrho_{4} \tag{3}
\end{equation*}
$$

for some $\varrho_{4} \in \omega^{4}\left(F G^{\prime}\right)$ and $g \in G$.
For $g_{1} \in G_{\beta}$, Lemma 2(i) asserts $\left(g_{2}, h_{2}, g_{1}\right) \in\left(G^{\prime}\right)^{4}$, therefore the right-hand side of (1) can be written as

$$
\begin{align*}
& {\left[g_{1}^{h_{1}}+g_{1}, g_{2}^{h_{2}}+g_{2}\right]=g_{2} g_{1}\left(\left(\left(g_{1}, g_{2}\right)+1\right)\left(\left(g_{1}, h_{1}\right)+1\right)\right.} \tag{4}\\
& \left.\quad+\left(g_{1}, g_{2}\right)\left(g_{1}, h_{1}\right)\left(\left(g_{1}, h_{1}, g_{2}\right)+1\right)\right)\left(\left(g_{2}, h_{2}\right)+1\right)+g_{2} g_{1} \varrho_{4}
\end{align*}
$$

for some $\varrho_{4} \in \omega^{4}\left(F G^{\prime}\right)$. In order to prove (3) it will be sufficient to show that the element for some $\varrho_{4} \in \omega^{4}\left(F G^{\prime}\right)$. In order to prove (3) it will be sufficient to show that the element

$$
\begin{aligned}
\vartheta= & \left(\left(g_{1}, g_{2}\right)+1\right)\left(\left(g_{1}, h_{1}\right)+1\right) \\
& +\left(g_{1}, g_{2}\right)\left(g_{1}, h_{1}\right)\left(\left(g_{1}, h_{1}, g_{2}\right)+1\right)
\end{aligned}
$$

from the right-hand side of (4) belongs to $\omega^{3}\left(F G^{\prime}\right)$.
This is clear if g_{2} also belongs to G_{β}, because then by Lemma 4 and Lemma 2(i) both summands of ϑ are in $\omega^{3}\left(F G^{\prime}\right)$. Furthermore, if $g_{2} \notin G_{\beta}$, then $x^{g_{2}}=x^{-5^{l}}$ for some l and we distinguish the following three cases:

Case 1: $\left(g_{1}, h_{1}\right) \in\left(G^{\prime}\right)^{2}$. Then $\left(g_{1}, h_{1}, g_{2}\right)=\left(g_{1}, h_{1}\right)^{-1-5^{l}} \in\left(G^{\prime}\right)^{4}$ and $\vartheta \in \omega^{3}\left(F G^{\prime}\right)$.

Case 2: $\left(g_{1}, g_{2}\right) \in\left(G^{\prime}\right)^{2}$. By the well-known Hall-Witt identity,

$$
\left(g_{1}, h_{1}, g_{2}\right)^{h_{1}^{-1}}\left(h_{1}^{-1}, g_{2}^{-1}, g_{1}\right)^{g_{2}}\left(g_{2}, g_{1}^{-1}, h_{1}^{-1}\right)^{g_{1}}=1
$$

Lemma 2(i) ensures that the second factor on the left-hand side belongs to $\left(G^{\prime}\right)^{4}$ and this is true for the last factor too, because

$$
\begin{aligned}
\left(g_{2}, g_{1}^{-1}, h_{1}^{-1}\right) & =\left(\left(g_{1}, g_{2}\right)^{g_{1}^{-1}}, h_{1}^{-1}\right) \\
& =\left(\left(g_{1}, g_{2}\right)^{g_{1}^{-1}}\right)^{-1}\left(g_{1}, g_{2}\right)^{g_{1}^{-1} h_{1}^{-1}}=\left(g_{1}, g_{2}\right)^{2 i}
\end{aligned}
$$

for some i. This means that $\left(g_{1}, h_{1}, g_{2}\right) \in\left(G^{\prime}\right)^{4}$, which proves $\vartheta \in \omega^{3}\left(F G^{\prime}\right)$. Case 3: $\left(g_{1}, h_{1}\right) \notin\left(G^{\prime}\right)^{2}$ and $\left(g_{1}, g_{2}\right) \notin\left(G^{\prime}\right)^{2}$. Then $\left\langle\left(g_{1}, h_{1}\right)\right\rangle=$ $\left\langle\left(g_{1}, g_{2}\right)\right\rangle=G^{\prime}$ and $\left(g_{1}, g_{2}\right)=\left(g_{1}, h_{1}\right)^{k}$ for some odd k. With the notation $y=\left(g_{1}, h_{1}\right) \vartheta$ can be written as

$$
\vartheta=\left(y^{k}+1\right)(y+1)+y^{k+1}\left(y^{-5^{l}-1}+1\right)=y^{k-5^{l}}+1+y\left(y^{k-1}+1\right) .
$$

Of course, if $k \equiv 1(\bmod 4)$ then $y^{-5^{l}-1}+1$ and $y\left(y^{k-1}+1\right)$ are in $\omega^{4}\left(F G^{\prime}\right)$, therefore $\vartheta \in \omega^{4}\left(F G^{\prime}\right)$. Otherwise, if $k \equiv 3(\bmod 4)$ then $y^{k-3}+1 \in$ $\omega^{4}\left(F G^{\prime}\right)$ which implies that

$$
\begin{aligned}
y\left(y^{k-1}+1\right) & =y\left(\left(y^{k-3}+1\right)\left(y^{2}+1\right)+\left(y^{k-3}+1\right)+\left(y^{2}+1\right)\right) \\
& \equiv y\left(y^{2}+1\right) \equiv y^{2}+1 \quad\left(\bmod \omega^{3}\left(F G^{\prime}\right)\right) .
\end{aligned}
$$

Similarly, we can obtain that

$$
\begin{aligned}
y^{k-5^{l}}+1 & =\left(y^{k-5^{l}-2}+1\right)\left(y^{2}+1\right)+\left(y^{k-5^{l}-2}+1\right)+\left(y^{2}+1\right) \\
& \equiv y^{2}+1 \quad\left(\bmod \omega^{3}\left(F G^{\prime}\right)\right) .
\end{aligned}
$$

Hence

$$
\vartheta=y^{k-5^{l}}+1+y\left(y^{k-1}+1\right) \equiv 2\left(y^{2}+1\right) \equiv 0 \quad\left(\bmod \omega^{3}\left(F G^{\prime}\right)\right),
$$

which completes the checking of (3).
Let S be the additive subgroup generated by all elements of the form $g \varrho_{4}$ and $b \varrho_{3}$, where $g \in G, \quad b \in G_{\beta}$ and $\varrho_{3} \in \omega^{3}\left(F G^{\prime}\right), \varrho_{4} \in \omega^{4}\left(F G^{\prime}\right)$. We claim that $[S, S] \subseteq \Im\left(G^{\prime}\right)^{8}$. Indeed, the additive subgroup $[S, S]$ can be spanned by some Lie commutators of the forms $\left[g \varrho_{4}, h \varrho_{3}\right]$ and $\left[b_{1} \varrho_{3}, b_{2} \eta_{3}\right]$ with $g \in G, b_{1}, b_{2} \in G_{\beta}, \quad \varrho_{3}, \eta_{3} \in \omega^{3}\left(F G^{\prime}\right), \varrho_{4} \in \omega^{4}\left(F G^{\prime}\right)$. Furthermore, by Lemma 1(i),

$$
\begin{aligned}
{\left[g \varrho_{4}, h \varrho_{3}\right] } & =g\left[\varrho_{4}, h \varrho_{3}\right]+\left[g, h \varrho_{3}\right] \varrho_{4} \\
& =g\left[\varrho_{4}, h+1\right] \varrho_{3}+h g((g, h)+1) \varrho_{3} \varrho_{4}+h\left[g+1, \varrho_{3}\right] \varrho_{4} \in \Im\left(G^{\prime}\right)^{8},
\end{aligned}
$$

and by Lemma 2(ii) and Lemma 4,

$$
\begin{aligned}
{\left[b_{1} \varrho_{3}, b_{2} \eta_{3}\right] } & =b_{1}\left[\varrho_{3}, b_{2} \eta_{3}\right]+\left[b_{1}, b_{2} \eta_{3}\right] \varrho_{3} \\
& =b_{1}\left[\varrho_{3}, b_{2}+1\right] \eta_{3}+b_{2}\left[b_{1}+1, \eta_{3}\right] \varrho_{3}+b_{1} b_{2}\left(\left(b_{1}, b_{2}\right)+1\right) \eta_{3} \varrho_{3}
\end{aligned}
$$

also belongs to $\mathfrak{I}\left(G^{\prime}\right)^{8}$. Therefore, $[S, S] \subseteq \Im\left(G^{\prime}\right)^{8}$.
From (2) and (3) we get $\delta^{[2]}(F G) \subseteq S$, so we have

$$
\delta^{[3]}(F G)=\left[\delta^{[2]}(F G), \delta^{[2]}(F G)\right] \subseteq[S, S] \subseteq \Im\left(G^{\prime}\right)^{8}
$$

Now, we use induction on k to show that

$$
\begin{equation*}
\delta^{[k]}(F G) \subseteq \Im\left(G^{\prime}\right)^{2^{k}} \quad \text { for all } \quad k \geq 3 \tag{5}
\end{equation*}
$$

Indeed, assuming the validity of (5) for some $k \geq 3$ we have

$$
\delta^{[k+1]}(F G)=\left[\delta^{[k]}(F G), \delta^{[k]}(F G)\right] \subseteq\left[\Im\left(G^{\prime}\right)^{2^{k}}, \Im\left(G^{\prime}\right)^{2^{k}}\right] \subseteq \Im\left(G^{\prime}\right)^{2^{k+1}}
$$

and this proves the truth of (5) for every $k \geq 3$.
Keeping in mind that G^{\prime} has order 2^{n}, (5) implies that $\delta^{[n]}(F G)=0$. Hence $\mathrm{dl}_{L}(F G) \leq n$ and the proof is complete.

Lemma 6. Let G be a nilpotent group with commutator subgroup $G^{\prime}=\left\langle x \mid x^{p^{n}}=1\right\rangle, \quad \operatorname{char}(F)=p$ and assume that one of the following conditions holds:
(i) $p=2, n \geq 3$ and G has nilpotency class at most n;
(ii) p is odd.

Then $\mathrm{dl}_{L}(F G)=\left\lceil\log _{2}\left(p^{n}+1\right)\right\rceil$.
Proof. Since G^{\prime} is cyclic of order p^{n}, we can choose $a, b \in G$ such that $(a, b)=x$. First of all, we claim that

$$
\begin{equation*}
\left[b^{l} a^{m}, b^{s} a^{t}\right] \equiv(m s-l t) b^{l+s} a^{m+t}(x-1) \quad\left(\bmod \mathfrak{I}\left(G^{\prime}\right)^{2}\right) \tag{6}
\end{equation*}
$$

for every $l, s, m, t \in \mathbb{Z}$. Indeed, an easy computation yields

$$
\begin{align*}
{\left[b^{l} a^{m}, b^{s} a^{t}\right] } & =b^{s} a^{t} b^{l} a^{m}\left(\left(b^{l} a^{m}, b^{s} a^{t}\right)-1\right) \\
& =b^{l+s} a^{m+t}\left(a^{t}, b^{l}\right)^{a^{m}}\left(\left(b^{l} a^{m}, b^{s} a^{t}\right)-1\right) \tag{7}\\
& \equiv b^{l+s} a^{m+t}\left(\left(b^{l} a^{m}, b^{s} a^{t}\right)-1\right) \quad\left(\bmod \Im\left(G^{\prime}\right)^{2}\right),
\end{align*}
$$

and

$$
\begin{aligned}
\left(b^{l} a^{m}, b^{s} a^{t}\right) & \equiv\left(b^{l}, a^{t}\right)\left(a^{m}, b^{s}\right) \equiv(b, a)^{l t}(a, b)^{m s} \\
& \equiv x^{m s-l t} \quad\left(\bmod \left(G^{\prime}\right)^{p}\right),
\end{aligned}
$$

because $\gamma_{3}(G) \subseteq\left(G^{\prime}\right)^{p}$. Thus $\left(b^{l} a^{m}, b^{s} a^{t}\right)=x^{m s-l t+p i}$ for some i. In view of the identity $u v-1=(u-1)(v-1)+(u-1)+(v-1)$, we have

$$
\begin{aligned}
\left(b^{l} a^{m}, b^{s} a^{t}\right)-1 & \equiv(m s-l t+p i)(x-1) \\
& \equiv(m s-l t)(x-1) \quad\left(\bmod \Im\left(G^{\prime}\right)^{2}\right)
\end{aligned}
$$

and putting this into (7) we obtain (6).
Now, let $k \geq 1, l, m, s, t \in \mathbb{Z}, z_{1}, z_{2} \in \Im\left(G^{\prime}\right)^{2^{k}}$ and set

$$
f_{k}\left(l, m, s, t, z_{1}, z_{2}\right)=\left[b^{l} a^{m}(x-1)^{2^{k}-1}+z_{1}, b^{s} a^{t}(x-1)^{2^{k}-1}+z_{2}\right] .
$$

We shall show that

$$
\begin{align*}
& f_{k}\left(l, m, s, t, z_{1}, z_{2}\right) \\
& \quad \equiv(m s-l t) b^{l+s} a^{m+t}(x-1)^{2^{k+1}-1} \quad\left(\bmod \Im\left(G^{\prime}\right)^{k^{k+1}}\right) \tag{8}
\end{align*}
$$

Lemma 1(ii) ensures that the elements $\left[b^{l} a^{m}(x-1)^{2^{k}-1}, z_{2}\right],\left[z_{1}, z_{2}\right]$ and [$\left.z_{1}, b^{s} a^{t}(x-1)^{2^{k}-1}\right]$ belong to $\mathfrak{I}\left(G^{\prime}\right)^{2^{k+1}}$, thus

$$
\begin{aligned}
& f_{k}\left(l, m, s, t, z_{1}, z_{2}\right) \\
& \quad \equiv\left[b^{l} a^{m}(x-1)^{2^{k}-1}, b^{s} a^{t}(x-1)^{2^{k}-1}\right] \quad\left(\bmod \Im\left(G^{\prime}\right)^{2^{k+1}}\right) .
\end{aligned}
$$

In the case $p=2$, Lemma 3 forces $b^{l} a^{m}, b^{s} a^{t} \in G_{\beta}$, so we may apply Lemma 2(ii) to obtain that

$$
\left[b^{l} a^{m},(x-1)^{2^{k}-1}\right],\left[(x-1)^{2^{k}-1}, b^{s} a^{t}\right] \in \Im\left(G^{\prime}\right)^{2^{k}+1} .
$$

Furthermore, for $p>2$ the above inclusion follows from Lemma 1(i). This implies that

$$
f_{k}\left(l, m, s, t, z_{1}, z_{2}\right) \equiv\left[b^{l} a^{m}, b^{s} a^{t}\right](x-1)^{2^{k+1}-2} \quad\left(\bmod \Im\left(G^{\prime}\right)^{2^{k+1}}\right),
$$

which, together with (6), proves (8).
Define the following three series inductively by:

$$
u_{0}=a, \quad v_{0}=b, \quad w_{0}=b^{-1} a^{-1}
$$

and, for $k>0$,

$$
u_{k+1}=\left[u_{k}, v_{k}\right], \quad v_{k+1}=\left[u_{k}, w_{k}\right], \quad w_{k+1}=\left[w_{k}, v_{k}\right] .
$$

Obviously, the k-th elements of these series belong to $\delta^{[k]}(F G)$. By induction on k we show for odd k that

$$
\begin{align*}
u_{k} & \equiv \pm b a(x-1)^{2^{k}-1} \quad\left(\bmod \mathfrak{I}\left(G^{\prime}\right)^{2^{k}}\right) ; \\
v_{k} & \equiv \pm b^{-1}(x-1)^{2^{k}-1} \quad\left(\bmod \mathfrak{I}\left(G^{\prime}\right)^{2^{k}}\right) ; \tag{9}\\
w_{k} & \equiv \pm a^{-1}(x-1)^{2^{k}-1} \quad\left(\bmod \Im\left(G^{\prime}\right)^{2^{k}}\right),
\end{align*}
$$

and if k is even then

$$
\begin{align*}
u_{k} & \equiv \pm a(x-1)^{2^{k}-1} \quad\left(\bmod \Im\left(G^{\prime}\right)^{2^{k}}\right) ; \\
v_{k} & \equiv \pm b(x-1)^{2^{k}-1} \quad\left(\bmod \Im\left(G^{\prime}\right)^{k^{k}}\right) ; \tag{10}\\
w_{k} & \equiv \pm b^{-1} a^{-1}(x-1)^{2^{k}-1} \quad\left(\bmod \Im\left(G^{\prime}\right)^{2^{k}}\right) .
\end{align*}
$$

Evidently, $u_{1}=[a, b]=b a(x-1)$, and by (6) we have

$$
v_{1}=\left[a, b^{-1} a^{-1}\right] \equiv-b^{-1}(x-1) \quad\left(\bmod \Im\left(G^{\prime}\right)^{2}\right),
$$

and $w_{1}=\left[b^{-1} a^{-1}, b\right] \equiv-a^{-1}(x-1)\left(\bmod \Im\left(G^{\prime}\right)^{2}\right)$. Therefore (9) holds for $k=1$.

Now, assume that (9) is true for some odd k. According to (8) the congruences

$$
\begin{aligned}
u_{k+1} & = \pm f_{k}\left(1,1,-1,0, u_{k}{ }^{\prime}, v_{k}^{\prime}\right) \\
& \equiv \pm(-1) a(x-1)^{2^{k+1}-1} \quad\left(\bmod \mathfrak{I}\left(G^{\prime}\right)^{2^{k+1}}\right) ; \\
v_{k+1} & = \pm f_{k}\left(1,1,0,-1, u_{k}{ }^{\prime}, v_{k}^{\prime}\right) \\
& \equiv \pm b(x-1)^{2^{k+1}-1} \quad\left(\bmod \Im\left(G^{\prime}\right)^{2^{k+1}}\right) ; \\
w_{k+1} & = \pm f_{k}\left(0,-1,-1,0, u_{k}{ }^{\prime}, v_{k}^{\prime}\right) \\
& \equiv \pm b^{-1} a^{-1}(x-1)^{2^{k+1}-1} \quad\left(\bmod \Im\left(G^{\prime}\right)^{2^{k+1}}\right)
\end{aligned}
$$

hold, where $u_{k}{ }^{\prime}, v_{k}{ }^{\prime}, w_{k}{ }^{\prime}$ are suitable elements from $\mathfrak{I}\left(G^{\prime}\right)^{2^{k}}$. Similarly,
supposing the truth of (10) for some even k we see

$$
\begin{aligned}
u_{k+1} & = \pm f_{k}\left(0,1,1,0, u_{k}{ }^{\prime}, v_{k}{ }^{\prime}\right) \\
& \equiv \pm b a(x-1)^{2^{k+1}-1} \quad\left(\bmod \Im\left(G^{\prime}\right)^{2^{k+1}}\right) ; \\
v_{k+1} & = \pm f_{k}\left(0,1,-1,-1, u_{k}{ }^{\prime}, v_{k}{ }^{\prime}\right) \\
& \equiv \pm(-1) b^{-1}(x-1)^{2^{k+1}-1} \quad\left(\bmod \Im\left(G^{\prime}\right)^{2^{k+1}}\right) ; \\
w_{k+1} & = \pm f_{k}\left(-1,-1,1,0, u_{k}{ }^{\prime}, v_{k}{ }^{\prime}\right) \\
& \equiv \pm(-1) a^{-1}(x-1)^{2^{k+1}-1} \quad\left(\bmod \Im\left(G^{\prime}\right)^{2^{k+1}}\right) .
\end{aligned}
$$

So, (9) and (10) are valid for any $k>0$.
Assume that $k<\left\lceil\log _{2}\left(p^{n}+1\right)\right\rceil$. Then $2^{k}-1<p^{n}$ and the elements u_{k}, v_{k}, w_{k} are nonzero in $\delta^{[k]}(F G)$, thus $\mathrm{dl}_{L}(F G) \geq\left\lceil\log _{2}\left(p^{n}+1\right)\right\rceil$.

At the same time, Remark 1(i) says that $\mathrm{dl}_{L}(F G) \leq\left\lceil\log _{2}\left(p^{n}+1\right)\right\rceil$.

3. Proofs of Theorem 1 and Corollary 1

Proof of Theorem 1. For $p=2$ and $n<3$ the statement is a consequence of Remark 1(i) and Theorem 3 in [5]. In the other cases Lemma 5 and Lemma 6 state the required result. The proof is complete.

Proof of Corollary 1. Clearly, if G^{\prime} is cyclic the statement immediately follows from Theorem 1. Now, assume that G^{\prime} is noncyclic and $\delta^{[n]}(F G) \neq 0$. We know from [2] that $F G$ is Lie nilpotent, and as we have already seen, $\delta^{[n]}(F G) \subseteq(F G)^{\left(2^{n}\right)}$. Thus $(F G)^{\left(2^{n}\right)} \neq 0$ and Theorem 1 of [4] states that $G^{\prime}=C_{2} \times C_{2}$ and $\gamma_{3}(G) \neq 1$. Conversely, if $G^{\prime}=C_{2} \times C_{2}$ then $t\left(G^{\prime}\right)=3$ and $\mathrm{dl}_{L}(F G) \leq\left\lceil\log _{2}(2 \cdot 3)\right\rceil=3$. Furthermore, when $\gamma_{3}(G) \neq 1$, Theorem 3 in [5] says that $\mathrm{dl}_{L}(F G) \neq 2$. Therefore $\mathrm{dl}_{L}(F G)=3$ and the corollary is proved.

Acknowledgements. The author would like to thank C. Bagiv́ski and L. G. Kovács for their valuable comments and suggestions.

References

[1] C. Bagiński, A note on the derived length of the unit group of a modular group algebra, Comm. Algebra 30 (2002), 4905-4913.
[2] A. A. Bovdi and I. I. Khripta, Generalized Lie nilpotent group rings, Math. Sb. (N.S.) 129(171), no. 1 (1986), 154-158.
[3] A. A. Bovdi and J. Kurdics, Lie properties of group algebra and the nilpotency class of the group of units, J. Algebra 212, no. 1 (1999), 28-64.
[4] V. Bovdi and E. Spinelli, Modular group algebras with maximal Lie nilpotency indices, Publ. Math. Debrecen 65, no. 1-2 (2004), 243-252.
[5] F. Levin and G. Rosenberger, Lie metabelian group rings, North-Holland Math. Stud. 126 (1986), 153-161 (to appear in Group and semigroup rings (Johannesburg, 1985)).
[6] I. B. S. Passi, D. S. Passman and S. K. Sehgal, Lie solvable group rings, Canad. J. Math. 25 (1973), 748-757.
[7] M. Sahai, Lie solvable group algebras of derived length three, Publ. Mat. 39, no. 2 (1995), 233-240.
[8] A. Shalev, The derived length of Lie soluble group rings I., J. Pure Appl. Algebra 78, no. 3 (1992), 291-300.
[9] A. Shalev, The derived length of Lie soluble group rings II., J. London Math. Soc. (2) 49, no. 1 (1994), 93-99.

TIBOR JUHÁSZ
INSTITUTE OF MATHEMATICS
UNIVERSITY OF DEBRECEN
H-4010 DEBRECEN, P.O. BOX 12
HUNGARY
E-mail: juhaszti@math.klte.hu

[^0]: Mathematics Subject Classification: 16S34, 17B30.
 Key words and phrases: group algebras, Lie derived length.

