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Lie derived lengths of restricted universal
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Abstract. In this paper we examine the Lie derived length of a restricted
universal enveloping algebra u(L), where L is a restricted Lie algebra over a field
F of characteristic p > 0. In particular, we prove that, if the Lie derived length of
u(L) is at most n and p ≥ 2n, then L is abelian. Moreover, we establish when is a
restricted universal enveloping algebra strongly Lie solvable and study its strong
Lie derived length.

1. Introduction

Let R be an associative algebra with a unit over a field F . R can be
regarded as a Lie algebra via the Lie commutator [x, y] = xy−yx for every
x, y ∈ R. The Lie derived series δ[n](R) and the strong Lie derived series
δ(n)(R) of R are defined by induction as follows:

δ[0](R) = δ(0)(R) = R,

δ[n](R) = [δ[n−1](R), δ[n−1](R)],
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δ(n)(R) = [δ(n−1)(R), δ(n−1)(R)]R.

R is said to be Lie solvable (resp. strongly Lie solvable) if δ[n](R) = 0
(δ(n)(R) = 0) for some n. The minimum n such that δ[n](R) = 0 (resp.
δ(n)(R) = 0) is called the Lie derived length (strong Lie derived length)
of R and denoted by dlLie(R) (dlLie(R)). As δ[n](R) ⊆ δ(n)(R) for all n,
it is clear that if R is strongly Lie solvable then R is Lie solvable (and
dlLie(R) ≤ dlLie(R)), but the converse is in general not true.

Let u(L) be the restricted universal enveloping algebra of a restricted
Lie algebra L with p-map [p] over a field F of characteristic p > 0. Some
questions concerning the Lie structure of u(L) were examined by D. Riley

and A. Shalev in [2]. In particular, under the assumption of characteris-
tic odd, they characterized the restricted Lie algebras L whose restricted
enveloping algebra u(L) is Lie solvable. While the Lie nilpotency indices
can be computed using some specific methods (cf. [3]), there are very few
results in the literature concerning the Lie derived lengths of u(L). In
that direction, in [5] the author and E. Spinelli have recently established
when is u(L) Lie metabelian.

In this paper, we describe some results about the Lie derived length
and the strong Lie derived length of a restricted universal enveloping al-
gebra. Similar questions for group rings was considered by A. Shalev

in [4].
For a subset S of a restricted Lie algebra L, we denote by Sp the

restricted subalgebra generated by S. Also, S is said to be p-nilpotent if
there exists a positive integer m such that S[p]m = {x[p]m | x ∈ S} = 0.
In Section 2, we show that u(L) is strongly Lie solvable if and only if L′

p

is finite-dimensional and p-nilpotent. As a consequence, for characteristic
odd, the Lie solvability of u(L) is equivalent to the strong Lie solvability.
This is no longer true if char F = 2.

An upper bound for the strong Lie derived length of u(L) will be
established in the following result:

Proposition 1. Let L be a restricted Lie algebra over a field F of

characteristic p > 0. If u(L) is strongly Lie solvable then dlLie(u(L)) ≤
1 + �log2 pdimF L′

p�.
In the last section, we prove the main theorem of this paper: it de-

termines the minimal Lie derived length of u(L), where L is a non-abelian
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restricted Lie algebra over a field of characteristic p > 0.

Theorem 1. Let L be a non-abelian restricted Lie algebra over a field

of characteristic p > 0. Then dlLie(u(L)) ≥ �log2(p + 1)�.
In fact, the lower bound expressed in Theorem 1 is the best possible.

Indeed, we provide a class of restricted Lie algebras in which this value is
actually reached.

2. Strong Lie solvability

Let L be a restricted Lie algebra over a field of characteristic p > 0.
We denote by ω(L) the augmentation ideal of u(L), that is, the associative
ideal generated by L in u(L). It is well known that for every restricted
ideal I of L the kernel of the canonical map

φ : u(L) −→ u(L/I)

is given by ω(I)u(L). In particular, as u(L/L′
p) is commutative it follows

that
δ(1)(u(L)) = [u(L), u(L)]u(L) ⊆ ω(L′

p)u(L). (1)

Also, if I is finite-dimensional and p-nilpotent then ω(I) is nilpotent (see
[2], Lemma 2.4): in this case, the minimum integer m such that ω(I)m = 0
is denoted by t(I).

The following result characterizes the restricted Lie algebras L whose
restricted enveloping algebra u(L) is strongly Lie solvable.

Proposition 2. Let L be a restricted Lie algebra over a field of char-

acteristic p > 0. Then the following conditions are equivalent:

1) u(L) is strongly Lie solvable;

2) ω(L′
p) is nilpotent;

3) L′
p is finite-dimensional and p-nilpotent.

Proof. The equivalence of the conditions 2) and 3) was proved in
Lemma 2.4 of [2]. Now, assume that u(L) is strongly Lie solvable. In view
of a well known result of S. A. Jennings (cf. [1]), we have that δ(1)(u(L))
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is nilpotent. As ω(L′
p) ⊆ δ(1)(u(L)), this implies the nilpotency of ω(L′

p).
Finally, assume that ω(L′

p) is nilpotent. We show by induction on n that

δ(n)(u(L)) ⊆ ω(L′
p)

2n−1
u(L). (2)

For n = 1 the claim follows by (1). Assume then n > 1. By the inductive
hypothesis we have

δ(n)(u(L)) = [δ(n−1)(u(L)), δ(n−1)(u(L))]u(L)

⊆ [ω(L′
p)

2n−2
u(L), ω(L′

p)
2n−2

u(L)]u(L)

= [ω(L′
p)

2n−2
, ω(L′

p)
2n−2

u(L)]u(L)

+ ω(L′
p)

2n−2
[u(L), ω(L′

p)
2n−2

u(L)]u(L)

= [ω(L′
p)

2n−2
, ω(L′

p)
2n−2

]u(L)

+ ω(L′
p)

2n−2
[ω(L′

p)
2n−2

, u(L)]u(L)

+ ω(L′
p)

2n−1
[u(L), u(L)]u(L) ⊆ ω(L′

p)
2n−1

u(L)

completing the inductive step. As ω(L′
p) is nilpotent, for a sufficiently

large n we have that ω(L′
p)2

n−1
u(L) = 0. It follows that u(L) is strongly

Lie solvable. �

As a consequence of the previous result and Theorem 1.3 of [2], we
have the following

Corollary 1. Let L be a restricted Lie algebra over a field of charac-

teristic p > 2. Then u(L) is Lie solvable if and only if u(L) is strongly Lie

solvable.

When p = 2, the complete characterization of Lie solvable restricted
universal enveloping algebras still remains an open problem. The following
simple example shows that Corollary 1 fails for this exceptional character-
istic:

Example 1. Let H be the Heisenberg algebra over a field F of charac-
teristic 2. Then H has a basis {x, y, z} such that

[x, y] = z, [x, z] = [y, z] = 0.
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Consider the p-map on H defined by the following conditions:

x[p] = y[p] = 0, z[p] = z.

We have that δ[3](u(H)) = 0 and then u(H) is Lie solvable. On the other
hand, as H ′

p = Fz is not p-nilpotent, u(H) is not strongly Lie solvable in
view of Proposition 2.

Let us now establish an upper bound for the strong Lie derived length
of u(L).

Lemma 1. Let L be a restricted Lie algebra over a field of characteris-

tic p > 0. If u(L) is strongly Lie solvable then dlLie(u(L)) ≤ �log2(2t(L′
p))�.

Proof. By (2), for every positive integer n we have that

δ(n)(u(L)) ⊆ ω(L′
p)

2n−1
u(L).

Consequently, if 2n−1 ≥ t(L′
p) then ω(L′

p)
2n−1

= 0 so that δ(n)(u(L)) = 0.
Hence, we have that

dlLie(u(L)) ≤ 1 + log2 t(L′
p) = log2(2t(L

′
p))

and the claim follows. �

Proof of Proposition 1. Since u(L) is strongly Lie solvable, by
Proposition 2, L′

p is finite-dimensional and p-nilpotent. According to
Proposition 3.4 of [3], we have that t(L′

p) ≤ pdimF L′
p and so the claim

follows from Lemma 1. �

If L is nilpotent of class two, the upper bound for dlLie(u(L)) estab-
lished in Lemma 1 can be slightly improved.

Lemma 2. Let L be a restricted Lie algebra over a field of character-

istic p > 0. If u(L) is strongly Lie solvable and L is nilpotent of class two,

then dlLie(u(L)) ≤ �log2(t(L′
p) + 1))�.

Proof. We show that for any positive integer n we have δ(n)(u(L)) ⊆
ω(L′

p)2
n−1u(L). We proceed by induction on n. For n = 1 the claim

coincides with (1). Suppose then n > 1. As ω(L′
p) is central in u(L), by

the inductive hypothesis and (1) we have

δ(n)(u(L)) = [δ(n−1)(u(L)), δ(n−1)(u(L))]u(L)
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⊆ [ω(L′
p)

2n−1−1u(L), ω(L′
p)

2n−1−1u(L)]u(L)

⊆ ω(L′
p)

2n−2[u(L), u(L)]u(L)

= ω(L′
p)

2n−2δ(1)(u(L))

⊆ ω(L′
p)

2n−1u(L)

completing the inductive step. As ω(L′
p)2

n−1 = 0 whenever 2n−1 ≥ t(L′
p),

the assertion follows at once. �

A restricted Lie algebra L is said to be cyclic if there exists x ∈ L

which generates L as a restricted subalgebra.

Remark 1. Let L be a restricted Lie algebra over a field of characteristic
p > 0 such that L′

p is cyclic and p-nilpotent. Using Proposition 1.3 in
Chapter 2 of [6], it is easy to see that in this case L′

p can always be
generated by a Lie commutator z = [x, y] for some x, y ∈ L. Also, if e(z)
denotes the exponent of z (that is, the minimum positive integer n such
that z[p]n = 0), then the elements z, z[p], . . . , z[p]e(z)−1

form a basis of L′
p.

In particular, we have dimF L′
p = e(z).

Proposition 3. Let L be a restricted Lie algebra over a field F of

characteristic p > 0 such that u(L) is strongly Lie solvable. If L is nilpotent

of class two and L′
p is cyclic, then dlLie(u(L)) = �log2(p

dimF L′
p + 1)�.

Proof. In view of Proposition 3.4 of [3] and Lemma 2, it is enough
to show that dlLie(u(L)) ≥ �log2(p

dimF L′
p + 1)�.

By Remark 1, there are x, y ∈ L such that z = [x, y] generates L′
p as

a restricted subalgebra. Clearly, we have

ω(L′
p)u(L) = zu(L) ⊆ δ(1)(u(L))

and then by (1) it follows that

δ(1)(u(L)) = zu(L). (3)

We now show by induction on n that δ(n)(u(L)) = z2n−1u(L). For n = 1
the claim follows by (3). Assume then n > 1. Using (3) and the inductive
hypothesis, by the centrality of z we obtain

δ(n)(u(L)) = [δ(n−1)(u(L)), δ(n−1)(u(L))]u(L)
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= [z2n−1−1u(L), z2n−1−1u(L)]u(L)

= z2n−2[u(L), u(L)]u(L)

= z2n−2δ(1)(u(L))

= z2n−1u(L)

completing the inductive step. As a consequence, if δ(n)(u(L)) = 0 then ne-
cessarily z2n−1 = 0 and so, by the PBW Theorem for restricted Lie algebras
(see, e.g., [6], Chapter 2, Theorem 5.1), we have 2n − 1 ≥ pe(z) = pdimF L′

p .
Therefore, we have n ≥ log2(1 + pdimF L′

p) and the claim follows. �
Remark 2. When p = 2, then under the assumption of Proposition 3

we have that dlLie(u(L)) = �log2(p
dimF L′

p + 1)� = 1 + dimF L′
p. Therefore,

in some cases the upper bound of Proposition 1 can actually be reached.

In [5], it is proved that u(L) is Lie metabelian if and only if it is
strongly Lie metabelian. In other words, dlLie(u(L)) = 2 if and only if
dlLie(u(L)) = 2. On the other hand, if the ground field has characteristic 2,
Example 1 already shows that it is possible that dlLie(u(L)) = 3 while
dlLie(u(L)) = ∞. Furthermore, the derived lengths of u(L) can be different
also when they are both finite. For this purpose, consider the following

Example 2. Let L be the Lie algebra over a field F , char F = 2, with
basis {x, y, z, v, w} such that [x, y] = z and z, v, w are central. Consider
the p-map on L defined by the following conditions:

x[p] = y[p] = w[p] = 0, z[p] = v, v[p] = w.

By construction, we have that L′
p = Fz+Fv+Fw is cyclic. Using the PBW

Theorem for restricted Lie algebras and the centrality of z, we obtain:

δ[1](u(L)) =
( 7⊕

i=1

Fzi

)
⊕

( 7⊕
j=1

Fxzj

)
⊕

( 7⊕
k=1

Fyzk

)
;

δ[2](u(L)) =
7⊕

i=3

Fzi;

δ[3](u(L)) = 0.

On the other hand, by Proposition 3 it follows that dlLie(u(L)) = 4. Hence
in this case we have dlLie(u(L)) 
= dlLie(u(L)).
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3. Lower bound for the Lie derived length

This section is devoted to the proof of Theorem 1. The proof consists
of a series of reductive steps which enable us to consider some special
cases where explicit calculations can be performed. Clearly, Theorem 1
will follow at once by the next result:

Proposition 4. Let L be a restricted Lie algebra over a field F of

characteristic p > 0. If δ[n](u(L)) = 0 and p ≥ 2n, then L is abelian.

Proof. Suppose, if possible, L not abelian. We distinguish the cases
when L is nilpotent or not.

Case I : L is nilpotent. In this case, we can assume as well that L has
nilpotency class two. In fact, if L has nilpotency class c > 2, consider the
quotient L = L/I, where I is the (c−2)-th term of the upper central series
of L (note that I is a restricted ideal of L). Then L has nilpotency class
two and dlLie(u(L)) ≤ dlLie(u(L)). Now replace L by L.

Let a and b be two non-commuting elements of L and put z = [a, b].
By assumption on the nilpotency class of L, it is immediate to see that a,
b and z are linearly independent. We claim that:

for every nonnegative integer m and for every 0 ≤ h, k ≤ p − m − 1
the elements ahz2m−1 and bkz2m−1 are contained in δ[m](u(L)).

We proceed by induction on m. The claim is trivial when m = 0.
Now assume m > 0. By inductive hypothesis, we have that ah+1z2m−1−1 ∈
δ[m−1](u(L)) and bz2m−1−1 ∈ δ[m−1](u(L)). As z centralizes a and b, by a
standard calculation we obtain:

[ah+1, b] =
h+1∑
i=1

ai−1[a, b]ah−i+1 =
h+1∑
i=1

ahz = (h + 1)ahz.

It follows that

[ah+1z2m−1−1, bz2m−1−1] = [ah+1, b]z2m−2 = (h + 1)ahz2m−1.

As 0 < h + 1 < p, the last relation implies that ahz2m−1 ∈ δ[m](u(L)).
An analogue argument shows that bkz2m−1 ∈ δ[m](u(L)), completing the
inductive step.

Now, by assumption, we have that n ≤ 2n − 1 ≤ p − 1. Therefore, by
what has been proved, it follows in particular that z2n−1 ∈ δ[n](u(L))= 0.
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As 2n − 1 < p, this contradicts the PBW Theorem for restricted Lie alge-
bras, completing the proof in the case where L is nilpotent.

Case II : L is not nilpotent. If p = 2 the assertion is trivial. Assume
then p 
= 2. Since any possible extension of the ground field preserves
the Lie derived length of u(L), we can also assume that F is algebraically
closed.

Let u and v be two non-commuting elements of L and denote by H

the subalgebra of L generated by u and v. If H is nilpotent then by [6]
(Chapter 2, Proposition 1.3) the restricted subalgebra Hp generated by H

is also nilpotent, therefore the assertion follows from the Case I. Suppose
then H not nilpotent. In view of Theorem 1.3 of [2] the dimension of L′

is finite, consequently we have that H is finite-dimensional. As H is not
nilpotent, by the Engel Theorem there is an element w of H such that the
adjoint map ad w is not a nilpotent linear transformation of H. Let λ be
a non-zero eigenvalue of ad w and consider an eigenvector x relative to λ.
Put y = λ−1w. Then we have

[x, y] = λ−1x ad w = x.

We want to establish an explicit expression for [xr1ys1 , xr2ys2] in u(L), for
any nonnegative integers r1, r2, s1, s2. For this, we begin by showing that
for every t ∈ N we have

ytx = x(y − 1)t. (4)

We proceed by induction on t. For t = 1,

yx = xy − [x, y] = x(y − 1).

Now assume t > 1. By inductive hypothesis and the case t = 1, we have

ytx = yyt−1x = yx(y − 1)t−1 = x(y − 1)t

as required.
The next step is showing that for every r, s ∈ N,

ysxr = xr(y − r)s. (5)

We show (5) by induction on r. For r = 1 the claim is just the rule (4).
Assume then r > 1. Using (4) and the inductive hypothesis we obtain

ysxr = x(y − 1)sxr−1 = x

( s∑
i=0

(−1)s−i

(
s

i

)
yi

)
xr−1
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= xr

( s∑
i=0

(−1)s−i

(
s

i

)
(y − r + 1)i

)
= xr(y − r)s

completing the inductive step.
Finally, using (5) and standard calculations we obtain

[xr1ys1, xr2ys2] = xr1+r2
(
(y − r2)s1ys2 − (y − r1)s2ys1

)
. (6)

Let us now prove that for any nonnegative integers h and k such that
k < p − h the element x2h

yk is contained in δ[h](u(L)). We proceed by
induction on h. The claim is trivial for h = 0. Assume then h > 0.
By inductive hypothesis, δ[h−1](u(L)) contains all elements of the form
x2h−1

yν , with 0 ≤ ν ≤ p − h. By (6) it follows that

[x2h−1
y, x2h−1

] = −2h−1x2h

and so x2h ∈ δ[h](u(L)), as p 
= 2. By (6) we have also that

[x2h−1
y2, x2h−1

] = x2h( − 2hy + 22(h−1)
)

and then, as x2h ∈ δ[h](u(L)) and p 
= 2, it follows that x2h
y ∈ δ[h](u(L)).

Suppose that, by proceeding in this way, we have already shown that
x2h

yµ ∈ δ[h](u(L)) for every 0 ≤ µ < k. By (6), we have that

[x2h−1
yk+1, x2h−1

] = x2h(
(y − 2h−1)k+1 − yk+1

)

= x2h

( k∑
j=0

(−1)k+1−j

(
k + 1

j

)
2(h−1)(k+1−j)yj

)
.

Since δ[h](u(L)) contains the elements x2h
, x2h

y, . . . , x2h
yk−1, it follows

that 2h−1
(k+1

k

)
x2h

yk ∈ δ[h](u(L)), as well. Since p 
= 2 and, moreover, p

does not divide
(k+1

k

)
= k + 1, we can conclude that x2h

yk ∈ δ[h](u(L)),
completing the inductive step.

Now, by assumption we have that p − n > p − 2n ≥ 0. By what we
have proved above, it follows that

x2n ∈ δ[n](u(L)) = 0. (7)

Since p 
= 2, the initial hypothesis forces 2n < p, therefore the relation (7)
contradicts the PBW Theorem for restricted Lie algebras, and the proof
is complete. �
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As an immediate consequence of Theorem 1, we have the following

Corollary 2. Let L be a restricted Lie algebra over a field of charac-

teristic p > 0. If dlLie(u(L)) ≤ �log2(p+1)� then dlLie(u(L)) = dlLie(u(L)).

The upper bound for dlLie(u(L)) stated in Theorem 1 cannot be im-
proved. In order to see this, consider the following example:

Example 3. Let L be a restricted Lie algebra over a field F of char-
acteristic p > 0. Suppose L nilpotent of class two, dimF L′ = 1 and
L′[p] = 0. According to Proposition 3 and Corollary 2, we have that
dlLie(u(L)) = �log2(p + 1)�.
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