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On the derived length of Lie solvable group algebras

By TIBOR JUHÁSZ (Debrecen)

Dedicated to Professor Adalbert Bovdi on his 70th birthday

Abstract. Let G be a nilpotent group with cyclic commutator subgroup of
order pn and let F be a field of characteristic p. It is shown here that the Lie
derived length of the group algebra FG is at most �log2(pn + 1)�. Furthermore,
this bound is achived if and only if one of the following conditions is satisfied: (i)
p is odd; (ii) p = 2 and n ≤ 2; (iii) p = 2, n ≥ 3 and the nilpotency class of G is
at most n.

1. Introduction

Let G be a group and F a field. The group algebra FG may be consi-
dered as a Lie algebra, with the usual bracket operation. Define the Lie
derived series and the strong Lie derived series of the group algebra FG

respectively as follows: let δ[0](FG) = δ(0)(FG) = FG and

δ[n+1](FG) =
[
δ[n](FG), δ[n](FG)

]
,

δ(n+1)(FG) =
[
δ(n)(FG), δ(n)(FG)

]
FG,

where [X,Y ] is the additive subgroup generated by all Lie commutators
[x, y] = xy − yx with x ∈ X and y ∈ Y . We say that FG is Lie solv-
able if there exists m ∈ N such that δ[m](FG) = 0 and the number
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dlL(FG) = min{m ∈ N | δ[m](FG) = 0} is called the Lie derived length
of FG. Similarly, FG is said to be strongly Lie solvable of derived length
dlL(FG) = m if δ(m)(FG) = 0 and δ(m−1)(FG) �= 0. According to a result
of Passi, Passman and Sehgal [6] a group algebra FG is Lie solvable
if and only if one of the following conditions holds: (i) G is abelian; (ii)
char(F ) = p and the commutator subgroup G′ of G is a finite p-group;
(iii) char(F ) = 2 and G has a subgroup H of index 2 whose commutator
subgroup H ′ is a finite 2-group. It is easy to check that a group algebra
FG is strongly Lie solvable if either G is abelian or char(F ) = p and G′ is
a finite p-group.

Let G be a group with commutator subgroup of order pn and
char(F ) = p. Shalev [8] showed that

dlL(FG) ≤ �log2(2t(G
′))�,

where t(G′) denotes the nilpotent index of the augmentation ideal of FG′

and �r� the upper integral part of a real number r. Moreover, Lemma 2.2 in
[8] states that if G is nilpotent of class 2 then dlL(FG) ≤ �log2(t(G′)+1)�.
In particular, according to Proposition 2.3 in [8], if G is nilpotent of class 2
and G′ is cyclic of order pn, then

dlL(FG) = �log2(p
n + 1)�.

In this paper our goal is to generalize the above results of Shalev for
the case when the nilpotency class of G is not necessary 2. We obtain the
following.

Theorem 1. Let G be a nilpotent group with cyclic commutator

subgroup of order pn and let F be a field of characteristic p. Then

dlL(FG) ≤ �log2(pn + 1)� with equality if and only if one of the following

conditions holds:

(i) p is odd;

(ii) p = 2 and G′ is of order less than 8;

(iii) p = 2, n ≥ 3 and G has nilpotency class at most n.

Moreover, if char(F ) = 2 we can extend our result as follows.
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Corollary 1. Let G be a nilpotent group with commutator subgroup

of order 2n and let F be a field of characteristic 2. Then dlL(FG) = n + 1
if and only if one of the following conditions holds:

(i) G′ is the noncyclic group of order 4 and γ3(G) �= 1;

(ii) G′ is cyclic of order less than 8;

(iii) G′ is cyclic, n ≥ 3 and G has nilpotency class at most n.

In this paper ω(FG) denotes the augmentation ideal of FG; for a nor-
mal subgroup H ⊆ G we understand by I(H) the ideal FG · ω(FH). For
x, y, x1, x2, . . . , xn ∈ G let xy = y−1xy, (x, y) = x−1xy, and the commuta-
tor (x1, x2, . . . , xn) is defined inductively to be

(
(x1, x2, . . . , xn−1), xn

)
. By

ζ(G) we mean the center of the group G, by γn(G) the n-th term of the
lower central series of G with γ1(G) = G. Furthermore, denote by Cn the
cyclic group of order n. The n-th term of the upper Lie power series of FG

is denoted by (FG)(n) which is the associative ideal generated by all Lie
commutators [x, y] with x ∈ FG(n−1) and y ∈ FG, where FG(1) = FG.

We shall use freely the identities

[x, yz] = [x, y]z + y[x, z], [xy, z] = x[y, z] + [x, z]y,

and for units a, b, c the commutator identities

(a, bc) = (a, c)(a, b)c = (a, c)(a, b)(a, b, c);

(ab, c) = (a, c)b(b, c) = (a, c)(a, c, b)(b, c),

and that [a, b] = ba((a, b) − 1).

2. Preliminaries

We begin with a statement of independent interest about the strong
Lie derived length of group algebras which generalizes the Corollary 4 of
Bagiński’s paper [1].

Proposition 1. Let G be a nilpotent group whose commutator sub-

group G′ is a finite p-group and let char(F ) = p. If γ3(G) ⊆ (G′)p then

dlL(FG) = �log2(t(G
′) + 1)�.
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Proof. We show by induction on n that

δ(n)(FG) ⊆ (FG)(2
n) for all n ≥ 0.

Evidently, δ(0)(FG) = (FG)(1) and assume that δ(n)(FG) ⊆ (FG)(2
n) for

some n. By elementary properties of upper Lie power series,

δ(n+1)(FG) =
[
δ(n)(FG), δ(n)(FG)

]
FG ⊆ [

(FG)(2
n), (FG)(2

n)
]
FG

⊆ (FG)(2
n+1)FG = (FG)(2

n+1).

In view of γ3(G) ⊆ (G′)p, Theorem 3.1(i) from [3] states that (FG)(2
n) =

I(G′)2n−1. Furthermore, Lemma 2.2 in [7] asserts I(G′)2n−1 ⊆ δ(n)(FG)
for all n ≥ 1 and we have δ(n)(FG) = I(G′)2n−1. It is easy to see that
δ(n)(FG) = 0 if and only if 2n − 1 ≥ t(G′), therefore n ≥ log2(t(G′) + 1),
which implies the statement. �

Remark 1. (i) Since δ[n](FG) ⊆ δ(n)(FG) for all n, Proposition 1
yields an upper bound on the Lie derived length. Furthermore, if G is
nilpotent with cyclic commutator subgroup of order pn, then the condition
γ3(G) ⊆ (G′)p holds and thus

dlL(FG) ≤ �log2(p
n + 1)�.

But, as we will see, the equality does not always hold.

(ii) As the following examples show, Proposition 1 breaks down with-
out the condition γ3(G) ⊆ (G′)p.

• Let G be a group with G′ = C2 × C2 such that γ3(G) �= 1 and let
char(F ) = 2. Then γ3(G) � (G′)2 and, by Theorem 3 and Theorem 6
from [5], dlL(FG) > 2. So dlL(FG) �= �log2(t(G′) + 1)�, because now
�log2(t(G′) + 1)� = 2.

• Let G be a group with G′ = C3 × C3 × C3 such that γ3(G) �= 1 and
let char(F ) = 3. Then γ3(G) � (G′)3 and, by Theorem 2.3 from [7],
dlL(FG) > 3. It follows that dlL(FG) �= �log2(t(G′) + 1)�, because
�log2(t(G′) + 1)� = 3.
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The next lemma will be used in the proof of the theorem.

Lemma 1. Let G be a nilpotent group with cyclic commutator sub-

group of order pn and let char(F ) = p. Then for all m,k ≥ 1

(i)
[
ωm(FG′), ω(FG)

] ⊆ I(G′)m+p−1;

(ii)
[
I(G′)m,I(G′)k

] ⊆ I(G′)m+k+1.

Proof. (i) We use induction on m. For every y ∈ G′ and g ∈ G we
have

[y − 1, g − 1] = [y, g] = gy
(
(y, g) − 1

) ∈ I
(
γ3(G)

) ⊆ I(G′)p.

This shows that the statement (i) holds for m = 1, because the elements
of the form g − 1 with 1 �= g ∈ G constitute an F -basis of ω(FG).

Now, assume that
[
ωm(FG′), ω(FG)

] ⊆ I(G′)m+p−1 for some m.
Then[

ωm+1(FG′), ω(FG)
]

⊆ ωm(FG′)
[
ω(FG′), ω(FG)

]
+

[
ωm(FG′), ω(FG)

]
ω(FG′)

⊆ ωm(FG′)I(G′)p + I(G′)m+p−1ω(FG′) ⊆ I(G′)m+p,

and the proof of (i) is complete.

(ii) The statement (ii) is a consequence of (i), because

I(G′) = ω(FG)ω(FG′) + ω(FG′). �
Let G be a group with commutator subgroup G′ = 〈x | x2n

= 1〉,
where n ≥ 3. It is well known that the automorphism group aut(G′) of
G′ is a direct product of the cyclic group 〈α〉 of order 2 and the cyclic
group 〈β〉 of order 2n−2 where the action of these automorphisms on G′ is
given by α(x) = x−1, β(x) = x5. For g ∈ G, let τg denote the restriction
to G′ of the inner automorphism h 
→ hg of G. The map G → aut(G),
g 
→ τg is a homomorphism whose kernel coincides with the centralizer
C = CG(G′). Clearly, the map ϕ : G/C → aut(G′) given by ϕ(gC) = τg is
a monomorphism.

The subset
Gβ = {g ∈ G | ϕ(gC) ∈ 〈β〉}

of G will play an important role in the sequel. It is easy to check that
Gβ is a subgroup of index not greater than 2 and g ∈ Gβ if and only if
xg = x5i

for some i ∈ Z.
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Lemma 2. Let G be a group with cyclic commutator subgroup of

order 2n, where n ≥ 3 and let char(F ) = 2. Then

(i) (y, g) ∈ (G′)4 for all y ∈ G′ and g ∈ Gβ;

(ii)
[
ωm(FG′), ω(FGβ)

] ⊆ I(G′)m+3.

Proof. Let g ∈ Gβ and y ∈ G′.

(i) Clearly, (y, g) = y−1yg = y−1+5i
for some i ≥ 0 and −1 + 5i ≡ 0

(mod 4). Therefore, (y, g) ∈ (G′)4.
(ii) Using (i) we have that

[y − 1, g − 1] = [y, g] = gy
(
(y, g) − 1

) ∈ I(G′)4,

from which (ii) follows for m = 1. One can now finish the proof by induc-
tion, as in Lemma 1(i). �

Lemma 3. Let G be a group with commutator subgroup G′ = 〈x |
x2n

= 1〉, where n ≥ 3. Then the following are equivalent:

(i) Gβ = G.

(ii) G has nilpotency class at most n.

Proof. First of all, note that G is a nilpotent group of class at most
n + 1.

(i)⇒ (ii) By Lemma 2(i), γ3(G) ⊆ (G′)4, so |γ2(G)/γ3(G)| ≥ 4 and
the class of G is at most n.

(ii)⇒ (i) Suppose that G has nilpotency class at most n, but Gβ �= G.
We claim that x2k−2 ∈ γk(G) for all k ≥ 2. Indeed, this is clear for k = 2
and assume its truth for some k ≥ 2. If g ∈ G \ Gβ then (x2k−2

, g) ∈
γk+1(G) and (x2k−2

, g) = x2k−2(−1−5i) = (x2k−1
)j with some i and odd j.

This means that x2k−1 ∈ γk+1(G), as desired. Therefore, γn+1(G) �= 1,
which is a contradiction. �

Lemma 4. Let G be a group with commutator subgroup G′ = 〈x |
x2n

= 1〉, where n ≥ 3. If G has nilpotency class n + 1 then (g, h) ∈ (G′)2

for all g, h ∈ Gβ .

Proof. If the lemma were not true we could choose the elements
g, h ∈ Gβ so that (g, h) = x. By definition of Gβ we may additionally
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assume that (g, x) = 1. Lemma 3 states that G \ Gβ �= ∅; let y be in
G \ Gβ . Evidently, (g, y) = xi for some i. Using the equalities

gh = gx, gh−1
= g(x−1)h

−1
, gy = gxi, gy−1

= g(x−i)y
−1

it is easy to check

g = g(h,y) = gh−1y−1hy =
(
g(x−1)h

−1)y−1hy = gy−1hyx−1

=
(
g(x−i)y

−1)hy
x−1 =

(
gx(x−i)y

−1h
)y

x−1 = gxixy(x−i)y
−1hyx−1

= g(x, y)(x−i, hy),

which is a contradiction. Indeed, keeping in mind that y ∈ G\Gβ and h ∈
Gβ we have (x, y) = x−1−5j ∈ 〈x2〉 \ 〈x4〉 and (x−i, hy) = xi(1−5l) ∈ 〈x4〉,
thus (x, y)(x−i, hy) �= 1. �

The author wishes to thank C. Bagiński for the elementary proof of
the previous lemma.

Lemma 5. Let G be a group with commutator subgroup G′ = 〈x |
x2n

= 1〉, where n ≥ 3 and let char(F ) = 2. If G has nilpotency class n+1
then dlL(FG) ≤ n.

Proof. Clearly, the set of the Lie commutators [a, b] with a, b ∈ G

spans the F -space δ[1](FG). Since [a, b] = gh + g with g = ba and h= b,
while of course gh + g = [a, b] with a = h−1g and b= h whenever g, h∈G,
this spanning set for δ[1](FG) can also be described as the set of the
elements gh + g with g, h ∈ G. It follows that the Lie commutators
[g1

h1 + g1, g2
h2 + g2], where g1, g2, h1, h2 ∈ G, span δ[2](FG). We shall

compute these Lie commutators. It is easy to check that

[g1
h1 + g1, g2

h2 + g2] = g2g1

((
(g1, g2) + 1

)(
(g2, h2) + 1

)(
(g1, h1) + 1

)
+ (g2, h2)

(
(g2, h2, g1) + 1

)(
(g1, h1) + 1

)
+ (g1, g2)(g1, h1)

(
(g1, h1, g2) + 1

)(
(g2, h2) + 1

))
.

(1)

Firstly, if neither g1 nor g2 are in Gβ then

[gh1
1 + g2, g2

h2 + g2] = b	3 (2)
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for some b ∈ Gβ and 	3 ∈ ω3(FG′). Indeed, it is clear from the definition of
Gβ that then g2g1 ∈ Gβ . Furthermore, the second factor on the right-hand
side of (1) always belongs to ω3(FG′), because γ3(G) ⊆ (G′)2.

Secondly, if g1 or g2, say g1, belongs to Gβ , then we claim that

[gh1
1 + g1, g2

h2 + g2] = g	4 (3)

for some 	4 ∈ ω4(FG′) and g ∈ G.
For g1 ∈ Gβ , Lemma 2(i) asserts (g2, h2, g1) ∈ (G′)4, therefore the

right-hand side of (1) can be written as

[g1
h1 + g1, g2

h2 + g2] = g2g1

((
(g1, g2) + 1

)(
(g1, h1) + 1

)

+ (g1, g2)(g1, h1)
(
(g1, h1, g2) + 1

))(
(g2, h2) + 1

)
+ g2g1	4

(4)

for some 	4 ∈ ω4(FG′). In order to prove (3) it will be sufficient to show
that the element for some 	4 ∈ ω4(FG′). In order to prove (3) it will be
sufficient to show that the element

ϑ =
(
(g1, g2) + 1

)(
(g1, h1) + 1

)
+ (g1, g2)(g1, h1)

(
(g1, h1, g2) + 1

)
from the right-hand side of (4) belongs to ω3(FG′).

This is clear if g2 also belongs to Gβ , because then by Lemma 4 and
Lemma 2(i) both summands of ϑ are in ω3(FG′). Furthermore, if g2 /∈ Gβ ,
then xg2 = x−5l

for some l and we distinguish the following three cases:
Case 1: (g1, h1) ∈ (G′)2. Then (g1, h1, g2) = (g1, h1)−1−5l ∈ (G′)4 and

ϑ ∈ ω3(FG′).
Case 2: (g1, g2) ∈ (G′)2. By the well-known Hall–Witt identity,

(g1, h1, g2)h
−1
1 (h−1

1 , g−1
2 , g1)g2(g2, g

−1
1 , h−1

1 )g1 = 1.

Lemma 2(i) ensures that the second factor on the left-hand side belongs
to (G′)4 and this is true for the last factor too, because

(g2, g
−1
1 , h−1

1 ) =
(
(g1, g2)g

−1
1 , h−1

1

)

=
(
(g1, g2)g

−1
1

)−1
(g1, g2)g

−1
1 h−1

1 = (g1, g2)2i
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for some i. This means that (g1, h1, g2) ∈ (G′)4, which proves ϑ ∈ ω3(FG′).
Case 3: (g1, h1) /∈ (G′)2 and (g1, g2) /∈ (G′)2. Then 〈(g1, h1)〉 =

〈(g1, g2)〉 = G′ and (g1, g2) = (g1, h1)k for some odd k. With the nota-
tion y = (g1, h1) ϑ can be written as

ϑ = (yk + 1)(y + 1) + yk+1(y−5l−1 + 1) = yk−5l
+ 1 + y(yk−1 + 1).

Of course, if k ≡ 1 (mod 4) then y−5l−1+1 and y(yk−1+1) are in ω4(FG′),
therefore ϑ ∈ ω4(FG′). Otherwise, if k ≡ 3 (mod 4) then yk−3 + 1 ∈
ω4(FG′) which implies that

y(yk−1 + 1) = y
(
(yk−3 + 1)(y2 + 1) + (yk−3 + 1) + (y2 + 1)

)

≡ y(y2 + 1) ≡ y2 + 1 (mod ω3(FG′)).

Similarly, we can obtain that

yk−5l
+ 1 = (yk−5l−2 + 1)(y2 + 1) + (yk−5l−2 + 1) + (y2 + 1)

≡ y2 + 1 (mod ω3(FG′)).

Hence

ϑ = yk−5l
+ 1 + y(yk−1 + 1) ≡ 2(y2 + 1) ≡ 0 (mod ω3(FG′)),

which completes the checking of (3).
Let S be the additive subgroup generated by all elements of the form

g	4 and b	3, where g ∈ G, b ∈ Gβ and 	3 ∈ ω3(FG′), 	4 ∈ ω4(FG′). We
claim that [S, S] ⊆ I(G′)8. Indeed, the additive subgroup [S, S] can be
spanned by some Lie commutators of the forms [g	4, h	3] and [b1	3, b2η3]
with g ∈ G, b1, b2 ∈ Gβ, 	3, η3 ∈ ω3(FG′), 	4 ∈ ω4(FG′). Furthermore,
by Lemma 1(i),

[g	4, h	3] = g[	4, h	3] + [g, h	3]	4

= g[	4, h + 1]	3 + hg
(
(g, h) + 1

)
	3	4 + h[g + 1, 	3]	4 ∈ I(G′)8,

and by Lemma 2(ii) and Lemma 4,

[b1	3, b2η3] = b1[	3, b2η3] + [b1, b2η3]	3

= b1[	3, b2 + 1]η3 + b2[b1 + 1, η3]	3 + b1b2

(
(b1, b2) + 1

)
η3	3
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also belongs to I(G′)8. Therefore, [S, S] ⊆ I(G′)8.
From (2) and (3) we get δ[2](FG) ⊆ S, so we have

δ[3](FG) =
[
δ[2](FG), δ[2](FG)

] ⊆ [S, S] ⊆ I(G′)8.

Now, we use induction on k to show that

δ[k](FG) ⊆ I(G′)2
k

for all k ≥ 3. (5)

Indeed, assuming the validity of (5) for some k ≥ 3 we have

δ[k+1](FG) =
[
δ[k](FG), δ[k](FG)

] ⊆ [
I(G′)2

k
,I(G′)2

k] ⊆ I(G′)2
k+1

and this proves the truth of (5) for every k ≥ 3.
Keeping in mind that G′ has order 2n, (5) implies that δ[n](FG) = 0.

Hence dlL(FG) ≤ n and the proof is complete. �

Lemma 6. Let G be a nilpotent group with commutator subgroup

G′ = 〈x | xpn
= 1〉, char(F ) = p and assume that one of the following

conditions holds:

(i) p = 2, n ≥ 3 and G has nilpotency class at most n;

(ii) p is odd.

Then dlL(FG) = �log2(pn + 1)�.
Proof. Since G′ is cyclic of order pn, we can choose a, b ∈ G such

that (a, b) = x. First of all, we claim that

[blam, bsat] ≡ (ms − lt)bl+sam+t(x − 1) (mod I(G′)2) (6)

for every l, s,m, t ∈ Z. Indeed, an easy computation yields
[
blam, bsat

]
= bsatblam

(
(blam, bsat) − 1

)
= bl+sam+t(at, bl)a

m(
(blam, bsat) − 1

)
≡ bl+sam+t

(
(blam, bsat) − 1

)
(mod I(G′)2),

(7)

and
(blam, bsat) ≡ (bl, at)(am, bs) ≡ (b, a)lt(a, b)ms

≡ xms−lt (mod (G′)p),
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because γ3(G) ⊆ (G′)p. Thus (blam, bsat) = xms−lt+pi for some i. In view
of the identity uv − 1 = (u − 1)(v − 1) + (u − 1) + (v − 1), we have

(blam, bsat) − 1 ≡ (ms − lt + pi)(x − 1)

≡ (ms − lt)(x − 1) (mod I(G′)2)

and putting this into (7) we obtain (6).
Now, let k ≥ 1, l,m, s, t ∈ Z, z1, z2 ∈ I(G′)2k

and set

fk(l,m, s, t, z1, z2) =
[
blam(x − 1)2

k−1 + z1, b
sat(x − 1)2

k−1 + z2

]
.

We shall show that

fk(l,m,s, t, z1, z2)

≡ (ms − lt)bl+sam+t(x − 1)2
k+1−1 (mod I(G′)2

k+1
). (8)

Lemma 1(ii) ensures that the elements
[
blam(x − 1)2

k−1, z2

]
,
[
z1, z2

]
and[

z1, b
sat(x − 1)2

k−1
]

belong to I(G′)2k+1
, thus

fk(l,m,s, t, z1, z2)

≡ [
blam(x − 1)2

k−1, bsat(x − 1)2
k−1

]
(mod I(G′)2

k+1
).

In the case p = 2, Lemma 3 forces blam, bsat ∈ Gβ , so we may apply
Lemma 2(ii) to obtain that

[
blam, (x − 1)2

k−1
]
,
[
(x − 1)2

k−1, bsat
] ∈ I(G′)2

k+1.

Furthermore, for p > 2 the above inclusion follows from Lemma 1(i). This
implies that

fk(l,m, s, t, z1, z2) ≡ [blam, bsat](x − 1)2
k+1−2 (mod I(G′)2

k+1
),

which, together with (6), proves (8).
Define the following three series inductively by:

u0 = a, v0 = b, w0 = b−1a−1,
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and, for k > 0,

uk+1 = [uk, vk], vk+1 = [uk, wk], wk+1 = [wk, vk].

Obviously, the k-th elements of these series belong to δ[k](FG). By induc-
tion on k we show for odd k that

uk ≡ ±ba(x − 1)2
k−1 (mod I(G′)2

k
);

vk ≡ ±b−1(x − 1)2
k−1 (mod I(G′)2

k
);

wk ≡ ±a−1(x − 1)2
k−1 (mod I(G′)2

k
),

(9)

and if k is even then

uk ≡ ±a(x − 1)2
k−1 (mod I(G′)2

k
);

vk ≡ ±b(x − 1)2
k−1 (mod I(G′)2

k
);

wk ≡ ±b−1a−1(x − 1)2
k−1 (mod I(G′)2

k
).

(10)

Evidently, u1 = [a, b] = ba(x − 1), and by (6) we have

v1 = [a, b−1a−1] ≡ −b−1(x − 1) (mod I(G′)2),

and w1 = [b−1a−1, b] ≡ −a−1(x−1) (mod I(G′)2). Therefore (9) holds for
k = 1.

Now, assume that (9) is true for some odd k. According to (8) the
congruences

uk+1 = ±fk(1, 1,−1, 0, uk
′, vk

′)

≡ ±(−1)a(x − 1)2
k+1−1 (mod I(G′)2

k+1
);

vk+1 = ±fk(1, 1, 0,−1, uk
′, vk

′)

≡ ±b(x − 1)2
k+1−1 (mod I(G′)2

k+1
);

wk+1 = ±fk(0,−1,−1, 0, uk
′, vk

′)

≡ ±b−1a−1(x − 1)2
k+1−1 (mod I(G′)2

k+1
)

hold, where uk
′, vk

′, wk
′ are suitable elements from I(G′)2k

. Similarly,
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supposing the truth of (10) for some even k we see

uk+1 = ±fk(0, 1, 1, 0, uk
′, vk

′)

≡ ±ba(x − 1)2
k+1−1 (mod I(G′)2

k+1
);

vk+1 = ±fk(0, 1,−1,−1, uk
′, vk

′)

≡ ±(−1)b−1(x − 1)2
k+1−1 (mod I(G′)2

k+1
);

wk+1 = ±fk(−1,−1, 1, 0, uk
′, vk

′)

≡ ±(−1)a−1(x − 1)2
k+1−1 (mod I(G′)2

k+1
).

So, (9) and (10) are valid for any k > 0.
Assume that k < �log2(pn + 1)�. Then 2k − 1 < pn and the elements

uk, vk, wk are nonzero in δ[k](FG), thus dlL(FG) ≥ �log2(pn + 1)�.
At the same time, Remark 1(i) says that dlL(FG) ≤ �log2(pn+1)�. �

3. Proofs of Theorem 1 and Corollary 1

Proof of Theorem 1. For p = 2 and n < 3 the statement is a
consequence of Remark 1(i) and Theorem 3 in [5]. In the other cases
Lemma 5 and Lemma 6 state the required result. The proof is complete.

�

Proof of Corollary 1. Clearly, if G′ is cyclic the statement im-
mediately follows from Theorem 1. Now, assume that G′ is noncyclic and
δ[n](FG) �= 0. We know from [2] that FG is Lie nilpotent, and as we
have already seen, δ[n](FG) ⊆ (FG)(2

n). Thus (FG)(2
n) �= 0 and The-

orem 1 of [4] states that G′ = C2 × C2 and γ3(G) �= 1. Conversely, if
G′ = C2 × C2 then t(G′) = 3 and dlL(FG) ≤ �log2 (2 · 3)� = 3. Further-
more, when γ3(G) �= 1, Theorem 3 in [5] says that dlL(FG) �= 2. Therefore
dlL(FG) = 3 and the corollary is proved. �

Acknowledgements. The author would like to thank C. Bagiński

and L. G. Kovács for their valuable comments and suggestions.



256 T. Juhász : On the derived length of Lie solvable group algebras

References
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