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Finite sets of binary forms

By PAULO RIBENBOIM (Kingston)

Abstract. We prove the finiteness of certain sets of binary cubic forms with
given non-zero discriminant or having discriminants with bounded radical. To
obtain finite sets we impose appropriate conditions on the coefficients, or on the
Hessian and the cubic covariant of the forms. Some of the results are extended
to binary forms of degree higher than these. We also give theorems which are
proved under the assumption that the (ABC) conjecture is true.

1. The results in this paper

Let n ≥ 2. A homogeneous polynomial f(X,Y ) = a0X
n +a1X

n−1Y +
· · · + an−1XY n−1 + anY n is called a binary form of degree n. We shall
always assume that the coefficients a0, a1, . . . , an are integers.

If n = 3 the binary cubic form f(X,Y ) = aX3 + bX2Y + cXY 2 + dY 3

is also denoted by f = 〈a, b, c, d〉. We shall write “form” instead of “binary
form” and we exclude the zero form from our considerations.

If f is a form of degree n ≥ 2 there exist algebraic numbers αi, βi such
that

f =
n∏

i=1

(αiX − βiY ).

Mathematics Subject Classification: 11D41.
Key words and phrases: binary cubic form, (ABC) conjecture, binary forms with given
discriminant.
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By definition, the discriminant of f is

∆f =
∏
i<j

(αiβj − βiαj)2.

Then ∆f is an integer and ∆f = 0 if and only if f has two proportional
linear factors in the above decomposition.

The discriminant may be computed in terms of the coefficients of
the form. More precisely, for every n ≥ 2 there exists a polynomial
Φn ∈Z[X0,X1, . . . ,Xn], such that Φn is homogeneous of degree 2(n − 1),
and if f = a0X

n +a1X
n−1 + · · ·+anY n then ∆f = Φn(a0, a1, . . . , an). We

also note that Φn has degree n − 1 in X0 and also in Xn. It follows that
if e is any non-zero integer then ∆ef = e2(n−1)∆f .

For cubic forms f = 〈a, b, c, d〉 we have:

∆f = b2c2 + 18 a b c d − 4 ac3 − 4b3 d − 27 a2d2.

In this paper we shall describe sets of forms which are finite and ef-
fectively computable. We shall prove that a set of forms is finite and
effectively computable by applying theorems, producing effective bounds
for the elements of the set, which are based on Bakers’s theorems on linear
forms in logarithms [1].

We obtain our results comparing the set of forms under consideration
with sets known to be finite and effectively computable.

In this section we state the theorems which will be proved in the
paper, but we do not state explicity the results which may be obtained by
interchanging X and Y . Thus, for cubic forms f = 〈a, b, c, d〉, the theorems
are also true interchanging a and d, and b and c.

A) Sets of form with a given non-zero discriminant and additional
conditions on the coefficients

In the first theorems we consider cubic forms f = 〈a, b, c, d〉 and we
impose conditions on the coefficients a, b and c.

First, we consider forms with a = 0. If N ≡ 0 or 1 (mod 4), the set
S of forms f = 〈0, b, c, d〉 with ∆f = N is infinite. Indeed, let c > |N | and
c = N + 2k, then c2 ≡ N2 (mod 4) c2 −N ≡ N(N − 1) ≡ 0 (mod 4). Let
d = c2−N

4 , then f = 〈0, 1, c, d〉 has discriminant ∆f = c2 − 4d = N . On the
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other hand, it is easily seen that if N ≡ 2 or 3 (mod 4) then the set of all
f = 〈0, b, c, d〉 with ∆f = N is empty.

The Theorems 1.1, 1.2 and 1.3 are special cases of Corollary 1.3 of
Győry [8] (which is formulated for polynomials in Z[X]). The interest of
the proofs presented here lies in the fact that, except for an appel to the
theorem of Schinzel and Tijdeman, the proofs are entirely elementary.

1.1. Theorem. Let N �= 0 be an integer, let S be the set of all cubic

forms f = 〈a, b, c, d〉 such that b = 0 and ∆f = N . Then S is finite and

effectively computable.

1.2. Theorem. Let N , a0, b0 be non-zero integers, let S be the set of all

cubic forms f = 〈a, b, c, d〉 such that ∆f = N , a = a0, b = b0. Then S is

finite and effectively computable.

1.3. Theorem. Let N �= 0, a0 �= 0 and c0 be integers and let S be the

set of all cubic forms f = 〈a, b, c, d〉 such that ∆f = N , a = a0 and c = c0.

Then S is finite and effectively computable.

1.4. Theorem. Let N �= 0, b0, c0 be integers, let S be the set of all cubic

forms f = 〈a, b, c, d〉 such that ∆f = N , b = b0 and c = c0. Then S is

finite and effectively computable.

In the results which follow we consider forms f of degree n ≥ 2 and
we impose, for example, conditions to be satisfied by f(1, 0) and f(0, 1).

If k ≥ 2 the symbol ♦(k) denotes a non-zero integer which is a hth

power, for some h ≥ k. In particular, ♦(k) may be equal to 1.

1.5. Theorem. Let N , m and m′ be non-zero integers. Let S be the set

of all forms f of degree 2 such that:

1) ∆f = N

2) f(1, 0) = m

3) f(0, 1) = m′♦(3).

Then S is finite and effectively computable.
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1.6. Corollary. Let P =
(

x x′
y y′

)
with x, x′, y, y′ ∈ Z and det P �= 0.

Then the statement of Theorem 1.5 still holds replacing (1, 0) by (x, y)
and (0, 1) by (x′, y′).

If R is a positive square-free integer, let R× denote the set of all
integers all of whose prime factors divide R. If n is a non-zero integer, the
radical of n is the product of the distinct prime factors of n. We denote
the radical of n by rad n. Clearly rad n divides R if and only if n ∈ R×.

The special case of Theorem 1.7(a) where f(1, 0) = 1 and f(0, 1) ∈ R×

was proved by Győry [9] (see Corollary 1).

1.7. Theorem. Let n ≥ 3, let R be a positive square-free integer. Let W

be the set of all forms f of degree n, such that ∆f �= 0 and f(1, 0) ∈ R×.

a) Let N and m′ be non-zero integers, let S be the set of all f ∈ W such

that:

a1) ∆f = N

a2) f(0, 1) ∈ R× or f(0, 1) = n′♦(2).

Then S is finite and effectively computable.

b) Let S be the set of all f ∈ W such that:

b1) ∆f ∈ R×

b2) f(0, 1) ∈ R×

Then there exists a finite effectively computable subset S0 of S such

that if f ∈ S there exists f0 ∈ S0 and e, k, � ∈ R× such that ef(X,Y ) =
f0(kX, �Y ).

1.8. Corollary. Let R be a positive square-free integer, let Q =
(

z z′
t t′

)
and d = det Q �= 0.

a) (1.7) holds, replacing (1, 0) by (z, t) and (0, 1) by (z′, t′) .

b) Let Q∗ =
(

t′ −z′
−t z

)
let S be the set of all binary forms f of degree n

with ∆f ∈ R×, f(z, t) ∈ R×, f(z′, t′) ∈ R×.

Then for every f ∈ S there exists e, k, � ∈ R×, h ∈ ..., P ∈ Ph (with

the notation of (1.7)) such that dne f = h
P
(

k 0
0 �

)
Q∗ .

Let n ≥ 1 and 0 ≤ j ≤ n − 1. If f is a form of degree n, we shall use
the notation Djf = ∂jf

∂Xj . So Djf is a form of degree n − j.
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1.9. Theorem. Let n ≥ 3 and 0 ≤ j ≤ n − 2, let N0, N1, . . . , Nj be

integers such that Nj �= 0. Let W be the set of all forms f of degree n

such that

1) ∆Dif = Ni for i = 0, 1, . . . , j

a) Let j ≥ n − 3, let R be a positive square-free integer and m′ �= 0. Let

S be the set of all forms f ∈ W such that:

2) f(1, 0) ∈ R×

3) either Djf(0, 1) ∈ R× or Djf(0, 1) = m′♦(2).

b) Let j = n − 2, let m, m′ be non-zero integers, let S be the set of all

forms f ∈ W such that:

2) f(1, 0) = m

3) Djf(0, 1) = m′♦(3).

Then in both cases (a) and (b) the set S is finite and effectively computable.

B) Sets of cubic forms with Hessian and cubic covariant satisfying
certain conditions

Let f = 〈a, b, c, d〉. By definition, the Hessian of f is

Hf (X,Y ) =
1
4

[
∂2f

∂X2
· ∂2f

∂Y 2
−

(
∂2f

∂X∂Y

)2
]

and the cubic covariant of f is

Qf (X,Y ) =
∂f

∂X
· ∂H

∂Y
− ∂f

∂Y
· ∂H

∂X
.

We shall give in Section 3 the explicit expressions of the Hessian and
the cubic covariant in terms of the coefficients of f(X,Y ). In Section 3 we
shall also give the fundamental identity satisfied by the Hessian and the
cubic covariant.

1.10. Theorem. Let P =
(

x x′
y y′

)
with x, y, x′, y′ ∈ Z and det P = 1. Let

N , B, B′ be non-zero integers such that 2B2 and 2B′2 are not cubes. Let

S be the set of all cubic forms f such that:

1) ∆f = N

2) Qf (x, y) = B and Qf (x′, y′) = B′.
Then S is finite and effectively computable.
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1.11. Theorem. Let P =
(

x x′
y y′

)
with detP = 1, let N , A, A′ be non-

zero integers, such that A and A′ are not squares. Let S be the set of all

cubic forms f such that:

1) ∆f = N

2) Hf (x, y) = A, Hf (x′, y′) = A′.

a) If N > 0 then S is finite and effectively computable.

b) If N < 0 then either S = ∅ or S is infinite and there is an

algorithm to determine when S is empty.

1.12. Theorem. Let P =
(

x x′
y y′

)
with det P = 1, let A, B be integers

such that 4A3 − B2 �= 0. Let S be the set of all cubic forms f such that:

1) Hf (x, y) = A, Qf (x, y) = B;
either:

2) there exists a positive square-free integer R such that

f(x′, y′) ∈ R×;

or 2’) there exists m′ �= 0 such that f(x′, y′) = m′♦(2);

or 2”) there exist integers A′, B′ such that 4A′3 − B′2 �= 0 and

Hf (x′, y′) = A′, Qf (x′, y′) = B′.
Then S is finite and effectively computable.

1.13. Theorem. Let P =
(

x x′
y y′

)
with x, x′, y, y′ ∈ Z and detP = 1, let

R be a positive square-free integer and e ≥ 1, m′ �= 0. Let S be the set of

all cubic forms f such that:

1) ∆f ∈ R×, f(xy) ∈ R×

2) gcd(Hf (x, y), Qf (x, y)) = e

3) either f(x′, y′) ∈ R× or f(x′, y′) ∈ m′♦(2).

Then S is finite and effectively computable.

1.14. Theorem. Let R be a positive square-free integer, let e≥ 1, m′ �= 0.
Let S be the set of all cubic forms f = 〈a, b, c, d〉 such that:

1) ∆f ∈ R×, a ∈ R×
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2) gcd(3ac − b2, 3a(9ad − bc)) = e

3) either d ∈ R×, or d = m′♦(2).

Then S is finite and effectively computable.

C) Result proved under the assumption that the (ABC) Conjec-
ture is true.

We state the (ABC) Conjecture (see Nitaj [16], Ribenboim [1]):

1.15. (ABC) Conjecture. For every real number ε > 0, there exists a

real number Kε > 0 (depending on ε) such that if A, B, C are non-zero

coprime integers such that A + B + C = 0, then max{|A|, |B|, |C|} ≤
Kε[rad(ABC)]1+ε.

If n is a non-zero integer, the radical index of n, denoted by rad indn,
is the real number γ ≥ 1 such that (rad n)γ = |n| (see Ribenboim [18]).
Let R be a positive square-free integer, let γ ≥ 1. We denote by I(R, γ)
the set of all integers uv, where

u ∈ R×, v ≥ 1, gcd(v,R) = 1

and rad ind v ≥ γ.
The next theorem is a modified and connected version of a result

suggested by the referee of this paper.

1.16. Theorem. Assume that the (ABC) Conjecture is true. Let n ≥ 3,
0 ≤ j ≤ n − 2, let R be a positive square-free integer and δ > 0. Let W

be the set of all forms f of degree n such that:

1) ∆f �= 0, ∆Djf �= 0

2) f(1, 0) ∈ I
(
R, n

n−2 + δ
)

3) Djf(0, 1) ∈ I
(
R, n−j

n−j−1 + δ
)

a) Let N �= 0 and let S be the set of all f ∈ W such that ∆f = N .

Then S is finite.

b) Let S be the set of all forms f ∈ W such that ∆f ∈ R×. Then

there exists a finite subset S0 of S such that if f ∈ S there exists

f0 ∈ S0 and e, k, � ∈ R× such that ef(X,Y ) = f0(kX, �X).
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2. Proof of the results of Section 1(A)

Let f be a form of degree n ≥ 2, let P = ( x1 y1
x2 y2 ). We define fP (X,Y ) =

f(x1X+y1Y, x2X+y2Y ), so fP is again a form of the same degree n and we
have ∆fP

= ∆f (det P )n(n−1). If P ′ is also a matrix, then fPP ′ = (fP )P ′ .
Henceforth we shall only consider matrices with integer entries. If

g = fP for some 2× 2 matrix P with (integer entries and) detP = ±1, we
say that the forms f and g are equivalent ; then

∆f = ∆g.

Hermite showed in [10]:

2.1. Theorem. For any non-zero integer N the set ε of equivalence classes

of forms of degree 2 (respectively 3) with ∆f = N is finite and effectively

computable.

See also Cassels [4].
We shall need the following theorem of Schinzel & Tijdeman ([19]):

2.2. Theorem. Let be given f ∈ Z[X] and a non-zero integer a. Then

there exists C > 0, effectively computable in terms of f and a, and such

that if x, k, t are integers satisfying f(x) = at, with k ≥ 2 if f has at least

three simple roots, or with k ≥ 3 if f has exactly two simple roots, then

max{|x|, |tk|} ≤ C.

2.3. Proof of Theorem 1.1. Let S be the set of all f = 〈a, b, c, d〉 with
b = 0 and ∆f = N . So −a(4c3 + 27 ad2) = N , hence a �= 0 and a belongs
to the finite and effectively computable set of factors of N . Let a0 be any
factor of N . Then 4c3 + 27 a0d

2 = −N
a0

�= 0, that is 4c3 + N
a0

= −27a0d
2.

If d = 0 then c has at most one possible value. Now let d �= 0.
The polynomial f(X) = 4X3 + N

a0
has three simple roots. By 2.2

there exists an effectively computable integer C(a0) > 0 such that |c|,
|d| < C(a0). This is true for every factor a0 of N , hence the set S is finite
and effectively computable. �
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2.4. Proof of Theorem 1.2. If f = 〈a0, b0, c, d〉 ∈ S then N = b2
0c

2 +
18 a0b0cd − 4 a0c

3 − 4 b3
0d − 27 a2

0d
2. If d = 0 then N = b2

0c
2 − 4a0c

3 so c

belongs to a finite and effectively computable set and the subset of all
f = 〈a0, b0, c, 0〉 of S is finite and effectively computable.

Now let d �= 0. We have:

27 a2
0d

2 − (18 a0b0c + 4 b3
0)d + (N − b2

0c
2 + 4 a0c

3) = 0.

Case 1. N − b2
0c

2 + 4a0c
3 = 0 so c belongs to a finite and effectively

computable set. But d �= 0, then 27 a2
0d − (18 a0b0c + 4 b3

0) = 0 so d also
belongs to a finite and effectively computable set.

Case 2. N − b2
0c

2 + 4a0c
3 �= 0. From the quadratic relation satisfied

by d, we must have

(18 a0b0c + 4 b3
0)

2 − 4 × 27 a2
0(N − b2

0c
2 + 4 a0c

3) = �,

where � denotes any square.
We shall show that the polynomial

(18 a0b0X + 4 b3
0)

2 − 4 × 27 a2
0(N − b2

0X
2 + 4 a0X

3)

has simple roots, equivalently,

F (X) = 4 × 27 a3
0X

3 − 108 a2
0b

2
0X

2 − 36a0b
4
0X + (27 a2

0N − 4 b6
0)

has simple roots. The roots of F ′(X) are b20
3a0

(1 ± √
2 ). If these are also

roots of F (X) then by a simple calculation (−24 b6
0+27 a2

0N)∓16 b6
0

√
2 = 0,

which is impossible.
By the theorem of Schinzel & Tijdeman the set {c | d �= 0 and f =

〈a0, b0, c, d〉 ∈ S} is finite and effectively computable and from the qua-
dratic relation satisfied by d, the set {d | f = 〈a0, b0, c, d〉 ∈ S} is also
finite and effectively computable. �

2.5. Proof of Theorem 1.3. If f = 〈a0, b, c0, d〉 ∈ S then N = b2c2
0 +

18 a0bc0d − 4 a0c
3
0 − 4b3d − 27 a2

0d
2. If d = 0 then N = b2c2

0 − 4a0c
3
0 so b

belongs to a finite and effectively computable set, hence the set {f ∈ S |
d = 0} is finite and effectively computable. If d �= 0 we have 27 a2

0d
2 −

(18 a0bc0 + 4 b3)d + (N − b2c2
0 + 4 a0c

3
0) = 0.
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Case 1. N − b2c2
0 + 4 a0c

3
0 = 0. Since N �= 0 we have c0 �= 0 and b is

defined by the above relation; finally, the quadratic relation satisfies by d,
defines d and this case is settled.

Case 2. N − b2c2
0 + 4 a0c

3
0 �= 0. Since d satisfies the quadratic relation

indicated, we have (18 a0bc0 + 4 b3)2 − 4 × 27 a2
0(N − b2c2

0 + 4 a0c
3
0) = �.

Subcase (a): N = −8a0c
3
0. Then (18 a0bc0 + 4 b3)2 + 4× 27 a2

0(4 a0c
3
0 +

b2c2
0) = � and this gives (b2 + 3a0c0)3 = �, hence there exists an integer t

such that b2 + 3a0c0 = t2. Thus t2 − b2 = 3a0c0, so t + b and t − b belong
to the finite and effectively computable set of divisors of 3a0c0, the same
holds for b. It follows from the quadratic relation satisfied by d that d

also belongs to a finite and effectively computable set and this subcase is
settled.

Subcase (b): N �= −8a0c
3
0. We shall show that the polynomial G(X) =

(18 a0c0X + 4X3)2 − 4 × 27 a2
0(N − c2

0X
2 + 4a0c

3
0) = 4X6 + 36 a0c0X

4 +
108 a2

0c
2
0X

2 − 27 a2
0N − 4 × 27 a3

0c
3
0 has at least three simple zeros.

Let H(Y ) = 4Y 3 +36 a0c0Y
2 +108 a2

0c
2
0Y − (27 a2

0N +108 a3
0c

3
0). Then

H ′(Y ) = 12(Y + 3a0c0)2. If H(Y ) has a double root α, then α = −3a0c0.
But H(−3a0c0) = 4(−3a0c0)3 + 36 a0c0(−3a0c0)2 + 108 a2

0c
2
0(−3a0c0) −

(27 a2
0N + 108 a3

0c
3
0) = −27 a2

0(N + 8a0c
3
0) �= 0.

This shows that H(Y ) has three simple roots, hence G(X) has six
simple roots.

It follows from the theorem of Schinzel & Tijdeman that b belongs
to a finite and effectively computable set. Finally, from the quadratic
relation satisfied by d, we conclude that d belongs to a finite and effectively
computable set also in this subcase.

This concludes the proof. �

2.6. Proof of Theorem 1.4. For every f ∈ S we have N = b2
0c

2
0 +

18 b0c0ad−4 ac3
0−4b3

0d−27 a2d2. If b0 = 0 or c0 = 0 then by 1.1 S is finite
and effectively computable. Let b0c0 �= 0. We rewrite 27 a2d2 + (4b3

0 −
18 b0c0a)d + (N − b2

0c
2
0 + 4ac3

0) = 0.
If a = 0 then d = 1

4b30
(b2

0c
2
0−N). Now let a �= 0 hence d = −B±√

B2−4AC
2A

where A = 33a2, B = 4b3
0 − 18 b0c0a, C = N − b2

0c
2
0 + 4ac3

0.



Finite sets of binary forms 271

We have

|d| ≤ |B|
2 × 33a2

+
√

B2 − 4AC

2 × 33a2
·

|B|
2 × 33a2

≤ 4|b0|3
2 × 33a2

+
18|b0c0| × |a|

2 × 33a2
≤ 2|b0|3

33
+

|b0c0|
3

.

Next

|B2 − 4AC|
22 × 36a4

≤ B2

22 × 36a4
+

|AC|
36a4

,

B2

22 × 36a4
=

|24b6
0 + 22 × 34b2

0a
2
0a

2 − 24 × 32b4
0c0a|

22 × 36a4

22|b0|6
36a4

+
|b0c0|2
32a2

+
22|b0|4|c0|

34|a|3 ≤ 22|b0|6
36

+
|b0c0|2

32
+

22|b0|4|c0|
34

,

|AC|
33a4

=
|33a2(N − b2

0c
2
0 + 4ac3

0)|
33a4

≤ |N |
a2

+
|b0c0|2

a2
+

4|c0|3
|a|

≤ |N | + |b0c0|2 + 4|c0|3.

Putting together, there exists an integer K > 0 (depending on N , b0, c0)
such that |d| ≤ K. Similarly, there exists K ′ > 0 such that |a| ≤ K ′.
Hence S is finite and effectively computable. �

2.7. Proof of Theorem 1.5. Let f = aX2 + bXY + cY 2 ∈ S. So
∆f = b2 − 4ac = N .

By assumption a = m, c = m′♦(3) so b2 − N = 4mm′♦(3). Since
the polynomial X2 − N has simple roots, by the Theorem of Schinzel &
Tijdeman 2.2 the set {b | f ∈ S} is finite and effectively computable, so
the same holds for the set {c | f ∈ S}, hence S is finite and effectively
computable. �

2.8. Proof of Corollary 1.6. Let d = det P �= 0, let P ∗ =
(

y′ −x′
−y x

)
so det P ∗ = d, PP ∗ = P ∗P = dI. Let f ∈ S and f̃ = fP , then f̃(1, 0) =
fP (1, 0) = f(x, y) = m, f̃(0, 1) = fP (0, 1) = f(x′, y′) = m′♦(3). Moreover
∆f̃ = ∆fP

= d2N . By Theorem 1.5 the set {f̃ = fP | f ∈ S} is finite
and effectively computable. Now we observe that the mapping f �→ fP
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is injective. Indeed, if f, g ∈ S and fP = gP then d2f = fdI = fPP ∗ =
gPP ∗ = d2g, so f = g and this concludes the proof. �

We shall need the Theorem of Birch & Merriman [2] which extends
to forms of any degree the Theorem of Hermite [10].

Let L be a positive square-free integer.
The forms f , h of degree n ≥ 2 are said to be L-equivalent if there

exist e ∈ L× and P , with detP ∈ L× such that ef = hP . If L = 1 this
means that f and h are equivalent.

If P =
(

x x′
y y′

)
, let P ∗ =

(
y′ −x′
−y x

)
, then PP ∗ = P ∗P = dI where d =

detP = detP ∗ ∈ L×. It follows that efP ∗ = hdI , hence en−1dnh = fP ∗.eI .
Part (a) of the next theorem was proved by Birch & Merriman [2],

while part (b) is due to Evertse & Győry [5].

2.9. Theorem. Let n ≥ 2 let L be a positive square-free integer and let

E be the set of L-equivalence classes of forms f of degree n, with ∆f ∈ L×.

a) E is a finite set.

b) E is effectively computable.

In the next proof we shall need the following theorem of Thue & Mahler
(see [20]):

2.10. Theorem. Let f be a form of degree n ≥ 3, with non-zero dis-

criminant, let R be a positive square-free integer. Then the set of pairs

of coprime integers (x, y) such that f(x, y) ∈ R× is finite and effectively

computable.

2.11. Lemma. Let Q = ( r p
s q ) with det Q = 1. For each pair (x′, y′)

of coprime integers such that P =
(

r x′
s y′

)
has non zero determinant, let

Q−1P = ( 1 z
0 w ). Then:

a) The mapping (x′, y′) �→ (z,w) is a bijection and w = detP .

b) If h is a form of any degree, if g = hQ then g(z,w) = hP (0, 1) =
h(x′, y′).

Proof. The first assertion is trivial. Next

g(z,w) = gQ−1P (0, 1) = hP (0, 1) = h(x′, y′). �
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2.12. Proof of Theorem 1.7. Let L be a positive square-free integer.
By Theorem 2.9 there exits a finite and effectively computable set H of
forms of degree n such that every f ∈ W is L-equivalent to some h ∈ H.

Let P be the set of matrices P =
(

xP x′
P

yP y′
P

)
such that det P ∈ L×

gcd(xP , yP ) = 1 and gcd(x′
P , y′P ) = 1.

For each h ∈ H let Ph = {p ∈ P | hP ∈ W}. If P ∈ Ph then

h(xP , yP ) = hP (1, 0) ∈ R×.

By the Theorem of Thue & Mahler the set Ch = {(xP , yP ) | P ∈ Ph} is
finite and effectively computable.

Proof of (a). We take L = 1, so every f ∈ S is equivalent to some h ∈ H.
Let Ph = {P ∈ Ph | hP ∈ S} so detP = 1 for all hP ∈ P ′

h. It suffices to
show that each set P ′

h is finite and effectively computable.
If f(0, 1)∈R× for all f ∈S, we have h(x′

P , y′P )= hP (0, 1)=f(0, 1)∈R×.
By the Theorem of Thue & Mahler the set C ′

h = {(x′
P , y′P ) | P ∈ P ′

h} is
finite and effectively computable. This implies that P ′

h is finite and effec-
tively computable as it was required to prove.

Now assume that f(0, 1) = m′♦(2) for all f ∈ S. Let (r, s) ∈ Ch. Let
Q = ( r p

s q ), with detQ = 1. For every P =
(

r x′
P

s y′
P

)
∈ P ′

h we have detP = 1

and Q−1P =
(

1 zP
0 wP

)
. By Lemma 2.11 the mapping (x′

P , y′P ) �→ (zP , wP ) is
a bijection and wP = 1. Moreover if g = hQ then g(zP , 1) = gQ−1P (0, 1) =
hP (0, 1) = h(x′

P , y′P ) = m′♦(2). Since ∆g �= 0, the roots of the polynomial
G(X) = g(X, 1) are simple . By the Theorem of Schinzel & Tijdeman
when P =

(
r x′

P

s y′
P

)
∈ P ′

h the set of integers zP is finite and effectively
computable and so is the set of pairs (x′

P , y′P ). Since this holds for every
(r, s) ∈ Ch it follows that P ′

h is finite and effectively computable.

Proof of (b). We take L = R. For each h∈H let P ′
h= {P ∈Ph | hP∈S}

and S0 = {hP | h ∈ H, P ∈ P ′
h}. Hence S0 ⊆ S. If P ∈ P ′

h then
h(x′

P , y′P ) = hP (0, 1) = f(0, 1) ∈ R×. By the Theorem of Thue & Mahler
C ′

h = {(x′
P , y′P ) | P ∈ P ′

h} is finite and effectively computable, hence the
same is true for P ′

h, for each h ∈ H. Therefore S0 is finite and effectively
computable.
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Now let f ∈ S, so there exists e ∈ R× and P with detP ∈ R×, as
well as h ∈ H such that ef = hP . Let P =

(
x x′
y y′

)
with gcd(x, y) = k,

gcd(x′, y′) = �. Let x = kx̄, y = kȳ, x′ = �x̄′, y′ = �ȳ′. Let P̄ =
(

x̄ x̄′
ȳ ȳ′

)
so

P = P̄
(

k 0
0 �

)
, hence k�(det P̄ ) = det P ∈ R×, hence det P̄ , k, � ∈ R×. We

have
ef(X,Y ) = hP (kX, �Y ).

It remains to show that hP̄ ∈ S, therefore hP̄ ∈ S0. First,

e2(n−1)∆f = ∆hP̄
(k�)n(n−1)

hence ∆hP̄
∈ R×.

Also knhP̄ (1, 0) = hP̄ (k, 0) = hP (1, 0) ef(1, 0) ∈ R× because f ∈ S;
so hP̄ (1, 0) ∈ R×.

Similarly hP̄ (0, 1) ∈ R×. This proves that hP̄ ∈ S and concludes the
proof of the Theorem. �

2.13. Proof of Corollary 1.6. a) Let S̃ = {fQ | f ∈ S}. Then
∆fQ

= ∆f (det Q)n(n−1)= N(detQ)n(n−1) �=0. Also fQ(1, 0)= f(z, t) ∈ R×,
fQ(0, 1) = f(z′, t′) ∈ R×. By 1.7 the set S̃ is finite and effectively com-
putable. As it was shown in 1.6, the mapping f �→ fQ from S to S̃ is
injective, hence S is also finite and effectively computable.

b) If f ∈ S, by 1.7 there exists e, k, � ∈ R×, h ∈ H, P ∈ P ′
h such

that efQ = h
P

(
k 0
0 �

). We have QQ∗ = dI hence dnef = efdI = efQQ∗ =
h

P
(

k 0
0 �

)
Q∗. �

We shall need the following lemma:

2.14. Lemma. Let n ≥ 2, let f be a form of degree n and let N be any

integer. Then the set T of all forms g such that Dg = Df and ∆g = N is

finite and effectively computable.

Proof. Let f(X,Y ) = a0X
n + a1X

n−1Y + · · · + anY n. We have
Dg = Df of and only if there exists an integer b such that g(X,Y ) =
f(X,Y )+ bY n. As it was recalled earlier, there exists a homogeneous poly-
nomial Φn(X0,X1, . . . ,Xn), with coefficients in Z, total degree 2(n− 1),
with degree n− 1 in Xn such that ∆g = Φn(a0, a1, . . . , an−1, an + b). Thus
the set {b ∈ Z | ∆g = N} is finite and effectively computable and so is
{g | Dg = Df, and ∆g = N}. �
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2.15. Proof of Theorem 1.9. Let N0, N1, . . . , Nj be integers such that
Nj �= 0.

We have Djf(1, 0) = n(n − 1) . . . (n − j + 1)f(1, 0).

a) Let Rj = rad(n(n−1) . . . (n−j+1)R). If f ∈ S then Djf(1, 0) ∈ R×
j

and Djf(0, 1) ∈ R× ⊆ R×
j or Djf(0, 1) = m′♦(2). From ∆Djf = Nj �= 0,

by Theorem 1.7 the set Tj = {Djf | f ∈ S, ∆Djf = Nj} is finite and
effectively computable.

By repeated application of Lemma 2.14 the set of all f ∈ S such that
∆f = N0, ∆Df = N1, . . . ,∆Djf = Nj is finite and effectively computable.

b) Let f ∈S be such that ∆Djf= Nj �=0. Since Djf(1, 0)=n(n−1) . . .

(n− j + 1)m and Djf(0, 1) = m′♦(3), by Theorem 1.5 the set Tj = {Djf |
∆Djf = Nj , f ∈ S} is finite and effectively computable. The proof is
concluded as in part (a). �

3. Proof of the results of Section 1, (B)

Let f = 〈a, b, c, d〉. We recall that, the Hessian Hf (X,Y ) and the
cubic covariant Qf (X,X) were defined in Section 1, (B).

With a simple calculation, we obtain Hf (X,Y ) = (3ac − b2)X2+
(9ad − bc)XY + (3db − c2)Y 2. As is easily seen:

Qf (X,Y ) = AX3 + BX2Y + CXY 2 + DY 3

where
A = 27 a2d − 9 abc + 2b3

B = 27 abd − 18 ac2 + 3 b2c

C = 27 acd − 18 b2d + 3 bc2

D = 27 ad2 − 9 bcd + 2 c3.

We have the following remarkable identity:

27∆f [f(X,Y )]2 = 4[Hf (X,Y )]3 − [Qf (X,Y )]2.

Thus if ∆f �= 0 and if f(x, y) �= 0 then (Hf (x, y), Qf (x, y) �= (0, 0). For
the above definitions and results see Fricke [6] or Mordell [13].
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3.1. Proof of Theorem 1.10. If f ∈ S then

27N [f(x, y)]2 = 4[Hf (x, y)]3 − B2 �= 0,

by assumption. Since the polynomial 4X3 − B2 has three simple roots
by the Theorem of Schinzel & Tijdeman the set M = {f(x, y) | f ∈ S}
is finite and effectively computable and 0 /∈ M . By a similar argument,
the set M ′ = {f(x′, y′) | f ∈ S} is also finite and effectively computable
and 0 /∈ M ′. For each pair (m,m′) ∈ M × M ′, by Corollary 1.8 the set
of f ∈ S such that f(x, y) = m and f(x′, y′) = m′ is finite and effectively
computable. Hence S is finite and effectively computable. �

For the proof of the next theorem we shall need the following theorem
of Nagell ([14], [15]):

3.2. Theorem. Let D > 0, C �= 0 be integers. Then there exists an

effectively computable integer B > 0, depending on D and C, such that

there exist integers x, y satisfying x2 − Dy2 = C if and only if there exist

integers a, b such that 0 ≤ a ≤ B and 0 ≤ b ≤ B and a2 − Db2 = C. In

the affirmative, the set {(x, y) | x2 − Dy2 = C} is infinite.

3.3. Proof of Theorem 1.11. If f ∈ S let gf = Qf (x, y), g′f =
Qf (x′, y′), m = 3f(x, y), m′ = 3f(x′, y′). So g2 + 3Nm2 = 4A3 and
g′2 + 3Nm′2 = 4A′3.

a) If N > 0 and A < 0 or A′ < 0 the above set of relations is impossible.
If A > 0 and A′ > 0 then M = {m | f ∈ S} and M ′ = {m′ | f ∈ S}

are finite and effectively computable.
By assumption these sets do not contain 0. By Corollary 1.8, for each

pair (m,m′) ∈ M ×M ′ the set {f ∈ S | 3f(x, y) = m and 3f(x′, y′) = m′}
is finite and effectively computable, hence S is finite and effectively com-
putable.

b) Let D = −N > 0. By Theorem 3.2 the sets {(x, y) | x2 − Dy2 =
4A3} and {(x′, y′) | x′2 − Dy′2 = 4A′3} are either empty or infinite and
there is an algorithm to decide if the above sets are empty or in finite. �

3.4. Proof of Theorem 1.12. If f ∈ S then 27∆f [f(x, y)]2 = 4A3 −
B2 �= 0. Then L = {∆f | f ∈ S} is finite and effectively computable, 0 /∈ L

and the set M = {f(x, y) | f ∈ S} is finite and effectively computable
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and 0 /∈ M . For each pair (N,m)∈L×M let S(N,m) = {f ∈S | ∆f= N ,
f(x, y) = m}. It suffices to show that each set S(N,m) is finite and effec-
tively computable. If condition (2) or (2′) is satisfied, by Corollary 1.8
S(N,m) is finite and effectively computable. If condition (2′′) is satisfied,
the above argument shows that M ′ = {f(x′, y′) | f ∈ S} is finite and
effectively computable and 0 /∈ M ′. By Corollary 1.8 S(N,m) is finite and
effectively computable, concluding the proof. �

We shall need the following Theorem of Bugeaud [3]:

3.5. Theorem. Let A, B be non-zero integers, let R > 0 be a square-free

integer, let m ≥ 2, n ≥ 2 with mn ≥ 6. Then there exists an effectively

computable integer C > 0 such that if x, y are non-zero coprime integers

such that Axm + Bym ∈ R× then |x|, |y| < C.

3.6. Proof of Theorem 1.13. If f ∈ S we write hf = Hf (x, y), gf =
Qf (x, y) and hf = euf , gf = evf , where gcd(uf , vf ) = 1. We have 4e3u3

f −
e2v2

f = 4h3
f − g2

f = 27∆f [f(x, y)]2 ∈ R×, where R1 = rad 3R. By the
Theorem of Bugeaud {(uf , vf ) | f ∈ S} is finite and effectively computable,
and so is W = {(hf , gf ) | f ∈ S}. We note that from ∆f �= 0, and
f(x, y) �= 0 then 4w3 −w′2 �= 0 for all (w,w′) ∈ W . By Theorem 1.12 S is
finite and effectively computable. �

3.7. Proof of Corollary 1.14. If f = 〈a, b, c, d〉 then Hf (1, 0) = 3ac−
b2 and Qf (1, 0) = 27 a2d−9 abc+2b3 = −2b(3ac−b2)+3a(9ad−bc). From
the assumption we have gcd(Hf (1, 0), Qf (1, 0)) = e, and the corollary is a
special case of Theorem 1.13. �

3.8. Remark. We give an example of an infinite set S of cubic forms
f = 〈a, b, c, d〉 satisfying the following conditions

1) ∆f �= 0

2) gcd(Hf (1, 1), Qf (1, 1) = 1

3) the set {p prime | there exists f ∈ S such that p divides ∆f} is infi-
nite.

Let d be a non-zero integer, let f = fd = 〈d, 0, 1,−d〉 and let S =
{fd | d ≡ 1 (mod 61)}, so S is an infinite set. A simple calculation gives
∆f = −d(4 + 27d3) f(1, 1) = 1, H(1, 1) = −9d2 + 3d − 1, Qf (1, 1) =
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−27d2−18d+2. Then Hf (1, 1) ≡ 2 (mod 3) and Qf (1, 1) ≡ 2 (mod 3), so
Hf (1, 1) �= 0 and Qf (1, 1) �= 0. We verify that gcd(Hf (1, 1), Qf (1, 1)) = 1.

If a prime power pe divides Hf (1, 1) and Qf (1, 1), it is easily seen that
pe divides 61. But Hf (1, 1) ≡ 2 (mod 3) so pe = 1.

Finally, by the Theorem of Dirichlet there is an infinite sequence
d1 < d2 · · · < dn < . . . of primes, each dn ≡ 1 (mod 61), each dn di-
viding ∆fdn

. �

4. Proof of theorems under the assumption
that the (ABC) Conjecture is true

The next theorem, due to Granville [7], was proved earlier by Lan-

gevin [11], [12], with the additional requirement that f(1, 0) �= 0 and
f(0, 1) �= 0.

4.1. Theorem. Assume that the (ABC) Conjecture is true and let f be

a form of degree n such that ∆f �= 0. Then for every real number ε > 0
there exits a real number K > 0 (depending on ε and f) such that if x, y

are coprime integers and f(x, y) �= 0 then rad f(x, y) ≥ max{|x|, |y|}n−2−ε.

With an additional assumption we obtain a better lower bound for
rad f(x, y):

4.2. Lemma. Assume that the (ABC) Conjecture is true. Let n ≥ 2, let

L be a positive square-free integer and let f be a form of degree n with

∆f �= 0 and f(1, 0) �= 0.
Then for every real number ε > 0 there exists K > 0, depending on

ε, f and L such that if x, y are coprime integers, such that y ∈ L× and

f(x, y) �= 0 then rad f(x, y) ≥ K max{|x|, |y|}n−1−ε.

Proof. Let g(X,Y ) = Y f(X,Y ) so g is a form of degree n + 1. We
have ∆g = f(1, 0)2∆f �= 0. We apply the preceding Theorem to the form
g, noting that g(x, y) �= 0; L rad f(x, y) ≥ rad(yf(x, y)) = rad g(x, y) ≥
K max{|x|, |y|}(n+1)−2−ε. So rad f(x, y) ≥ K

L max{|x|, |y|}n−1−ε where K
L

depends on ε, f and L. �

The following calculations will be used repeatedly:
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4.3. Lemma. Assume that the (ABC) Conjecture is true. Let R be a

positive square-free integer, let δ > 0.

a) Let g be a form of degree n ≥ 3, with ∆g �= 0, let T be the set of

all pairs of coprime integers (x, y) such that g(x, y) ∈ I
(
R, n

n−2 + δ
)
. Then

T is finite.

b) Let g be a form of degree n ≥ 2 with ∆g �= 0 and such that

g(1, 0) �= 0. Let L be a positive square-free integer and let T be the set of all

pairs of coprime integers (x, y), such that y ∈ L×, g(x, y) ∈ I
(
R, n

n−1 + δ
)
.

Then T is finite.

Proof. a) If (x, y) ∈ T then g(x, y) = uv where u∈R×, gcd(v,R)= 1
and rad ind v = γ ≥ n

n−2 + δ. Then rad g(x, y) = rad uv ≤ R|v| 1
γ ≤

R|uv| 1
γ = R|g(x, y)| 1

γ ≤ R
[
(n + 1)‖g‖] 1

γ × m
n
γ

(x,y) ≤ R
[
(n + 1)‖g‖]�

mn�
(x,y)

where ‖g‖ is the height of g, m(x,y) = max{|x|, |y|} and � = 1
n

n−2
+δ . We

have n − 2 > n�. Let n < ε < n − 2 − n�. By 4.1 there exists K > 0,
depending on ε, and g, such that rad g(x, y) ≥ Kmn−2−ε

(x,y) .

From mn−2−ε−n�
(x,y) ≤ R

K

[
(n + 1)‖g‖]� it follows that m(x,y) is bounded,

so T is finite.

b) The proof is similar and appeals to Lemma 4.2. �

4.4. Proof of Theorem 1.16. 1◦) The proof is similar to that of Theo-
rem 1.7 – see 2.12 – and we consider L, H, P, Ph as defined there. Again,
S0 = {hP | P ∈ Ph, h ∈ H}, so S0 ⊆ S.

2◦) Proof that S0 is finite and effectively computable. It suffices to
show that for every h ∈ H the set Ph is finite. For every P ∈ Ph let
f = hP , so h(xP , yP ) = hP (1, 0) = f(1, 0) ∈ I

(
R, n

n−2 + δ
)
. By Lemma 4.6

the set Ch = {(xP , yP ) | P ∈ Ph} is finite.
We proceed as in Lemma 2.11. Let (r, s) ∈ Ch, let Q = ( r p

s q ) with
detQ = 1. If P =

(
r x′

P

s y′
P

)
∈ Ph then Q−1P =

(
1 zP
O wP

)
with wP ≡ detP ∈

L× and the mapping (x′
P , y′P ) �→ (zP , wP ) is a bijection. Let g = hQ so

gQ−1P = hP = f ∈ S0.
With a simple calculation we see that if 0≤ j ≤n−2 then (Djg)Q−1P =

Dj(gQ−1P ). If hP = f ∈ S0 then

(Djg)(1, 0) = (Djg)Q−1P (1, 0) = Dj(gQ−1P )(1, 0)
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= Dj(hP )(1, 0) = Djf(1, 0)

= n(n − 1) . . . (n − j + 1)f(1, 0) �= 0.

Also Dj
g(zP , wP ) = (Djg)Q−1P (0, 1) = Djf(0, 1) ∈ I

(
R, n−j

n−j−1 + δ
)
. Since

wP ∈ L× by Lemma 4.3 the set C∗ =
{
(zP , wP ) | P =

(
r x′

P

s y′
P

)
∈ Ph

}
is

finite.
By Lemma 2.11 the corresponding pairs (x′

P , y′P ) belong to a finite set.
Since this is true for each (r, s) ∈ Ch, it follows that Ph is finite, which
suffices to show that S0 is finite.

3◦) Proof of (a).
We take L = 1 then S = S0 so S is finite.

4◦) Proof of (b).
Now we take L = R. Let f ∈ S so there exist h ∈ H, e ∈ R× and P

such that
detP ∈ R× and ef = hP .

Let P =
(

x x′
y y′

)
, k = gcd(x, y), � = gcd(x′, y′), x = kx̄, y = kȳ,

x′ = �x̄′, y′ = �ȳ′ and let P̄ =
(

x̄ x̄′
ȳ ȳ′

)
, hence P = P̄

(
k o
o �

)
; thus (det P̄ )k� =

detP ∈ R× hence det P̄ ∈ R×, k, �,∈ R×. So ef(X,Y ) = hP̄ (kX, �Y ).
It suffices to show that hP̄ ∈ S, hence hP̄ ∈ S0. From ef = hP then

∆h(detP )n(n−1) = e2(n−1)∆f ∈ R×, so ∆h ∈ R× and therefore ∆hP̄
∈ R×.

We have hP = hP̄ (kX, �Y ) hence Dj(hP ) = kj(DjhP̄ )(kX, �Y ) =
kj(DjhP̄ )( k o

o �

).

It follows that e2(n−j−1)∆Djf = k2j(n−j−1) · (k�)(n−j)(n−j−1) × ∆DjhP̄

hence ∆DjhP̄
�= 0.

Next we have knhP̄ (1, 0) = hP̄ (k, 0) = hP (1, 0) = ef(1, 0) = euv

where u ∈ R× gcd(v,R) = 1, rad ind v ≥ n
n−2 + δ. From k ∈ R× then kn

divides eu, hence hP̄ (1, 0) ∈ I
(
R, n

n−2 + δ
)
. In a similar way we show that

DjhP̄ (0, 1) ∈ I
(
R, n−j

n−j−1 + δ
)
.

We have eDjf = Dj(hP ) = Dj(hP̄ (kX, �Y )) = kjDj(hP̄ )(kX, �X).
So �n−jkjDj(hP̄ )(0, 1) = kjDj(hP̄ )(0, 1) = e(Djf)(0, 1) = euv where u ∈
R×, gcd(v,R) = 1 and rad ind v ≥ n−j

n−j−1 + δ. Then �n−jkj divides cu and
so Dj(hP̄ )(0, 1) ∈ I

(
R, n−j

n−j−1 + δ
)
.

This shows that hP̄ ∈ S0 and concludes the proof of (b). �
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4.5. Remark. The real number K, which appears in the statement of 4.1
is effectively computable in terms of the real number, which we had still
denoted by K, in the statement of the (ABC) Conjecture.

As a result, the number of elements of sets appearing in 4.2, 4.3 and 4.4
are effectively computable in terms of K and the given data.
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Publ. Math. Debrecen 21 (1976), 141–165.
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[11] M. Langevin, Partie sans facteur carré de F (a, b) (modulo la conjecture (abc)),
Sém. Th. Nombres, Publ. Math. Univ. Caen (1993-4), 8 pages.

[12] M. Langevin, Imbrications entre le théorème de Mason, la descente de Belyi et
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