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A new formula for the convexity coefficient of Orlicz spaces

By LIU LI FANG (Zhongshan) and HENRYK HUDZIK (Poznań)

Abstract. In [2], a formula for the convexity coefficient of Orlicz spaces
LM , ε0(LM ), equipped with the Luxemburg norm, in the case of a non-atomic
and infinite measure space, has been given in terms of some parameter depending
on the generating Orlicz function M . In this paper, we explain this formula in
terms of a parameter β(p) depending on the right derivative of M . We also give
a way how to compute the parameter β(p), which is more convenient when we
look for an Orlicz function M giving concrete value of ε0(LM ).

I. Introduction

Let N be the set of natural numbers, R be the set of real numbers and
R+ = [0,∞). A function M : R → [0,∞) is called an Orlicz function if it
is convex, even and vanishing only at zero (see [1]).

Let p− (resp. p) be the left (resp. the right) derivative of M . Then
M is an Orlicz function if and only if M(u) =

∫ |u|
0 p(t)dt, where the right

derivative p of M is right continuous, nondecreasing on R+, and p(u) > 0
for u > 0.

An interval [a, b), where 0 < a < b < ∞, is called a structural interval
of p, provided that p is constant on [a, b) and p is not constant on either
[a− ε, b) or [a, b + ε) for any ε > 0. An interval [0, b), where 0 < b < ∞, is
called a structural interval of p, provided that p is constant on [0, b) and
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p is not constant on [0, b + ε) for any ε > 0. An interval [a,∞), where
0 < a < ∞, is called a structural interval of p, provided that p is constant
on [a,∞) and p is not constant on [a − ε,∞) for any ε > 0. The interval
[0,∞) is called a structural interval of p, provided that p is constant on
[0,∞). Let {[ak, bk)}k be all structural intervals of p. Define

h(p) = inf
k

ak

bk
,

assuming ak
bk

= 0 if bk = ∞, and h(p) = 1 if p is strictly increasing on
(0,∞).

For a given Orlicz function M and its right derivative p, denote

α(M) = sup
{
a∈ (0, 1) : ∃δ>0∀u>0M

(
u+ au

2

)
≤ 1− δ

2
[M(u) + M(au)]

}
,

β(p) = sup
{

a ∈ (0, 1) : sup
u>0

p(au)
p(u)

< 1
}

,

assuming sup ∅ := 0. Given any Orlicz function M , the number α(M) is
called the convexity characteristic of M . For the function p given above,
define

h
(p)
0 = sup

{
a ∈ (0, 1) : lim

u→0+

p(au)
p(u)

< 1
}

,

h(p)
∞ = sup

{
a ∈ (0, 1) : lim

u→∞
p(au)
p(u)

< 1
}

,

assuming sup ∅ := 0, whenever the limits that appear in the definitions of
h

(p)
0 and h

(p)
∞ exist.

The convexity coefficient ε0(X) of a normed space X (called also the
convexity characteristic of X) is a very important parameter of X (for the
definition of ε0(X) see Section III). Namely, X is uniformly rotund if and
only if ε0(X) = 0, X is uniformly non-square if and only if ε0(X) < 2.
Moreover, if ε0(X) < 1, then X has uniformly normal structure and, in
consequence, X has the fixed point property (see [4]). In [2], ε0(LM ) has
been computed in the case of LM over a non-atomic infinite measure space
and the Luxemburg norm in terms of a convexity characteristic of the
generating Orlicz function M . In this paper, that parameter is explained
in terms of the right derivative p of M . This gives an easy possibility to
find for any a ∈ [0, 2] an Orlicz function M such that ε0(LM ) = a.
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II. Convexity characteristic of Orlicz functions
in terms of their right derivatives

Theorem 1. Let M be an Orlicz function and p be its right derivative

on R+. Then α(M) = β(p).

Proof. Let a ∈ (0, 1) and supu>0
p(au)
p(u) = 1. Then

M

(
u + au

2

)
=

1
2
[M(u) + M(au)]

[
1 − M(u) + M(au) − 2M(u+au

2 )
M(u) + M(au)

]

=
1
2
[M(u) + M(au)]

[
1 − (M(u) − M(u+au

2 )) − (M(u+au
2 ) − M(au))

M(u) + M(au)

]

=
1
2
[M(u) + M(au)]


1 −

∫ u
u+au

2
p(t)dt − ∫ u+au

2
au p(t)dt∫ u

0 p(t)dt +
∫ au
0 p(t)dt




≥ 1
2
[M(u) + M(au)]

[
1 − p(u)(u − u+au

2 ) − p(au)(u+au
2 − au)

p(au)(u − au)

]

=
1
2
[M(u) + M(au)]

[
1 − p(u) − p(au)

p(au)
· u − u+au

2

u − au

]

=
1
2
[M(u) + M(au)]

[
1 − 1

2

(
p(u)
p(au)

− 1
)]

for all u ∈ (0,∞). Hence it follows that there is no δ > 0 such that
M(u+au

2 ) ≤ 1−δ
2 [M(u) + M(au)] for all u > 0. Therefore

α(M) ≤ β(p). (1)

In particular,

β(p) = 0 ⇒ α(M) = 0. (2)

Let β := β(p) > 0 and b ∈ (0, β). Then supu>0
p
(

b+β
2

u
)

p(u) =: k < 1.
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From the following inequalities

M(u) + M(bu) − 2M
(

u + bu

2

)

=
[
M(u) − M

(
u + bu

2

)]
−

[
M

(
u + bu

2

)
− M(bu)

]

=
∫ u−β−b

2
u

u+bu
2

p(t)dt −
∫ u+bu

2

b+β
2

u
p(t)dt +

∫ u

u−β−b
2

u
p(t)dt −

∫ b+β
2

u

bu
p(t)dt

≥
∫ u

u−β−b
2

u
p(t)dt −

∫ b+β
2

u

bu
p(t)dt

=
∫ u

u−β−b
2

u

[
p(t) − p

(
t −

(
u − b + β

2
u

))]
dt

≥
∫ u

u−β−b
2

u

[
p(t) − p

(
t −

(
t − b + β

2
t

))]
dt

≥
∫ u

u−β−b
2

u
[p(t) − kp(t)]dt

= (1 − k)
[
M(u) − M

(
u − β − b

2
u

)]

≥ 1
4
(1 − k)(β − b)[M(u) + M(bu)]

being true for any u > 0, we get

M

(
u + bu

2

)
≤ 1 − δ

2
[M(u) + M(bu)]

for any u > 0 with δ = 1
4(1 − k)(β − b) ∈ (0, 1). Hence

α(M) ≥ β(p) if β(p) > 0. (3)

Combining (1), (2) and (3), we have α(M) = β(p). �
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Lemma 2. Let M be an Orlicz function and p− (resp. p) be the left

(resp. the right) derivative of M . Then p− is left continuous, nondecreasing

and

lim
t→u− p(t) = p−(u) for all u > 0.

Proof. Since M is convex on (0,∞), we have

p−(u − h) ≤ p(u − h) ≤ M(u) − M(u − h)
h

≤ p−(u) ≤ p(u)

for all u > 0 and any h > 0 such that u − h > 0. Therefore

lim
t→u− p−(t) ≤ lim

t→u− p(t) ≤ p−(u). (4)

On the other hand,

lim
t→u− p(t) ≥ lim

t→u− p−(t) = lim
t→u− lim

h→0+

M(t) − M(t − h)
h

= p−(u). (5)

By (4) and (5), we have

lim
t→u− p(t) = lim

t→u− p−(t) = p−(u)

for all u > 0. �

Lemma 3. Let a ∈ (0, 1) and 0 < c < d < ∞. If p−(au) < p−(u) and

p(au) < p(u) for any u ∈ [c, d], then supu∈[c,d]
p(au)
p(u) < 1.

Proof. If supu∈[c,d]
p(au)
p(u) = 1, then there is a sequence {un} in [c, d]

such that limn
p(aun)
p(un) = 1. Since {un} is bounded, there is a monotone

subsequence {unk
} of {un} such that unk

→ u′ ∈ [c, d].
We may assume without loss of generality (passing to a subsequence

if necessary) that unk
≤ u′ for all k ∈ N or unk

≥ u′ for all k ∈ N and that
the sequence {unk

} is monotone. If unk
↗ u′, then by Lemma 2 and by the

assumption that p(au) < p(u) for any u ∈ [c, d], we have 1 = limn
p(aun)
p(un) =

limk
p(aunk

)

p(unk
) = p−(au′)

p−(u′) < 1, a contradiction. If unk
↘ u′, then by the right

continuity of p, we get, 1 = limn
p(aun)
p(un) = limk

p(aunk
)

p(unk
) = p(au′)

p(u′) < 1, a
contradiction too. This completes the proof. �
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Theorem 4. Assume that the limits limu→0+
p(au)
p(u) and limu→∞

p(au)
p(u)

exist for all a ∈ (0, 1). Then

β(p) = min
{
h(p), h

(p)
0 , h(p)

∞
}
.

Proof. Denote h(p) := min{h(p), h
(p)
0 , h

(p)
∞ }. We discuss three cases.

I. h(p) = 0. If h(p) = 0, then for any a ∈ (0, 1), there is k0 ∈ N such
that ak0

bk0
< a, where [ak0 , bk0) is a structural interval of p. Take u0 = 1

aak0 .

Then u0 < bk0 and so p(au0)
p(u0) = 1, whence it follows that β(p) = 0. If

h
(p)
0 = 0, then limu→0+

p(au)
p(u) = 1 for any a ∈ (0, 1). Then it is obvious that

supu>0
p(au)
p(u) = 1, whence, β(p) = 0. Similarly, we can prove that h

(p)
∞ = 0

implies β(p) = 0. Hence,

β(p) = h(p) if h(p) = 0. (6)

II. h(p) = 1. In this case, h(p) = h
(p)
0 = h

(p)
∞ = 1. This yields that p is

strictly increasing on (0,∞) and for any a ∈ (0, 1),

lim
t→0+

p(at)
p(t)

< 1 and lim
t→∞

p(at)
p(t)

< 1.

So there exist u0 and u1 with 0 < u0 < u1 < ∞ such that

sup
u∈(0,u0)

p(au)
p(u)

< 1, sup
u∈(u1,∞)

p(au)
p(u)

< 1 and sup
u∈[u0,u1]

p(au)
p(u)

< 1,

where the last inequality follows from Lemma 3. Therefore, sup
u>0

p(au)
p(u) < 1,

that is,
β(p) = h(p) if h(p) = 1. (7)

III. 0 < h(p) < 1. Let a ∈ (0, h(p)). Then

lim
t→0+

p(at)
p(t)

< 1, lim
t→∞

p(at)
p(t)

< 1,
p(at)
p(t)

< 1 and
p−(at)
p−(t)

< 1

for any t ∈ (0,∞). By Lemma 3, we can prove that supu>0
p(au)
p(u) < 1.

Hence
β(p) ≥ h(p) if h(p) ∈ (0, 1). (8)



A new formula for the convexity coefficient of Orlicz spaces 337

Let a ∈ (h(p), 1). Then

lim
t→0+

p(at)
p(t)

= 1 or lim
t→∞

p(at)
p(t)

= 1 or inf
k

ak

bk
< a.

It is easy to deduce that supu>0
p(au)
p(u) = 1. Hence

β(p) ≤ h(p) if h(p) ∈ (0, 1). (9)

Combining (7), (8) and (9), we obtain

β(p) = min
{
h(p), h

(p)
0 , h(p)

∞
}
. �

Corollary 5. Assume that the limits limu→∞
p(au)
p(u) , limu→0+

p(au)
p(u)

exist for any a ∈ (0, 1). Then β(p) = 0 if and only if one of the following

assertions is true:

1) infk ak
bk

= 0, where {[ak, bk)} are the structural intervals of p,

2) limu→∞
p(au)
p(u) = 1 for any a ∈ (0, 1),

3) limu→0+
p(au)
p(u) = 1 for any a ∈ (0, 1).

Corollary 6. Assume that the limits limu→∞
p(au)
p(u) , limu→0+

p(au)
p(u)

exist for any a ∈ (0, 1). Then β(p) = 1 if and only if:

1) p is strictly increasing on (0,∞),

2) limu→∞
p(au)
p(u) < 1 and limu→0+

p(au)
p(u) < 1 for any a ∈ (0, 1).

III. Some consequences

The convexity coefficient of a Banach space X is defined by

ε0(X) = sup{ε ∈ (0, 2) : δX(ε) = 0},

where δX : (0, 2] → [0, 1] is the modulus of convexity of X, that is,

δX(ε) = inf
{
1 − ‖1

2 (x + y)‖ : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x − y‖ ≥ ε
}

,

for ε ∈ (0, 2].
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Let (T,Σ, µ) be a non-atomic and infinite measure space. Given any
Orlicz function M , the Orlicz space LM is defined as the set of all (equiv-
alent classes of) Σ-measurable functions f : T → R such that

�M (af) =
∫

T
M(|af(t)|)dµ < ∞

for some a > 0. The space LM equipped with the Luxemburg norm ‖ · ‖
defined by

‖f‖ = inf
{

a > 0 : �M

(
f

a

)
≤ 1

}

is a Banach space (see [1]). We say that an Orlicz function M satisfies
the ∆2-condition on the whole R (M ∈ ∆2 for short) if there is a constant
K ≥ 2 such that M(2u) ≤ KM(u) for all u ∈ R. Then

ε0(LM ) =
2(1 − α(M))
1 + α(M)

if M ∈ ∆2, and ε0(LM ) = 2 if M /∈ ∆2 (see [2], [3]).

Corollary 7. ε0(LM ) = 2 if M /∈ ∆2, and ε0(LM ) = 2(1−β(p))
1+β(p) if

M ∈ ∆2.

Example 1. Let M(u) = (1+|u|) ln(1+|u|)−|u|. Then p(u) = ln(1+u)
for u ≥ 0. Since limu→∞

p(au)
p(u) = 1 for any a ∈ (0, 1), we have α(M) =

β(p) = 0. It is easy to verify that M ∈ ∆2. By Corollary 7, ε0(LM ) = 2.

Example 2. Let M(u) = 1
s |u|s (s > 1). Then p(u) = us−1 for u ≥ 0, so

p is strictly increasing on R+ and limu→0+
p(au)
p(u) = as−1= limu→∞

p(au)
p(u) < 1

for any a ∈ (0, 1). So α(M) = β(p) = 1 and ε0(LM ) = 0 since M ∈ ∆2.

Example 3. Let a ∈ (0, 1). Define Orlicz function M is even and for
u ≥ 0,

M(u) =




u2

2
, if u ∈ [0, 1]

u − 1
2
, if u ∈

(
1,

1
a

]

u2

2
− 1 − a

a
u +

1 − a2

2a2
, if u ∈

(
1
a
,∞

)
.
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Then

p(u) =




u, if u ∈ [0, 1]

1, if u ∈
(

1,
1
a

]

u − 1 − a

a
, if u ∈

(
1
a
,∞

)
,

for u ≥ 0. Since limu→0+
p(εu)
p(u) = ε = limu→∞

p(εu)
p(u) < 1 for any ε ∈ (0, 1)

and infk ak
bk

= a, so α(M) = β(p) = a and ε0(LM ) = 2(1−a)
1+a since M ∈ ∆2.

Example 4. Given any number a ∈ (0, 1), define the function p by

p(0) = 0 and p(t) = a−i for t ∈ [ 1
ai−1 , 1

ai ) (i = 0,±1,±2, . . .). Then p is

a nondecreasing and right continuous function on R+, that is, M(u) =∫ |u|
0 p(t)dt is an Orlicz function. Moreover, β(p) = a and M satisfies the

∆2-condition on the whole R. Consequently, ε0(LM ) = 2(1−a)
1+a .

Proof. It is evident that p(at) = ap(t) for any t ∈ [0,∞). Moreover,
for any b > a there is u > 0 such that p(bu) ≥ p(u), whence β(p) = a.
Let k ∈ N be chosen in such a way that 2 ≤ a−k. Since the equality
p(at) = ap(t) for any t ∈ [0,∞) can be written as p(a−1t) = a−1p(t) for
any t ∈ [0,∞), we have for any u ≥ 0,

M(2u) =
∫ 2u

0
p(t)dt ≤ 2up(2u) ≤ 2up(a−ku) = 2ua−kp(u)

= 2a−k 1
a(1 − a)

(1 − a)up(au) ≤ 2
ak+1(1 − a)

∫ u

au
p(t)dt

≤ 2
ak+1(1 − a)

∫ u

0
p(t)dt =

2
ak+1(1 − a)

M(u),

which means that M ∈ ∆2. In consequence, ε0(LM ) = 2(1−a)
1+a . �

Remark 1. We conclude from Examples 3 and 4 that for any number
b ∈ (0, 2) there is an Orlicz function (not being a power function) such
that ε0(LM ) = b. It is enough to get Orlicz functions from that examples
corresponding to the number a = 2−b

2+b . For any Orlicz function M not
satisfying the ∆2-condition on R, we have ε0(LM ) = 2. For Orlicz functions
M being uniformly convex (which means that α(M) = β(p) = 1) and
satisfying the ∆2-condition on R, we have ε0(LM ) = 0.
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