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An abstract version of the Korovkin
approximation theorem

By OKTAY DUMAN (Ankara) and CIHAN ORHAN (Ankara)

Abstract. In this paper we consider some analogs of the Korovkin approxi-
mation theorem via A-statistical convergence. In particular we study A-statistical
convergence of approximating operators defined on C(X, R), the space of all real
valued continuous functions on the compact Hausdorff space X . We also discuss
some of its applications.

1. Introduction

Most of the classical approximation operators tend to converge to the
value of the function being approximated. However, at points of disconti-
nuity, they often converge to the average of the left and right limits of the
function. There are, however, some exceptions such as the interpolation
operator of Hermite–Fejer [2] that do not converge at points of sim-
ple discontinuity. In this case, the matrix summability methods of Cesàro
type are applicable to correct the lack of convergence [3]. In recent years
statistical convergence, which is a regular non-matrix summability trans-
formation, has shown to be quite effective in “summing” non-convergent
sequences which may have unbounded subsequences [12], [13]. Recently,
its use in approximation theory has also been considered in [7], [8]–[10],

Mathematics Subject Classification: 41A25, 41A36, 47B38.
Key words and phrases: statistical convergence, A-density, A-statistical convergence,
positive linear operators, the Korovkin theorem.



34 O. Duman and C. Orhan

[15]. In this paper we consider some analogs of the classical Korovkin the-
orem via A-statistical convergence. Especially Section 2 is motivated by a
recent result of King [17]. It deals with a sequence {Vn} of positive lin-
ear operators that statistically approximates each real valued continuous
function on [0, 1] while preserving the function e2(x) = x2 for almost all n

where “almost all n” is defined by means of A-density. In Section 3, us-
ing A-statistical convergence, we give an abstract version of the Korovkin
approximation theorem and discuss some of its applications.

Approximation theory has important applications in the theory of
polynomial approximation, in various areas of functional analysis, in nu-
merical solutions of differential and integral equations [1], [20].

Before proceeding further we recall some notations on statistical con-
vergence.

Let A = (ajn) be an infinite summability matrix. For a given sequence
x := (xn), the A-transform of x, denoted by Ax := ((Ax)j), is given by

(Ax)j =
∞∑

n=1

ajnxn

provided the series converges for each j. We say that A is regular if
limj(Ax)j = L whenever limn xn = L [4], [16]. Assume that A is a non-
negative regular summability matrix and K is a subset of N, the set of all
positive integers. The A-density of K, denoted by δA(K), is defined by

δA(K) := lim
j

∑
n∈K

ajn

provided the limit exists. If x = (xn) is a sequence such that xn satisfies
a property P for all n except a set of A-density zero, then we say that
xn satisfies P for “almost all n”, and we abbreviate this by “a. a. n”. A
sequence x := (xn) is said to be A-statistically convergent to the number
L if, for every ε > 0,

δA{n ∈ N : |xn − L| ≥ ε} = 0;

or equivalently
lim

j

∑
n:|xn−L|≥ε

ajn = 0.
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We denote this limit by stA-lim x = L [12] (see also [5], [6], [18], [19],
[22]). For A = C1, the Cesàro matrix, A-statistical convergence reduces
to statistical convergence [11], [13], [14], [23]. Also, taking A = I, the
identity matrix, A-statistical convergence coincides with the ordinary con-
vergence. We note that if A = (ank) is a regular summability matrix for
which limj maxn |ajn| = 0, then A-statistical convergence is stronger than
convergence [19].

It should be noted that the concept of A-statistical convergence may
also be given in normed spaces: Assume (X, ‖.‖) is a normed space and
u = (un) is a X-valued sequence. Then (un) is said to be A-statistically
convergent to u0 ∈X if, for every ε> 0, δA{k ∈ N : ‖un−u0‖ ≥ ε} = 0 [18].

We recall that x = (xn) is A-statistically convergent to L if and only
if there exists a subsequence {xn(k)} of x such that δA{n(k) : k ∈ N} = 1
and limk xn(k) = L, (see [19], [22]). The same result also holds in normed
spaces [18].

2. A-statistical approximation

As usual, C[a, b] denotes the space of all real valued continuous func-
tions defined on [a, b]. If L is a linear operator from C[a, b] into C[a, b],
then we say that L is positive linear operator provided that L(f) ≥ 0 for
all f ≥ 0. Also, we denote the value of L(f) at a point x ∈ [a, b] by L(f ;x).

The Korovkin approximation theorem [1], [20] states that if {Ln}
is a sequence of positive linear operators from C[a, b] into C[a, b], then
limn Ln(f ;x) = f(x) for all f ∈ C[a, b] if and only if limn Ln(ei;x) = ei(x)
where ei(x) = xi, i = 0, 1, 2.

Most of the approximating operators, Ln, preserve e0 and e1, i.e.,
Ln(e0;x) = e0(x) and Ln(e1;x) = e1(x), n ∈ N. These conditions hold,
specifically, for the Bernstein polynomials, the Szász–Mirakjan operators,
and the Baskakov operators (see, e.g. [1]). For each of these operators,
Ln(e2;x) �= e2(x). Recently, King [17] presented a non-trivial sequence
{Vn} of positive linear operators which approximate each continuous func-
tion on [0, 1] while preserving the functions e0 and e2.

In this section, using A-statistical convergence we prove an analog of
King’s result [17].
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Following [17] we consider the sequence {Vn} of positive linear opera-
tors from C[0, 1] into C[0, 1] given by

Vn(f ;x) =
n∑

k=0

(
n

k

)
(rn(x))k (1 − rn(x))n−k f

(
k

n

)
,

f ∈ C[0, 1], n ∈ N,

(2.1)

where {rn} is a sequence of continuous functions defined on [0, 1] with
0 ≤ rn(x) ≤ 1. Observe that the case in which rn(x) = x, n = 1, 2, . . . , the
operators Vn reduce to the Bernstein polynomials. Now by [17] we have

Vn(e0;x) = e0(x), (2.2)

Vn(e1;x) = rn(x), (2.3)

Vn(e2;x) =
rn(x)

n
+

n − 1
n

(rn(x))2 . (2.4)

Using the concept of statistical convergence, Gadjiev and Orhan

[15] have proved a Korovkin type approximation theorem for sequences of
positive linear operators defined on C[a, b]. However, the proof also works
for A-statistical convergence. So the next result follows from Theorem 1
in [15], immediately.

Theorem 2.1. Let {Ln} be a sequence of positive linear operators

from C[a, b] into C[a, b] and A = (ajn) be a non-negative regular summa-

bility matrix. If

stA- lim
n

|Ln(ei;x) − ei(x)| = 0 for all x ∈ [a, b]

where ei(x) = xi (i = 0, 1, 2), then we get, for all f ∈ C[a, b], that

stA- lim
n

|Ln(f ;x) − f(x)| = 0 for all x ∈ [a, b].

Hence the relations (2.2)–(2.4) and Theorem 2.1 give the following
immediately:

Theorem 2.2. stA-limn Vn(f ;x) = f(x) for each f ∈ C[0, 1], x ∈
[0, 1], if and only if stA-limn rn(x) = x.
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Assume now that A = (ajn) is a non-negative regular summability
matrix such that the condition

lim
j

max
n

{ajn} = 0 (2.5)

holds. Then by Theorem 3.1 of [19] we can choose an infinite subset K of
the positive integers such that δA(K) = 0. Without loss of generality we
may assume that 1 /∈ K. Define the function sequence {pn} by

pn(x)=




x2, if n = 1

− 1
2(n− 1)

+
[(

n

n− 1

)
x2+

1
4(n−1)2

]1
2

, if n /∈K ∪ {1}

0, otherwise.

(2.6)

It is clear that each pn is continuous on [0, 1] with 0 ≤ pn(x) ≤ 1, and it
follows from [19], (see also [22]), that

stA- lim
n

pn(x) = x, x ∈ [0, 1]. (2.7)

We now turn our attention to {Vn} given by (2.1) with {rn(x)} re-
placed by {pn(x)} where pn(x) is defined by (2.6). Observe that each Vn

is a positive linear operator, and that

Vn(e1;x) = pn(x) (2.8)

and

Vn(e2;x) =




e2(x), if n ∈ N\K
0, otherwise

where K is any subset of positive integers such that δA(K) = 0. Hence

Vn(e2;x) = e2(x) = x2 a. a. n. (2.9)

Since δA(N\K) = 1, one can see that

stA- lim
n

Vn(e2;x) = e2(x) = x2 for all x ∈ [0, 1].

Now the relations (2.2), (2.7), (2.8) and (2.9) and Theorem 2.2 yield the
following:
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Theorem 2.3. Let {Vn} denote the sequence of positive linear opera-

tors given by (2.1) with {rn(x)} replaced by {pn(x)} where pn(x) is defined

by (2.6). Then

stA- lim
n

|Vn(f ;x) − f(x)| = 0.

for all f ∈ C[0, 1] and all x ∈ [0, 1].

Remark. If K is a finite subset, then we have that δA(K) = 0. In this
case Theorem 2.2 of King [17] holds immediately, so does our Theorem 2.3.
But if K is an infinite subset so that δA(K) = 0, then the above mentioned
result of King does not work but our present Theorem 2.3 will. Indeed this
is the case if the condition limj maxn{ajn} = 0 holds for the non-negative
regular matrix A = (ajn). Recall that, in this case, any infinite subset of
positive integers contains an infinite subset that has A-density zero [19].

3. An abstract version of the Korovkin theorem

This section has been largely motivated by that of [21].
In this section, using A-statistical convergence, we study an abstract

version of the classical Korovkin theorem and discuss some of its applica-
tions.

Let C(X, R) denote the space of all real valued continuous functions
defined on X where X is a compact Hausdorff space with at least two
points. Recall that C(X, R) is a Banach space with the usual norm

‖f‖ = sup
x∈X

|f(x)| , f ∈ C(X, R).

Assume that f1, f2, . . . , fm ∈ C(X, R) have the following properties:
There exist functions g1, g2, . . . , gm ∈ C(X, R) such that, for every

x, y ∈ X,

Px(y) :=
m∑

i=1

gi(x)fi(y) ≥ 0 (3.1)

and
Px(y) = 0 if and only if y = x. (3.2)
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Throughout this section let A = (ajn) be a non-negative regular summa-
bility matrix and {Ln} be a sequence of positive linear operators Ln :
C(X, R) → C(X, R). Assume further that

stA- lim
n

‖Ln(fi) − fi‖ = 0, (i = 1, 2, . . . ,m) (3.3)

Before giving an abstract version of the classical Korovkin theorem we
first require the following lemmas.

Lemma 3.1. Assume that the conditions (3.1)–(3.3) hold. Then, for

every function P defined by

P (y) =
m∑

i=1

cifi(y), c1, c2, . . . , cm ∈ R and y ∈ X, (3.4)

we have

stA- lim
n

‖Ln(P ) − P‖ = 0.

In particular this implies that stA-limn ‖Ln(P )‖ = ‖P‖.
Proof. Using positivity and linearity of Ln we get, for each x ∈ X

and n ∈ N, that

|Ln(P ;x) − P (x)| =
∣∣∣∣

m∑
i=1

ciLn(fi;x) −
m∑

i=1

cifi(x)
∣∣∣∣

≤
m∑

i=1

|ci||Ln(fi;x) − fi(x)|.

Let H := max1≤i≤m |ci|. If H = 0, then the proof is clear. Suppose now
that H > 0. So we have

‖Ln(P ) − P‖ ≤ H

m∑
i=1

‖Ln(fi) − fi‖ . (3.5)

For a given ε > 0 define the following sets:

D =
{

n :
m∑

i=1

‖Ln(fi) − fi‖ ≥ ε

H

}
,
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Di =
{

n : ‖Ln(fi) − fi‖ ≥ ε

mH

}
, i = 1, 2, . . . ,m.

Then it is clear that D ⊆ ⋃m
i=1 Di. So, by (3.5) we may write

∑
n:‖Ln(P )−P‖≥ε

ajn ≤
∑
n∈D

ajn ≤
m∑

i=1

( ∑
n∈Di

ajn

)
. (3.6)

Letting j → ∞ in (3.6) and using (3.3) we get the result. �

Lemma 3.2. Assume that the conditions (3.1)–(3.3) hold. Then we

have

stA- lim
n

(
max
x∈X

|Ln(Px;x)|) = 0.

Proof. Since Px(x) = 0, we obtain, for each x ∈ X and n ∈ N, that

|Ln(Px;x)| =
∣∣∣∣Ln

( m∑
i=1

gi(x)fi;x
)
−

m∑
i=1

gi(x)fi(x)
∣∣∣∣

≤
m∑

i=1

|gi(x)| |Ln(fi;x) − fi(x)| .

Since each gi is continuous on X, it follows that H ′ := max1≤i≤m ‖gi‖ < ∞.
Thus we have

max
x∈X

|Ln(Px;x)| ≤ H ′
m∑

i=1

‖Ln(fi) − fi‖ .

Using the same technique as in the proof of Lemma 3.1 the result follows
at once. �

Before giving the next lemma we recall that if L is a positive lin-
ear operator form C(X, R) into C(X, R), then the operator norm ‖L‖ is
defined by

‖L‖ = sup
‖f‖=1

‖L(f)‖ .

Then it is clear that ‖L‖ = ‖L(1)‖.
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Lemma 3.3. Suppose that the conditions (3.1)–(3.3) hold. Then

there exists a subset K of N such that δA(K) = 1 and

B := sup
n∈K

‖Ln‖ < ∞.

Proof. Fix two different points s, t ∈ X. Then define a function Q

by
Q(y) = Ps(y) + Pt(y), y ∈ X, (3.7)

where Ps and Pt are the functions given by (3.1). Then observe that
Q(y) > 0 for all y ∈ X. This yields that 1

Q ∈ C(X, R). Also, taking
ci := gi(s) + gi(t), (i = 1, 2, . . . ,m), where each gi is the function used in
(3.1), the function Q has form (3.4). Since 1

Q(y) ≤ ‖ 1
Q‖ for all y ∈ X, we

have

1 ≤
∥∥∥∥ 1
Q

∥∥∥∥ Q(y), y ∈ X. (3.8)

Now using monotonicity and linearity of the operators Ln we get from
(3.8) that

|Ln(1;x)| ≤
∥∥∥∥ 1

Q

∥∥∥∥ |Ln(Q;x)| (3.9)

for each x ∈ X and n ∈ N. It follows from (3.9) that

‖Ln‖ = ‖Ln(1)‖ ≤
∥∥∥∥ 1
Q

∥∥∥∥ ‖Ln(Q)‖ . (3.10)

Since {‖Ln(Q)‖} is A-statistically convergent, (see Lemma 3.1), there ex-
ists a subset K of N such that δA(K) = 1 and

sup
n∈K

‖Ln(Q)‖ < ∞. (3.11)

Combining (3.10) with (3.11) we get the result. �

Lemma 3.4. Suppose that the conditions (3.1)–(3.3) hold. Let x ∈ X

be fixed and let hx : X → R be continuous on X such that hx(x) = 0.
Then we have

stA- lim
n

(
max
x∈X

|Ln(hx;x)|
)

= 0.
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Proof. Let x ∈ X be fixed. Since hx is continuous at the point x,
for a given ε > 0, there exists an open neighborhood U of x such that
|hx(y)| < ε whenever y ∈ U . Let m = miny∈X\U Px(y), where Px is
given by (3.1). Since X\U is compact, it must be that m > 0. Now let
M = maxx,y∈X |hx(y)|. Hence we have

|hx(y)| < ε for all y ∈ U (3.12)

and
|hx(y)| ≤ M ≤ M

m
Px(y) for all y ∈ X\U. (3.13)

Combining (3.12) and (3.13) we get, for all y ∈ X, that

|hx(y)| ≤ ε +
M

m
Px(y).

So, this implies that

|Ln(hx;x)| ≤ εLn(1;x) +
M

m
|Ln(Px;x)| . (3.14)

Since x ∈ X was arbitrary, we conclude from (3.14) that

max
x∈X

|Ln(hx;x)| ≤ ε ‖Ln‖ +
M

m
max
x∈X

|Ln(Px;x)| .

By Lemma 3.3 there is a subset K of positive integers such that δA(K) = 1
and, for all n ∈ K, we have

max
x∈X

|Ln(hx;x)| ≤ Bε +
M

m
max
x∈X

|Ln(Px;x)| , (3.15)

where B := supn∈K ‖Ln‖.
For a given r > 0 choose ε > 0 such that Bε < r. Now define

D1 =
{

n ∈ K : max
x∈X

|Ln(hx;x)| ≥ r
}
,

D2 =
{

n ∈ K : max
x∈X

|Ln(Px;x)| ≥ (r − Bε)m
M

}
.

Since D1 ⊆ D2, (3.15) yields that∑
n∈D1

ajn ≤
∑

n∈D2

ajn. (3.16)

Taking limit as j → ∞ in (3.16) and using Lemma 3.2 the proof follows. �
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Now we are ready to give the main result.

Theorem 3.1. Let A = (ajn) be a non-negative regular summa-

bility matrix such that the conditions (3.1)–(3.3) hold. Then, for all

f ∈ C(X, R), we have

stA- lim
n

‖Ln(f) − f‖ = 0.

Proof. For a fixed x ∈ X, define the function hx by

hx(y) = f(y) − f(x)
Q(x)

Q(y), y ∈ X,

where Q is the function given by (3.7). Observe that hx meets all require-
ments of Lemma 3.4.

On the other hand, since

f(y) = hx(y) +
f(x)
Q(x)

Q(y),

we have

|Ln(f ;x) − f(x)| ≤ |Ln(hx;x)| + f(x)
Q(x)

|Ln(Q;x) − Q(x)| ,

and this implies that

‖Ln(f) − f‖ ≤ α
{

max
x∈X

|Ln(hx;x)| + ‖Ln(Q) − Q‖
}

, (3.17)

where α := max
{
1,

∥∥ f
Q

∥∥}
.

Let ε > 0 be given and define the following sets:

D =
{

n : max
x∈X

|Ln(hx;x)| + ‖Ln(Q) − Q‖ ≥ ε

α

}
,

D1 =
{

n : max
x∈X

|Ln(hx;x)| ≥ ε

2α

}
,

D2 =
{

n : ‖Ln(Q) − Q‖ ≥ ε

2α

}
.
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Since D ⊆ D1 ∪ D2, we get from (3.17) that

∑
n:‖Ln(f)−f‖≥ε

ajn ≤
∑
n∈D

ajn ≤
∑

n∈D1

ajn +
∑

n∈D2

ajn. (3.18)

Now taking limit as j → ∞ in (3.18) and using Lemmas 3.1 and 3.4, the
proof is completed. �

Note that if we replace A by the identity matrix we get the abstract
version of the classical Korovkin theorem (see, e.g. [21, p. 20]).

Applications. We now give some applications of Theorem 3.5.

1. Let X = [0, 1]. Choose the functions f1(y) = 1, f2(y) = y, f3(y) =
y2, g1(x) = x2, g2(x) = −2x, g3(x) = 1. Then observe that conditions
(3.1) and (3.2) hold. If we replace the operators Ln in Theorem 3.5 by
the operators Vn given by (2.1) with rn(x) replaced by pn(x) where pn(x)
is defined by (2.6), then the discussion preceding Theorem 2.3 yields that
stA-limn Vn(fi;x) = fi(x), (i = 1, 2, 3). Hence Theorem 3.5 implies that
stA-limn Vn(f ;x) = f(x) for every f ∈ C([0, 1], R) and all x ∈ [0, 1].

2. Now let X be the compact additive group modulo 2π of R. Choose
the functions f1(y) = 1, f2(y) = cos y, f3(y) = sin y, g1(x) = 1, g2(x) =
− cos x, g3(x) = − sin x. It is easy to check that Px(y) = 1−cos(x−y) ≥ 0
for all x, y ∈ [−π, π], and Px(y) = 0 if and only if y = x. In this case
Theorem 3.5 reduces to Theorem 1 of [7].

Concluding Remark. Finally we deal with an example of a sequence
of positive linear operators to which Theorem 1 of [21, p. 20] does not apply
but our Theorem 3.5 does.

Let A = (ajn) be a non-negative regular matrix summability satisfying
(2.5). In this case it is known that A-statistical convergence is stronger
than ordinary convergence [19]. So we can choose a sequence (un) which
is A-statistically convergent to zero but non-convergent. Without loss of
generality we may assume that (un) is non-negative. Otherwise we replace
(un) by (|un|). Now let {Tn} be any sequence of positive linear operators
from C(X, R) into C(X, R) satisfying all hypotheses of Theorem 1 of [21,
p. 20]. Define the operators Ln by

Ln(f ;x) = (1 + un)Tn(f ;x), n ∈ N and f ∈ C(X, R).
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Then observe that {Tn(f ;x)} being convergent and (un) being A-statisti-
cally convergent to zero, their product will also be A-statistically conver-
gent to zero. Hence {Ln(f ;x)} will not be convergent to f(x) but will be
A-statistically convergent to f(x) for all x ∈ X.

Acknowledgment. The authors wish to thank the referee for his/her
valuable suggestions which improved the paper considerably.
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