The set of pseudo solutions of the differential equation $x^{(m)}=f(t, x)$ in Banach spaces
 By IRENEUSZ KUBIACZYK (Poznań) and ANETA SIKORSKA-NOWAK (Poznań)

Abstract

In this paper we prove the existence theorem for the equation $x^{(m)}=f(t, x(t))$ in Banach spaces where f is weakly-weakly sequentially continuous. Moreover, we prove that the set of pseudo-solutions of our equation is compact and connected.

1. Introduction

In this paper we will deal with the Cauchy problem

$$
\left\{\begin{array}{l}
x^{(m)}=f(t, x(t)) \tag{1.1}\\
x(0)=0, \\
x^{\prime}(0)=\eta_{1}, \ldots, x^{(m-1)}(0)=\eta_{m-1},
\end{array} \quad t \in I=\langle 0, a\rangle, a \in \mathbb{R}_{+}\right.
$$

where $\eta_{1}, \ldots, \eta_{m-1} \in E, m \in \mathbb{N}$.
Throughout this paper $(E,\|\cdot\|)$ will be denote a real Banach space, E^{*} the dual space, $(R) \int_{0}^{t} f(s) d s$ the weak Riemann integral, $(P) \int_{0}^{t} f(s) d s$ the Pettis integral ([8], [9], [12], [16]).

By $(C(I, E), \omega)$ we will denote the space of all continuous functions from I to E endowed with the topology $\sigma\left(C(I, E), C(I, E)^{*}\right)$.

Mathematics Subject Classification: Primary 34G20.
Key words and phrases: differential equations, measures of noncompactness, set of solutions, pseudo-solutions.

This paper is divided into two main sections. In Section 1 we prove an existence theorem for the problem (1.1). In Section 2 we prove that, the set of pseudo-solutions of the equation (1.1) is compact and connected.

The result presented in this paper extends the results for Cichoń [5], Cichoń, Kubiaczyk [6], Cramer, Laksmikantham and Mitchell [7], O'Regan [15], Szufla [17], Szufla and SzukaŁa [18].

Assume that $B=\{x \in E:\|x\|<b, b>0\}$ and $f: I \times B \rightarrow E$. Moreover, let $M=\sup \{\|f(t, x)\|: t \in I, x \in B\}$. Choose a positive number d such that $d \leq a, \sum_{j=1}^{m-1}\left\|\eta_{j}\right\| d_{j!}^{j!}+M \frac{d^{m}}{m!}<b, d^{m}<1,(m>1)$.

Let $J=\langle 0, d\rangle$. We set $\widetilde{B}=\{x \in C(J, E): x(t) \in B, t \in J\}$.
We will consider the problem

$$
\begin{equation*}
x(t)=p(t)+(R) \int_{0}^{t}(R) \int_{0}^{t_{1}} \cdots(P) \int_{0}^{t_{m-1}} f\left(t_{m}, x\left(t_{m}\right)\right) d t_{m} \ldots d t_{2} d t_{1} \tag{1.2}
\end{equation*}
$$

where $p(t)=\left\{\begin{array}{ll}0, & m=1 \\ \sum_{j=1}^{m-1} \eta_{j} \cdot \frac{t^{j}}{j!}, & m>1\end{array}\right.$ is a continuous function.
Now we recall the notion of the pseudo-solution. For such solutions, the problem (1.1) is equivalent to the integral problem (1.2).

Fix $x^{*} \in E^{*}$. Let us introduce the following definition:
Definition 1.1. A function $x: I \rightarrow E$ is said to be a pseudo-solution of the equation (1.1) if it satisfies the following conditions:
(i) x is a strongly absolutely continuous, $(m-1)$-times weakly differentiable,
(ii) $\forall_{x^{*} \in E^{*}} \exists_{\substack{\text { mes } A\left(x^{*}\right) \subset I \\ A}} A\left(x^{*}\right) x^{*} x: I \rightarrow E$ is m-times differentiable,
(iii) $\left(x^{*} x^{(m-1)}\right)^{\prime}(t)=x^{*} f(t, x(t))$ for each $t \notin A\left(x^{*}\right)$ and $x(0)=0$,

$$
x^{\prime}(0)=\eta_{1}, \ldots, x^{(m-1)}(0)=\eta_{m-1} .
$$

In this paper we will use the measure of weak noncompactness developed by DeBlasi [3]. The proofs of properties of the measure of week noncompactness see in [2].

Let A be a bounded nonvoid subset of E.
The de Blasi measure of weak noncompactness $\beta(A)$ is defined by

$$
\beta(A)=\inf \left\{t>0 \text { : there exist } C \in K^{\omega} \text { such that } A \subset C+t B_{0}\right\},
$$

where K^{ω} is the set of weakly compact subsets of E and B_{0} is the norm unit ball.

The properties of measure of weak noncompactness $\beta(A)$ are:
(i) if $A \subset B$ then $\beta(A) \leq \beta(B)$;
(ii) $\beta(A)=\beta(\bar{A})$, where \bar{A} denotes the closure of A;
(iii) $\beta(A)=0$ if and only if A is a weakly relatively compact;
(iv) $\beta(A \cup B)=\max \{\beta(A), \beta(B)\}$;
(v) $\beta(\lambda A)=|\lambda| \beta(A),(\lambda \in \mathbb{R})$;
(vi) $\beta(A+B) \leq \beta(A)+\beta(B)$;
$($ vii $) \beta(\operatorname{conv} A)=\beta(A)$.
We can construct many other measures of noncompactness with the above properties, by using a scheme from [1], [4].

We recall that a function $f: I \times \widetilde{B} \rightarrow E$ is called a Carathéodory function if for each $x \in \widetilde{B}, f(t, x)$ is measurable in t and for almost all $t \in I, f(t, x)$ is continuous. A function $f: I \rightarrow E$ is said to be weakly continuous if it is continuous from I to E endowed with its weak topology.

A function $g: E \rightarrow E_{1}$, where E and E_{1} are Banach spaces, is said to be weakly - weakly sequentially continuous if for each weakly convergent sequence $\left(x_{n}\right) \subset E$, a sequence $\left(g\left(x_{n}\right)\right) \subset E_{1}$.

2. Existence of solution

We will use the following lemmas:
Lemma 2.1 ([14]). Let $H \subset C(I, E)$ be a family of strongly equicontinuous functions. Then $\beta_{C}(H)=\sup _{t \in I} \beta(H(t))=\beta(H(I))$, where $\beta_{C}(H)$ denotes the measure of weak noncompactness in $C(I, E)$ and the function $t \rightarrow \beta(H(t))$ is continuous.

Lemma 2.2 ([6]). Let (X, d) be a metric space and let $g: X \rightarrow(E, \omega)$ be sequentially continuous. If $A \subset X$ is a connected subset in X, then $g(A)$ is a connected subset in (E, ω).

Similar as in [10] we can prove the following lemma.

Lemma 2.3. For each bounded, equicontinuous set $X \subset C(I, E)$ and for each $c, d \in I$ we have

$$
\beta\left(\int_{c}^{d} X(s) d s\right) \leq \int_{c}^{d} \beta(X(s)) d s
$$

where $\int_{c}^{d} X(s) d s=\left\{\int_{c}^{d} x(s) d s: x \in X\right\}$.
In the proof of the main theorem we will apply the following fixed point theorem.

Theorem 2.1 ([13]). Let D be a closed convex subset of E, and let F be a weakly sequentially continuous map from D into itself. If for some $x \in D$ the implication

$$
\begin{equation*}
\bar{V}=\overline{\operatorname{conv}}(\{x\} \cup F(V)) \Rightarrow V \text { is relatively wekly compact } \tag{2.1}
\end{equation*}
$$

Now we prove an existence theorem for the problem (1.1).
Theorem 2.2. Assume, that for each strongly absolutely continuous function $x: J \rightarrow E, f(\cdot, x(\cdot))$ is Pettis integrable, $f(t, \cdot)$ is weakly-weakly sequentially continuous and

$$
\begin{equation*}
\beta(f(J \times X)) \leq h(\beta(X)) \quad \text { for each } X \subset B \tag{2.2}
\end{equation*}
$$

where h is a function such that $h(u)<u$ for $u \in \mathbb{R}_{+}$. Then there exists a pseudo-solution of the problem (1.1) on J.

Proof. By F_{x} we define a mapping

$$
F_{x}(t)=p(t)+(R) \int_{0}^{t}(R) \int_{0}^{t_{1}} \ldots(P) \int_{0}^{t_{m-1}} f\left(t_{m}, x\left(t_{m}\right)\right) d t_{m} \ldots d t_{2} d t_{1}
$$

where $p(t)= \begin{cases}0, & m=1, \\ \sum_{j=1}^{m-1} \eta_{j} \cdot \frac{t^{j}}{j!}, & m>1 .\end{cases}$
We require that $F_{x}: \widetilde{B} \rightarrow \widetilde{B}$ is weakly sequentially continuous.
(i) For any $x^{*} \in E^{*}$ such that $\left\|x^{*}\right\| \leq 1$ and for any $x \in B$ as $\left|x^{*} f(t, x(t))\right| \leq M$ we have

$$
\begin{aligned}
& \left|x^{*} F_{x}(t)\right| \\
& \quad=\left|x^{*}\left[p(t)+(R) \int_{0}^{t}(R) \int_{0}^{t_{1}} \ldots(P) \int_{0}^{t_{m-1}} f\left(t_{m}, x\left(t_{m}\right)\right) d t_{m} \ldots d t_{2} d t_{1}\right]\right|
\end{aligned}
$$

$$
\begin{aligned}
\leq & \left\|x^{*}\right\| \cdot \sum_{j=1}^{m-1}\left\|\eta_{j}\right\| \frac{\left\|t^{j}\right\|}{j!} \\
& +(R) \int_{0}^{t}(R) \int_{0}^{t_{1}} \ldots(P) \int_{0}^{t_{m-1}}\left|x^{*}\left(f\left(t_{m}, x\left(t_{m}\right)\right)\right)\right| d t_{m} \ldots d t_{2} d t_{1} \\
\leq & \sum_{j=1}^{m-1}\left\|\eta_{j}\right\| \frac{d^{j}}{j!}+(R) \int_{0}^{t}(R) \int_{0}^{t_{1}} \ldots(P) \int_{0}^{t_{m-1}} M d t_{m} \ldots d t_{2} d t_{1} \\
\leq & \sum_{j=1}^{m-1}\left\|\eta_{j}\right\| \frac{d^{j}}{j!}+\frac{M \cdot d^{m}}{m!}<b .
\end{aligned}
$$

Hence

$$
\sup \left\{\left|x^{*} F_{x}(t)\right|: x^{*} \in E^{*},\left\|x^{*}\right\| \leq 1\right\} \text { and }\left\|F_{x}(t)\right\| \leq b \text { so } F_{x} \in \widetilde{B} .
$$

(ii) Now we will prove that the set $F_{x}(\widetilde{B})$ is equicontinuous.

Because

$$
\begin{gathered}
\left\|F_{x}(t)-F_{x}(s)\right\| \leq\|p(t)-p(s)\| \\
+\left\|(R) \int_{0}^{t}(R) \int_{0}^{t_{1}} \ldots(P) \int_{0}^{t_{m-1}} f\left(t_{m}, x\left(t_{m}\right)\right) d t_{m} \ldots d t_{2} d t_{1}\right\| \\
\leq\|p(t)-p(s)\|+\frac{M d^{m-1}}{(m-1)!}|t-s|, \quad \text { for each } x \in C(J, E),
\end{gathered}
$$

so $F_{x}(\widetilde{B})$ is strongly equicontinuous.
(iii) Now we will show weakly sequentially continuity of F_{x}.

Let $x_{n} \rightarrow x$ in $(C(I, E), \omega)$.

$$
\begin{aligned}
& \left|x^{*}\left[F_{x_{n}}(t)-F_{x}(t)\right]\right| \\
= & \mid x^{*}\left[p(t)+(R) \int_{0}^{t}(R) \int_{0}^{t_{1}} \ldots(P) \int_{0}^{t_{m-1}} f\left(t_{m}, x_{n}\left(t_{m}\right)\right) d t_{m} \ldots d t_{2} d t_{1}\right. \\
& \left.-p(t)-(R) \int_{0}^{t}(R) \int_{0}^{t_{1}} \ldots(P) \int_{0}^{t_{m-1}} f\left(t_{m}, x\left(t_{m}\right)\right) d t_{m} \ldots d t_{2} d t_{1}\right] \mid
\end{aligned}
$$

$$
\begin{aligned}
& =\left|x^{*}\left[(R) \int_{0}^{t}(R) \int_{0}^{t_{1}} \ldots(P) \int_{0}^{t_{m-1}}\left[f\left(t_{m}, x_{n}\left(t_{m}\right)\right)-f\left(t_{m}, x\left(t_{m}\right)\right)\right] d t_{m} \ldots d t_{2} d t_{1}\right]\right| \\
& \leq(R) \int_{0}^{t}(R) \int_{0}^{t_{1}} \ldots(P) \int_{0}^{t_{m-1}}\left|x^{*}\left[f\left(t_{m}, x_{n}\left(t_{m}\right)\right)-f\left(t_{m}, x\left(t_{m}\right)\right)\right]\right| d t_{m} \ldots d t_{2} d t_{1} .
\end{aligned}
$$

Because $x_{n} \rightarrow x$ in $(C(I, E), \omega)$ and f is weakly sequentially continuous so F_{x} is weakly sequentially continuous.

Suppose that $\bar{V}=\overline{\operatorname{conv}}\left(F_{x}(V) \cup\{0\}\right)$ for some $V \subset \widetilde{B}$.
We will prove that V is relatively weakly compact, thus (2.1) is satisfied. As $F_{x}(V)$ is equicontinuous, the function $v(t) \rightarrow \beta(V(t))$ is continuous (by Lemma 2.1).

By the definition of V, the mean valued theorem for the Pettis integral, Lemma 2.3, the strongly equicontinuity of the family of Riemann integrals, by the properties of β and (2.2) we obtain:

$$
\begin{aligned}
& \beta(V(t))=\beta\left(\overline{\operatorname{conv}}\left(F_{x}(V) \cup\{0\}\right)\right) \leq \beta\left(F_{x}(V)\right) \\
& =\beta\left(p(t)+(R) \int_{0}^{t}(R) \int_{0}^{t_{1}} \ldots(P) \int_{0}^{t_{m-1}} f\left(t_{m}, x\left(t_{m}\right)\right) d t_{m} \ldots d t_{2} d t_{1}\right) \\
& \leq \beta\left((R) \int_{0}^{t}(R) \int_{0}^{t_{1}} \ldots(P) \int_{0}^{t_{m-1}} f\left(t_{m}, x\left(t_{m}\right)\right) d t_{m} \ldots d t_{2} d t_{1}\right) \\
& \leq(R) \int_{0}^{t}(R) \int_{0}^{t_{1}} \ldots(R) \int_{0}^{t_{m-2}} \beta\left[(P) \int_{0}^{t_{m-1}} f\left(t_{m}, x\left(t_{m}\right)\right) d t_{m}\right] d t_{m-1} \ldots d t_{2} d t_{1} \\
& \leq(R) \int_{0}^{t}(R) \int_{0}^{t_{1}} \ldots(R) \int_{0}^{t_{m-2}} \beta\left[t_{m-1} \cdot \overline{\operatorname{conv}} f(J \times V(J))\right] d t_{m-1} \ldots d t_{1} \\
& \leq(R) \int_{0}^{t}(R) \int_{0}^{t_{1}} \ldots(R) \int_{0}^{t_{m-2}} t_{m-1} \cdot h(\beta(V(J))) d t_{m-1} \ldots d t_{1} \\
& \leq \frac{d^{m}}{m!} \cdot h(\beta(V(J))) .
\end{aligned}
$$

By our assumptions about the function h we have

$$
\beta(V(t)) \leq \frac{d^{m}}{m!} \beta(V(J))
$$

So

$$
\beta(V(J)) \leq \frac{d^{m}}{m!} \beta(V(J))
$$

Because $d^{m}<1$, we get $v(t)=\beta(V(t))=0$ for $t \in J$.
By Arzelá-Ascoli's theorem, V is relatively weakly compact. So, by Theorem 2.1 F_{x} has a fixed point in \widetilde{B} which is actually a pseudo-solution of the problem (1.1).

3. Compactness and connectedness

In this part we show that the set of pseudo-solutions of our equation (1.1) is compact and connected.

Theorem 3.1. Under the assumptions of Theorem 2.2 the set S of all pseudo-solutions of the Cauchy problem (1.1) on J is compact and connected in $(C(J, E), \omega)$.

Proof. As $S=F_{x}(S)$, by repeating the above argument, with $V=S$ we can show that S is relatively compact in $(C(J, E), \omega)$. Since F is weakly continuous on $\overline{S(J)^{\omega}}, S$ is weakly closed and consequently weakly compact.

For any $\eta>0$ denotes by S_{η} the set of all functions $u: J \rightarrow E$ satisfying the following conditions:
(i) $u(0)=0, u^{\prime}(0)=\eta_{1}, \ldots, u^{(m-1)}(0)=\eta_{m-1}$,
$\|u(t)-u(s)\| \leq K|t-s|$, for $t, s \in J$, where $K=\sum_{j=1}^{m-1}\left\|\eta_{j}\right\| \frac{d^{j-1}}{j!}+\frac{M d^{m-1}}{(m-1)!}$,
(ii) $\sup _{t \in J}\left\|u(t)-p(t)-(R) \int_{0}^{t}(R) \int_{0}^{t_{1}} \ldots(P) \int_{0}^{t_{m-1}} f\left(t_{m}, x\left(t_{m}\right)\right) d t_{m} \ldots d t_{2} d t_{1}\right\|<\eta$.

The set S_{η} is nonempty as $S \subset S_{\eta}$.

Let $\rho=\min (a, \eta / K)$. For any $\varepsilon \in(0, \rho)$ let $v(\cdot, \varepsilon): J \rightarrow E$ be defined by the formula:

$$
v(t, \varepsilon)= \begin{cases}p(t), & \text { for } 0 \leq t \leq \varepsilon \\ p(t)+(R) \int_{0}^{t}(R) \int_{0}^{t_{1}} \cdots & \\ (P) \int_{0}^{t_{m-1}-\varepsilon} f\left(t_{m}, x\left(t_{m}\right)\right) d t_{m} \ldots d t_{2} d t_{1}, & \text { for } \varepsilon<t \leq d\end{cases}
$$

Clearly $v(\cdot, \varepsilon)$ satisfies (i).
Furthermore we have:

$$
\begin{aligned}
& \left\|v(t, \varepsilon)-p(t)-(R) \int_{0}^{t}(R) \int_{0}^{t_{1}} \ldots(P) \int_{0}^{t_{m-1}} f\left(t_{m}, x\left(t_{m}\right)\right) d t_{m} \ldots d t_{2} d t_{1}\right\| \\
= & \left\{\begin{array}{l}
\left\|(R) \int_{0}^{t}(R) \int_{0}^{t_{1}} \ldots(P) \int_{0}^{t_{m-1}} f\left(t_{m}, x\left(t_{m}\right)\right) d t_{m} \ldots d t_{2} d t_{1}\right\|, \quad \text { for } 0 \leq t \leq \varepsilon \\
\left\|(R) \int_{0}^{t}(R) \int_{0}^{t_{1}} \ldots(P) \int_{t_{m-1}-\varepsilon}^{t_{m-1}} f\left(t_{m}, x\left(t_{m}\right)\right) d t_{m} \ldots d t_{2} d t_{1}\right\|, \quad \text { for } \varepsilon<t \leq d
\end{array}\right. \\
\leq & \frac{M \cdot \varepsilon \cdot d^{m-1}}{(m-1)!}<\eta
\end{aligned}
$$

thus $v(\cdot, \varepsilon)$ satisfies (ii).
Now, we will prove that S_{η} is connected. Define

$$
v_{\varepsilon}(t)= \begin{cases}p(t), & \text { for } 0 \leq t \leq \varepsilon \\ F_{x}\left(v_{\varepsilon}\right)(t-\varepsilon), & \text { for } \varepsilon<t \leq d\end{cases}
$$

where $v_{\varepsilon}=v(\cdot, \varepsilon)$. We will show that the mapping $\varepsilon \rightarrow v_{\varepsilon}(\cdot)$ is sequentially continuous from $(0, \rho)$ into $(C(J, E), \omega)$.

Let $0<\varepsilon<\delta \leq d$ (when $\delta \leq \varepsilon$ the argument is similar).

For $t \in\langle 0, \varepsilon\rangle$

$$
\begin{equation*}
\left|x^{*}\left(v_{\varepsilon}(t)-v_{\delta}(t)\right)\right|=0 . \tag{3.1}
\end{equation*}
$$

For $t \in(\varepsilon, \delta\rangle$

$$
\begin{align*}
& \left|x^{*}\left(v_{\varepsilon}(t)-v_{\delta}(t)\right)\right| \\
& \quad=\mid x^{*}\left[(R) \int_{0}^{t}(R) \int_{0}^{t_{1}} \ldots(P) \int_{0}^{t_{m-1}-\varepsilon} f\left(t_{m}, v_{\varepsilon}\left(t_{m}\right)\right) d t_{m} \ldots d t_{2} d t_{1}\right. \\
& \left.\quad-(R) \int_{0}^{t}(R) \int_{0}^{t_{1}} \ldots(P) \int_{0}^{t_{m-1}-\delta} f\left(t_{m}, v_{\varepsilon}\left(t_{m}\right)\right) d t_{m} \ldots d t_{2} d t_{1}\right] \mid \\
& \quad \leq\left\|x^{*}\right\|\left\|(R) \int_{0}^{t}(R) \int_{0}^{t_{1}} \ldots(P) \int_{0}^{t_{m-1}-\varepsilon} f\left(t_{m}, v_{\varepsilon}\left(t_{m}\right)\right) d t_{m} \ldots d t_{2} d t_{1}\right\| \\
& \quad \leq\left\|x^{*}\right\| \cdot|\delta-\varepsilon| \cdot M \frac{d^{m-1}}{(m-1)!} . \tag{3.2}
\end{align*}
$$

For $t \in(\delta, 2 \delta\rangle$

$$
\begin{align*}
\left|x^{*}\left(v_{\varepsilon}(t)-v_{\delta}(t)\right)\right|= & \left|x^{*}\left(F_{x}\left(v_{\varepsilon}\right)(t-\varepsilon)-F_{x}\left(v_{\delta}\right)(t-\delta)\right)\right| \\
\leq & \left|x^{*}\left[F_{x}\left(v_{\varepsilon}\right)(t-\varepsilon)-F_{x}\left(v_{\epsilon}\right)(t-\delta)\right]\right| \\
& +\left|x^{*}\left[F_{x}\left(v_{\varepsilon}\right)(t-\delta)-F_{x}\left(v_{\delta}\right)(t-\delta)\right]\right| \\
\leq & \left|x^{*}\left[F_{x}\left(v_{\varepsilon}\right)(t-\delta)-F_{x}\left(v_{\delta}\right)(t-\delta)\right]\right| \\
& +\left\|x^{*}\right\| \cdot M \cdot \frac{d^{m-1}}{(m-1)!}|t-\varepsilon-t \delta| \\
= & \left|x^{*}\left(F_{x}\left(v_{\varepsilon}\right)(t-\delta)-F_{x}\left(v_{\delta}\right)(t-\delta)\right]\right| \\
& +\left\|x^{*}\right\| \cdot M \cdot \frac{d^{m-1}}{(m-1)!}|\delta-\varepsilon| . \tag{3.3}
\end{align*}
$$

Let $\left(\delta_{n}\right)$ be a sequence such that $\delta_{n} \rightarrow \varepsilon\left(\delta_{n} \geq \varepsilon\right)$.
By (3.1) and (3.2), it follows that $v_{\delta_{n}}(t)$ converges weakly to $v_{\varepsilon}(t)$, uniformly for $t \in\langle 0, \delta\rangle$. So $F_{x}\left(v_{\delta_{n}}\right)(t) \rightarrow F_{x}\left(v_{\varepsilon}\right)(t)$ weakly on $\langle 0, \delta\rangle$. Now, by (3.3) $v_{\delta_{n}}(t)$ tends to $v_{\varepsilon}(t)$ weakly for each $t \in\langle 0,2 \delta\rangle$.

By repeating the above argument and using induction, we obtain that the $\operatorname{map} \varepsilon \rightarrow v_{\varepsilon}(t)$ from $(0, d)$ into $(C(J, E), \omega)$ is sequentially continuous. Therefore, by Lemma 2.2, the set $\left\{v_{\varepsilon}(\cdot): 0<\varepsilon<d\right\}$ is connected in $(C(J, E), \omega)$.

Let $x \in S_{\eta}$. Choose $\varepsilon>0$ such that $0<\varepsilon<d$ and

$$
\begin{gathered}
\sup _{t \in J}\left\|x(t)-p(t)-(R) \int_{0}^{t}(R) \int_{0}^{t_{1}} \ldots(P) \int_{0}^{t_{m-1}} f\left(t_{m}, x\left(t_{m}\right)\right) d t_{m} \ldots d t_{2} d t_{1}\right\| \\
+M \varepsilon \cdot \frac{d^{m-1}}{(m-1)!}<\eta .
\end{gathered}
$$

For any $q, 0 \leq q \leq d$ let $y(\cdot, q): J \rightarrow E$ be defined by the formula:

$$
y(t, q)= \begin{cases}x(t), & \text { for } 0 \leq t \leq q \\ x(q)+\frac{p(t)-x(q)}{\varepsilon}(t-q), & \text { for } q<t \leq \min (d, q+\varepsilon) \\ p(t)+(R) \int_{0}^{t}(R) \int_{0}^{t_{1}} \cdots & \\ t_{m-1}-\varepsilon \\ (P) \int_{q} f\left(t_{m}, y\left(t_{m}, q\right)\right) d t_{m} \ldots d t_{2} d t_{1}, & \text { for } \min (d, q+\varepsilon)<t<d\end{cases}
$$

By repeating the above consideration, with $y(\cdot, q)$ in the place of $v(\cdot, \varepsilon)$, one can show that $y(\cdot, q) \in S_{\eta}$ for each $q \in\langle 0, d\rangle$ and the mapping $q \rightarrow y(\cdot, q)$ from J into $(C(J, E), \omega)$ is sequentially continuous. Consequently, by Lemma 2.2, the set $T_{x}=\{y(\cdot, q): 0 \leq q \leq d\}$ is connected in $(C(J, E), \omega)$.

As $y(\cdot, 0)=v(\cdot, \varepsilon) \in V \cap T_{x}$, the set $V \cup T_{x}$ is connected, and therefore the set $W=\bigcup_{x \in S_{\eta}} T_{x} \cup V$ is connected in $(C(J, E), \omega)$.

Moreover $S_{\eta} \subset W$, because $x=y(\cdot, d) \in T_{x}$ for each $x \in S_{\eta}$. On the other hand $W \subset S_{\eta}$, since $T_{x} \subset S_{\eta}$ and $V \subset S_{\eta}$. Finally $S_{\eta} \subset W$ is a connected subset of $(C(J, E), \omega)$.

Suppose that the set S is not connected. As S weakly compact, there exist nonempty weakly compact sets W_{1} and W_{2} such that $S=W_{1} \cup W_{2}$
and $W_{1} \cap W_{2}=\emptyset$. Consequently there exists two disjoint weakly open sets U_{1}, U_{2} such that $W_{1} \subset U_{1}, W_{2} \subset U_{2}$. Suppose that for every $n \in N$, there exists a $u_{n} \in V_{n} \backslash U$, where $V_{n}=\overline{S_{1 / n}^{\omega}}$ and $U=U_{1} \cup U_{2}$.

Put $H=\overline{\left\{u_{n}: n \in N\right\}^{\omega}}$. Since $u_{n}-F_{x}\left(u_{n}\right) \rightarrow 0$ in $C(J, E)$ as $n \rightarrow$ ∞ and $H(t) \subset\left\{u_{n}(t)-F_{x}\left(u_{n}\right)(t): u_{n} \in H\right\}+F_{x}(H)(t)$ repeating the argument from Theorem 2.2, one can show that there exists $u_{0} \in H$ such that $u_{0}=F_{x}\left(u_{0}\right)$, i.e. $u_{0} \in S \backslash U$. Furthermore, $S \subset(C(J, E), \omega) \backslash U$, since U is weakly open and hence $u_{0} \in S$, a contradiction.

Therefore, there is $m \in N$ such that $V_{m} \subset U$. Since $U_{1} \cap V_{m} \neq \emptyset \neq$ $U_{2} \cap V_{m}, V_{m}$ is not connected, a contradiction with the connectedness of each V_{n}. Consequently, S is connected in $(C(J, E), \omega)$.

References

[1] J. Banaś and K. Goebel, Measures of Noncompactness in Banach spaces, Vol. 60, Lecture Notes in Pure and Appl. Math., Marcel Dekker, New York and Basel, 1980.
[2] J. Banaś and J. Rivero, On measures of weak noncompactness, Ann. Math. Pura Appl. 125 (1987), 213-224.
[3] F. S. DeBlasi, On a property of the unit sphere in a Banach space, Bull. Math. Soc. Sci. Math. R.S. Roumanie 21 (1977), 259-262.
[4] M. Cichoń, On measures of weak noncompactness, Publicationes Math. Debrecen 45 (1994), 93-102.
[5] M. Cichoń, Weak solutions of differential equations in Banach spaces, Disc. Math. Diff. Inclusions 15 (1995), 5-14.
[6] M. Cichoń and I. Kubiaczyk, On the set of solutions of the Cauchy problem in Banach spaces, Arch. Math. 63 (1994), 251-257.
[7] F. Cramer, V. Lakshmikantham and A. R. Mitchell, On the existence of weak solution of differential equations in nonreflexive Banach spaces, Nonlin. Anal. TMA 2 (1978), 169-177.
[8] J. Diestel and J. J. Jr. Uhl, Vector Measures Math. Surveys, Vol. 15, Providence, Rhode Island, 1977.
[9] R. F. Geitz, Pettis integration, Proc. Amer. Math. Soc. 82 (1991), 81-86.
[10] K. Goebel and W. Rzymowski, An existence theorem for the equation $x^{\prime}=f(t, x)$ in Banach space, Bull. Acad. Pol. Sci. Math. 18 (1970), 367-370.
[11] P. Hartman, Ordinary Differential Equations, New York, 1964.
[12] W. J. Knight, Solutions of differential equations in B-spaces, Duke Math. J. 41 (1974), 437-442.

308 I. Kubiaczyk and A. Sikorska-Nowak: The set of pseudo solutions...
[13] I. Kubiaczyk, On a fixed point theorem for weakly sequentially continuous mappings, Disc. Math. Diff. Inclusions 15 (1995), 15-20.
[14] A. R. Mitchell and Ch. Smith, An existence theorem for weak solutions of differential equations in Banach spaces, In: Nonlinear Equations in Abstract Spaces, (V. Lakshmikantham, ed.), Orlando, 1978, 387-404.
[15] D. O'Regan, Weak solutions of ordinary differential equations in Banach spaces, Applied Mathematics Letters 12 (1999), 101-105.
[16] B. J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), 277-304.
[17] S. Szufla, On the differential equation $x^{(m)}=f(t, x)$ in Banach spaces, Func. Ekv. 41 (1998), 101-105.
[18] S. Szufla and A. Szukafa, Existence theorems for weak solutions of n-th order differential equations in Banach spaces, Functiones at Approximatio 26 (1998), 313-319.

IRENEUSZ KUBIACZYK
FACULTY OF MATHEMATICS AND COMPUTER SCIENCE
ADAM MICKIEWICZ UNIVERSITY
UMULTOWSKA 87, 61-614 POZNAŃ
POLAND

ANETA SIKORSKA-NOWAK
FACULTY OF MATHEMATICS AND COMPUTER SCIENCE
ADAM MICKIEWICZ UNIVERSITY
UMULTOWSKA 87, 61-614 POZNAŃ
POLAND
E-mail: anetas@amu.edu.pl
(Received September 8, 2003; galley-proof received December 12, 2005)

