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On the characterization of a class of binary operations
on bivariate distribution functions
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Dedicated to Berthold Schweizer and Abe Sklar
from two followers afar

Abstract. We characterize the class of binary operations on bivariate dis-
tribution functions that are induced pointwise by a two-place real function (e.g.
mixtures) and, in particular, we study these operations on the class of distribution
functions whose one-dimensional margins are uniform (i.e. copulæ).

1. Introduction

In [1], Alsina, Nelsen & Schweizer studied the class of the bi-
nary operations on unidimensional distribution functions that are induced
pointwise by a two-place function ψ : [0, 1]2 → [0, 1]; a binary operation
ϕ defined on the set ∆ of all distribution functions is said to be induced
pointwise by ψ if, for all F and G in ∆, the value of ϕ(F,G) at t is a func-
tion of F (t) and G(t), namely ϕ(F,G)(t) = ψ (F (t), G(t)) for all t ∈ R. In
this paper, we extend these results to bivariate distribution functions.

We recall that a function H defined on the extended real plane R2 and
with values in [0, 1] is a bivariate distribution function if it is left-continuous
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Key words and phrases: distribution function, copula, P -increasing function, pointwise
induced operation.
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in each place, H(+∞,+∞)=1 and H(x,−∞) = 0 = H(−∞, y) for all
x, y ∈ R, and it is 2-increasing, viz.

H(x, y) +H(x′, y′) −H(x, y′) −H(x′, y) ≥ 0, (1.1)

for all x, x′, y, y′ ∈ R with x ≤ x′ and y ≤ y′. The space of all bivariate
distribution functions is denoted by ∆2. For these notions see [13].

Definition 1.1. A binary operation ϕ on ∆2 is said to be induced point-
wise by a function ψ : [0, 1]2 → [0, 1] if, for all H and K in ∆2 and for all
(x, y) ∈ R

2, one has

ϕ(H,K)(x, y) = ψ(H(x, y),K(x, y)). (1.2)

The class of all functions that induce pointwise a binary operation on ∆2

will be denoted by P.

The major result of this paper is the characterization of the induced
pointwise operations on the set ∆2 (Section 2). In order to show this result,
we introduce the new notion of “P -increasing function”, a generalization of
the 2-increasing functions, and study its properties (Section 3). The same
circle of ideas is then applied in Section 4 to copulas. Section 5 is devoted
mainly to questions related to the convergence of distribution functions
and distributions with given marginals.

2. Induced pointwise bivariate distribution functions

The focus of this section is on the characterization of pointwise induced
operations. In order to prove our main result, we shall introduce the notion
of P -increasing function.

Definition 2.1. A function ψ : [0, 1]2 → [0, 1] is said to be P -increasing
(i.e. probabilistically increasing) if, and only if,

ψ(s1, t1) + ψ(s4, t4)

≥ max [ψ(s2, t2) + ψ(s3, t3), ψ(s3, t2) + ψ(s2, t3)] , (2.1)
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for all si, ti ∈ [0, 1] (i ∈ {1, 2, 3, 4}) such that

s1 ≤ s2 ∧ s3 ≤ s2 ∨ s3 ≤ s4, t1 ≤ t2 ∧ t3 ≤ t2 ∨ t3 ≤ t4, (2.2)

s1 + s4 ≥ s2 + s3, t1 + t4 ≥ t2 + t3, (2.3)

where a ∧ b denotes min{a, b} and a ∨ b denotes max{a, b}.
Here we present a geometrical interpretation of the P -increasing prop-

erty, which will be the object of a deep study in Section 3.
Given si, ti (i ∈ {1, 2, 3, 4}) as in Definition 2.1, let

u1 := s2 ∧ s3, u4 := s2 ∨ s3, v1 := t2 ∧ t3, v4 := t2 ∨ t3.

Consider the rectangles R1 and R2 with vertices

R1 : [(s1, t1), (s1, t4), (s4, t4), (s4, t1)]

R1 : [(u1, v1), (u1, v4), (u4, v4), (u4, v1)] .

Then R2 ⊆ R1 and conditions (2.2) and (2.3) imply that the centre of R2

lies below and to the left of the centre of R1 (unless R1 = R2) (see figure
below).
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Now, there are four choices for (u1, v1) – namely (s2, t2), (s2, t3), (s3, t2)
and (s3, t3) – each leading to corresponding choices for the other vertices
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of R2. For example, if (u1, v1) = (s2, t2) then (u4, v4) = (s3, t3), and so on.
In each case, (2.1) yields the two inequalities

ψ(s1, t1) + ψ(s4, t4) ≥ ψ(u1, v4) + ψ(u4, v1),

ψ(s1, t1) + ψ(s4, t4) ≥ ψ(u1, v1) + ψ(u4, v4).

In particular, when R1 = R2, the above inequalities show at once that
P -increasing property implies 2-increasing property.

For the sequel, we shall also need the following lemma, whose proof is
essentially the same as that in Proposition 1 of [6].

Lemma 2.1. Let ψ : [0, 1]2 → [0, 1] be such that both the functions

s 	→ ψ(s, t) and s 	→ ψ(t, s) are increasing for all t ∈ [0, 1]; then, the

following statements are equivalent:

(a) ψ is jointly left-continuous, in the sense that if {sn} and {tn} are two

increasing sequences of points of [0, 1] that tend to s and t respectively,

sn ↑ s and tn ↑ t, then

lim
n→+∞ψ(sn, tn) = ψ(s, t);

(b) ψ is left-continuous in each place.

Theorem 2.1. For a function ψ : [0, 1]2 → [0, 1] the following state-

ments are equivalent:

(a) ψ induces pointwise a binary operation on ∆2;

(b) ψ fulfils the conditions

(b.1) ψ(0, 0) = 0 and ψ(1, 1) = 1,

(b.2) ψ is P -increasing,

(b.3) ψ is left-continuous in each place.

Proof. (a) =⇒ (b) Let ψ induce pointwise the binary operation ϕ on
∆2, viz. if H and K are in ∆2, then the function

R2 � (x, y) 	→ ϕ(H,K)(x, y) := ψ(H(x, y),K(x, y))

is in ∆2. For all distribution functions H and K one has

ψ(0, 0) = ψ (H(x,−∞),K(x,−∞)) = ϕ(H,K)(x,−∞) = 0



Characterization of a class of binary operations on bivariate d.f.’s 51

and

ψ(1, 1) = ψ (H(+∞,+∞),K(+∞,+∞)) = ϕ(H,K)(+∞,+∞) = 1.

Let si and ti be in [0, 1] (i ∈ {1, 2, 3, 4}) satisfying (2.2) and (2.3). Then,
there exist two distribution functions H and K in ∆2 and four points x1,
x2, y1, y2 in R, with x1 ≤ x2 and y1 ≤ y2, such that

s1 = H(x1, y1), s2 = H(x1, y2), s3 = H(x2, y1), s4 = H(x2, y2),

t1 = K(x1, y1), t2 = K(x1, y2), t3 = K(x2, y1), t4 = K(x2, y2).

Since ϕ(H,K) is 2-increasing, one has

ϕ(H,K)(x1, y1)+ϕ(H,K)(x2, y2)−ϕ(H,K)(x1, y2)−ϕ(H,K)(x2, y1) ≥ 0,

which, with the above positions, is equivalent to

ψ(s1, t1) + ψ(s4, t4) ≥ ψ(s2, t2) + ψ(s3, t3).

But we may exchange s2 and s3 and find a bivariate distribution function
H ′ such that

s1 = H ′(x1, y1), s3 = H ′(x1, y2), s2 = H ′(x2, y1), s4 = H ′(x2, y2).

Then, with K unchanged, one has

ψ(s1, t1) + ψ(s4, t4) ≥ ψ(s3, t2) + ψ(s2, t3),

from which it follows (2.1).
In order to prove (b.3), let s be any point in [0, 1] and let {sn} be any

sequence in [0, 1] that increases to s, sn ↑ s. Let H and K be in ∆2 such
that (i) the marginal F (x) := H(x,+∞) of H is continuous and strictly
increasing and (ii) the marginal G(x) := K(x,+∞) of K is constant on R
and equal to t, G(x) = t for all x ∈ R. Then the sequence {xn}, where
xn := F−1(sn) for all n ∈ N, converges to x := F−1(s), xn ↑ x. Now, for
all t ∈ [0, 1], one has

ψ(sn, t) = ψ (F (xn), G(xn)) = ψ (H(xn,+∞),K(xn,+∞))

= ϕ(H,K)(xn,+∞) −−−−−→
n→+∞ ϕ(H,K)(x, + ∞)

= ψ (H(x,+∞),K(x,+∞)) = ψ (F (x), G(x)) = ψ(s, t).
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In an analogous manner one proves that t 	→ ψ(s, t) is left-continuous for
all s ∈ [0, 1].
(b) =⇒ (a) Let ψ satisfy conditions (b.1) through (b.3) and define an
operation ϕ on ∆2 via

ϕ(H,K)(x, y) := ψ(H(x, y),K(x, y)) for all H,K ∈ ∆2.

It is a straightforward matter to verify that ϕ(H,K) thus defined satisfies
the boundary conditions ϕ(H,K)(+∞,+∞) = 1, and ϕ(H,K)(t,−∞) =
0 = ϕ(H,K)(−∞, t) for all t ∈ R. Moreover, given x, x′, y, y′ in R with
x ≤ x′ and y ≤ y′, one has

ϕ(H,K)(x′, y′) − ϕ(H,K)(x′, y) − ϕ(H,K)(x, y′) + ϕ(H,K)(x, y)

= ψ(H(x′, y′),K(x′, y′)) − ψ(H(x′, y),K(x′, y))

− ψ(H(x, y′),K(x, y′)) + ψ(H(x, y),K(x, y)).

Now, take

s1 = H(x, y), s2 = H(x′, y), s3 = H(x, y′), s4 = H(x′, y′)

t1 = K(x, y), t2 = K(x′, y), t3 = K(x, y′), t4 = K(x′, y′);

then si and ti (i ∈ {1, 2, 3, 4}) satisfy (2.2) and (2.3) and, because ψ is
P -increasing, it follows that ϕ(H,K) is 2-increasing. Thus it remains to
verify that ϕ(H,K) is left-continuous in each variable. Let x be in R, let
y be any point in R, and let {xn} be a sequence of reals such that xn ↑ x.
Then

|ϕ(H,K)(xn, y) − ϕ(H,K)(x, y)|
= |ψ (H(xn, y),K(xn, y)) − ψ (H(x, y),K(x, y))| −−−−−→

n→+∞ 0,

since s 	→ H(s, y) and s 	→ K(s, y) are left-continuous and Lemma 2.1
holds. In an analogous manner, one proves that t 	→ ϕ(H,K)(x, t) is
left-continuous for all x ∈ R. This completes the proof. �

Remark 2.1. Theorem 2.1 is similar to the characterization of induced
pointwise operations on ∆ (see [1]); our condition (b.2) replaces the con-
dition

(b.2’) ψ is increasing in each variable.
Because every P -increasing function satisfies (b.2’) (see Section 3), every
function in P induces pointwise also a binary operation on ∆.
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3. P -increasing functions

In the sequel, in order to prove that a function ψ is P -increasing, we
restrict ourselves to showing that, for all si, ti as in Definition 2.1,

ψ(s1, t1) + ψ(s4, t4) ≥ ψ(s2, t2) + ψ(s3, t3), (3.1)

instead of inequality (2.1) that can be easily obtained by means of a rela-
belling of the points. In fact this was our original definition of P -increasing
function (see [3]). The equivalent definition given above was suggested by
Abe Sklar; we have adopted it because of its straightforward geometrical
interpretation.

The more important properties of P -increasing functions are con-
nected with the property of being directionally convex. We recall that
a function ψ : [0, 1]2 → [0, 1] is called directionally convex if, for all si, ti
(i ∈ {1, 2, 3, 4}) in [0, 1] such that (2.2) holds together with the condition,
stronger than (2.3),

s1 + s4 = s2 + s3, t1 + t4 = t2 + t3, (3.2)

one has
ψ(s1, t1) + ψ(s4, t4) ≥ ψ(s2, t2) + ψ(s3, t3).

For more details, see [14, 10].

Theorem 3.1. For a function ψ : [0, 1]2 → [0, 1] the following state-

ments are equivalent:

(a) ψ is P -increasing;

(b) ψ is directionally convex and increasing in each place.

Proof. (a) =⇒ (b) Given a P -increasing function ψ, it suffices to
show that ψ is increasing in each place. Consider b ∈ [0, 1] and, for all
i ∈ {1, 2, 3, 4}, take si and ti as in Definition 2.1, but satisfying the further
conditions s1 = s2 and ti = b. Then

ψ(s4, b) − ψ(s3, b) − ψ(s2, b) + ψ(s2, b) ≥ 0,

from which one has ψ(s4, b) ≥ ψ(s3, b), viz. t 	→ ψ(t, b) is increasing. The
isotony of ψ in the other variable is established in an analogous manner.
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(b) =⇒ (a) Let the si’s and the ti’s (i ∈ {1, 2, 3, 4}) be as in Definition 2.1
and choose v4 and w4 in [0, 1] such that v4 ∈ [s2 ∨ s3, s4], w4 ∈ [t2 ∨ t3, t4]
and

s1 + v4 = s2 + s3, t1 + w4 = t2 + t3.

Then

ψ(s2, t2) + ψ(s3, t3) ≤ ψ(s1, t1) + ψ(v4, w4) ≤ ψ(s1, t1) + ψ(s4, t4),

which is the desired conclusion. �

Connecting the above result with [10, Theorem 2.5], we obtain

Theorem 3.2. A function ψ is P -increasing if, and only if, the fol-

lowing statements hold:

(a) ψ is 2-increasing;

(b) ψ is increasing in each place;

(c) ψ is convex in each place.

Notice that if ψ is grounded, namely ψ(t, 0) = ψ(0, t) = 0 for all
t ∈ [0, 1], then (a) implies (b) (see [13, 11]).

Remark 3.1. If ψ induces pointwise a binary operation on ∆2, then,
in view of Theorems 2.1 and 3.2, ψ is a binary aggregation operator, viz.
ψ is increasing in each variable with ψ(0, 0) = 0 and ψ(1, 1) = 1 (see [2]).

Example 3.1. The two functions Π : [0, 1]2 → [0, 1], defined for all x, y
in [0, 1] by Π(x, y) = xy, and W : [0, 1]2 → [0, 1], defined by

W (x, y) = max{x+ y − 1, 0},

are P -increasing and, because they are continuous, are also in P. These
functions belong to the class of copulas (see Section 4). Notice that also
the family of copulas {Cα : α ∈ [0, 1]} defined via Cα = αΠ + (1 − α)W
is in P. It could be of interest to use copulas in order to induce pointwise
binary operations on ∆2; however, not every copula is P -increasing. For
example, the functionM(x, y) = x∧y is 2-increasing, but not P -increasing;
in fact, if one considers si and ti in [0, 1] (i ∈ {1, 2, 3, 4}) such that

s1 = 2/10 ≤ s2 = 3/10 = s3 ≤ s4 = 5/10,
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t1 = 0 ≤ t2 = 3/10 = t3 ≤ t4 = 1,

then one has

M(2/10, 0) −M(3/10, 3/10) −M(3/10, 3/10) +M(5/10, 1) = −1/10 < 0.

We note also that a P -increasing function need not be continuous.

Example 3.2. The function ψ : [0, 1]2 → [0, 1] defined by

ψ(x, y) =

{
x, y = 1,

0, elsewhere,

is P -increasing, but not continuous.

In [7], Marinacci & Montrucchio studied in detail the properties of
directionally convex functions (which they call “ultramodular functions”).
In particular, they studied the conditions that ensure the continuity and
the differentiability of such functions. All these results can be easily adapted
to P -increasing functions, in view of Theorem 3.1. In particular, we can
derive that every P -increasing function is locally Lipschitz on (0, 1)2.

This latter result allows to give important examples of P -increasing
functions. To this end, we recall that, given two points x = (x1, x2) and
y = (y1, y2) in R2, x is majorized by y, and one writes x ≺ y, if, and only
if, x1 ∨ x2 ≤ y1 ∨ y2 and x1 + x2 = y1 + y2. For more details, see [8].

Lemma 3.1. If f : [0, 1] → [0, 1] is convex and increasing, then, for

all s1, s2, s3, s4 in [0, 1] such that

s1 ≤ s2 ∧ s3 ≤ s2 ∨ s3 ≤ s4 and s1 + s4 ≥ s2 + s3, (3.3)

one has

f(s1) + f(s4) ≥ f(s2) + f(s3). (3.4)

Proof. Let si (i ∈ {1, 2, 3, 4}) be points in [0, 1] satisfying (3.3). Then
there exists w4 in [0, 1], s2 ∨ s3 ≤ w4 ≤ s4, such that s1 +w4 = s2 + s3. It
follows that (s2, s3) ≺ (w4, s1), where ≺ denote the majorization ordering
on R2, and, in view of [4], there exists α ∈ [0, 1], with α := 1 − α, such
that

s2 = αs1 + αw4, s3 = αs1 + αw4.
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Therefore

f(s2) + f(s3) ≤ αf(s1) + αf(w4) + αf(s1) + αf(w4)

≤ f(s1) + f(w4).

Since f(s4) ≥ f(w4), we obtain the desired assertion. �
Theorem 3.3. Let f : [0, 1] → [0, 1] and g : [0, 1] → [0, 1] be two

convex and increasing functions. Then the following functions are P -in-

creasing:

(a) h1(x, y) := f(x);

(b) h2(x, y) := αf(x) + (1 − α)g(y), α ∈ [0, 1];

(c) h3(x, y) := f(x) · g(y).
Proof. Statements (a) and (b) are easily proved. Statement (c) fol-

lows directly from Theorem 3.1 and the fact that the product of two di-
rectionally convex functions is directionally convex ([7]). �

From Theorem 2.1, it follows

Corollary 3.1. Under the assumptions of Theorem 3.3, if f and g

are continuous with f(0) = 0 = g(0) and f(1) = 1 = g(1), then h1, h2 and
h3 are in P.

Example 3.3. For every α, β ≥ 1, Λα,β(x, y) := λxα + (1 − λ)yβ

(λ in [0, 1]) and Πα,β(x, y) := xα · yβ are in P. In particular, the mix-
ture is in P, but not the geometric mean, because it is not P -increasing.
Consider, for instance, si and ti in [0, 1] (i ∈ {1, 2, 3, 4}) given by

s1 = 0 < s2 =
4
10

= s3 < s4 =
8
10
, t1 =

4
10

< t2 =
7
10

= t3 < t4 = 1,

then
√
s1 t1 +

√
s4 t4 −

√
s2 t2 −

√
s3 t3 =

√
80

10
−

√
112
10

< 0.

The following result, which will be useful in the sequel, is a consequence
of the property of being 2-increasing.

Proposition 3.1. If ψ : [0, 1]2 → [0, 1] is P -increasing, then, for all s,

s′, t, t′ in [0, 1], it satisfies the condition∣∣ψ(s′, t′) − ψ(s, t)
∣∣ ≤ ∣∣ψ(s′, 1) − ψ(s, 1)

∣∣ +
∣∣ψ(1, t′) − ψ(1, t)

∣∣ . (3.5)
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Proof. Let s and s′ be in [0, 1] with s ≤ s′. Since ψ is 2-increasing,
then one has, for every t ∈ [0, 1],

ψ(s′, 1) − ψ(s, 1) ≥ ψ(s′, t) − ψ(s, t).

Similarly, for all s ∈ [0, 1] and for t and t′ in [0, 1], with t ≤ t′, one has

ψ(1, t′) − ψ(1, t) ≥ ψ(s, t′) − ψ(s, t).

Therefore, for all s, s′, t, t′ in [0, 1], one has∣∣ψ(s′, t′) − ψ(s, t)
∣∣ ≤ ∣∣ψ(s′, t′) − ψ(s, t′)

∣∣ +
∣∣ψ(s, t′) − ψ(s, t)

∣∣
≤ ∣∣ψ(s′, 1) − ψ(s, 1)

∣∣ +
∣∣ψ(1, t′) − ψ(1, t)

∣∣ ,
which concludes the proof. �

4. Pointwise induced copulæ

The notion of “copula”, now common in the statistical literature, was
introduced in 1959 by Sklar ([15], [16]): a function C : [0, 1]2 → [0, 1] is
called copula if it is 2-increasing and satisfies the boundary conditions

∀t ∈ [0, 1] C(t, 0) = 0 = C(0, t), C(t, 1) = t = C(1, t). (4.1)

Equivalently, a copula is a restriction to [0, 1]2 of a bivariate distribution
function whose univariate margins are uniform on the interval [0, 1]. One
of the main properties of copulas states that for any bivariate distribution
function H of a random vector (X,Y ), with univariate marginals F , G,
a copula C (uniquely determined on Ran F × Ran G) always exists so
that H(x, y) = C (F (x), G(y)). For every copula C, one has the following
inequalities

W (x, y) ≤ C(x, y) ≤M(x, y) for all x, y in [0, 1], (4.2)

called Fréchet–Hoeffding bounds (see [9]). The set of all copulas will be
denoted by C. For the properties of copulas we refer to [13], [11].
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Extending Definition 1.1, we introduce

Definition 4.1. A binary operation ρ on C is said to be induced point-
wise by a two-place function ψ : [0, 1]2 → [0, 1] if, for all A and B in C and
for all (x, y) ∈ [0, 1]2, one has

ρ(A,B)(x, y) = ψ(A(x, y), B(x, y)). (4.3)

The class of all functions that induce pointwise a binary operation on C
will be denoted by PC .

Contrary to pointwise induced operations on ∆2 (see Example 3.1),
one has the following result.

Proposition 4.1. No copula induces pointwise a binary operation

on C.

Proof. Suppose that there exists a copula ψ that induces pointwise
a binary operation ρ on C, namely, for all A and B in C, ρ(A,B), defined
as in (4.3), is a copula. It can be easily proved that ρ(A,B) satisfies (4.1)
if, and only if, δψ(x) := ψ(x, x) = x for all x in [0, 1]. But, because of
(4.2), M is the only copula with δψ equal to the identity function on [0, 1].
Since there are copulæ A and B such that their minimum is not a copula
(see, for example, [3], [12]), a contradiction has been reached. �

The following result gives a sufficient condition for induced pointwise
operations on C.

Theorem 4.1. If ψ : [0, 1]2 → [0, 1] is P -increasing and ψ(x, x) = x

for all x ∈ [0, 1], then ψ induces pointwise a binary operation ρ on C.

Proof. Let ρ(A,B) be defined as in (4.3). Because ψ is P -increasing,
it follows from a similar argument to the proof of Theorem 2.1 that ρ(A,B)
is 2-increasing. Moreover, because ψ(x, x) = x for all x ∈ [0, 1], it follows
that ρ(A,B) satisfies the boundary conditions (4.1). �

Proposition 4.2. If ψ : [0, 1]2 → [0, 1] is P -increasing and ψ(x, x) = x

for all x ∈ [0, 1], then ψ is in P.

Proof. In view of Theorem 2.1, it suffices to show that ψ is left-
continuous in each place; but here we shall show the stronger condition
that ψ has the Lipschitz property. Let x, x′, y be in [0, 1]. If, for example,
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y ≤ x ≤ x′, since ψ is P -increasing, one has

ψ(x, y) + ψ(x′, x′) ≥ ψ(x′, y) + ψ(x, x),

viz. ψ(x′, y) − ψ(x, y) ≤ x′ − x. If x ≤ x′ ≤ y the proof is analogous and,
if x ≤ y ≤ x′, one has

|ψ(x′, y) − ψ(x, y)| ≤ |ψ(x′, y) − ψ(y, y)| + |ψ(y, y) − ψ(x, y)|
≤ |x′ − y| + |y − x| = |x′ − x|.

Since the same argument can be applied to the other variable, simple
calculations lead to show that ψ is Lipschitz with constant 1. �

For more details on induced pointwise operations on the class of quasi-
copulas, semicopulas and 1-Lipschitz binary aggregation operator, we refer
to [5], [3].

5. Some connected questions

LetH andK be bivariate distribution functions defined for all x, y ∈ R
by

H(x, y) = A (F1(x), G1(y)) and K(x, y) = B (F2(x), G2(y)) ,

where Fi, Gi (i = 1, 2) are their respective marginals and A and B are
their respective copulæ (we adopt, if necessary, the method of bilinear in-
terpolation in order to single out one copula, see [11]). In other words, H
is in Γ(F1, G1) and K is in Γ(F2, G2), where we recall that, given two dis-
tribution functions F and G, Γ(F,G) is the family of bivariate distribution
functions that have F and G as their marginals, called the Fréchet class
determined by F and G. If ψ is in P, we can obtain some informations
on the marginals of the pointwise induced distribution function ϕ(H,K)
defined as in (1.2).

Proposition 5.1. Under the above assumptions, ϕ(H,K) is in the

Fréchet class determined by the (unidimensional) distribution functions

x 	→ ψ(F1(x), F2(x)) and y 	→ ψ(G1(y), G2(y)).
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Proof. For all x, y ∈ R, one has

ϕ(H,K)(x,+∞) = ψ(H(x,+∞),K(x,+∞)) = ψ(F1(x), F2(x)),

and, analogously,

ϕ(H,K)(+∞, y) = ψ(H(+∞, y),K(+∞, y)) = ψ(G1(y), G2(y)),

as claimed. �

Moreover, if ψ satisfies the hypotheses of Theorem 4.1 and Proposi-
tion 4.2, it is entirely natural to ask whether anything may be said about
the copula C̃ of ϕ(H,K).

Proposition 5.2. Under the above assumptions, if F1 = F2 = F ,

G1 = G2 = G, then C̃(x, y) = ψ(A(x, y), B(x, y)).

Proof. For all H and K in the Fréchet class Γ(F,G), the func-
tion (x, y) 	→ ψ(H(x, y),K(x, y)) is a bivariate distribution function with
marginals given by

ψ(F (x), F (x)) = F (x) and ψ(G(y), G(y)) = G(y).

It follows that

C̃ (F (x), G(y)) = ψ (H(x, y),K(x, y))

= ψ [A(F (x), G(y)), B(F (x), G(y))] ,

from which an argument similar to that used in the proof of Sklar’s theorem
([11]) yields C̃(s, t) = ψ (A(s, t), B(s, t)) for all s, t ∈ [0, 1]. �

In general, when F1 �= F2 and G1 �= G2, the above result is not true.

Example 5.1. Let ψ(x, y) = λx + (1 − λ)y be the mixture and let
A = B = Π be a copula, then, for λ ∈ ]0, 1[, one has

ψ(H(x, y),K(x, y)) = λF1(x)G1(y) + (1 − λ)F2(x)G2(y)

�= [λF1(x) + (1 − λ)F2(x)] [λG1(y) + (1 − λ)G2(y)]

= Π(ψ(F1(x), F2(x)), ψ(G1(y), G2(y))).
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We conclude this section with a remark on convergence in ∆2. Assume
that {Hn} and {Kn} are two sequences of distribution functions in ∆2 that
converge weakly to the distribution functions H and K, respectively; in
other words, if C(H) and C(K) are the dense subsets of R2 formed by the
points of continuity of H and K, respectively, then

∀(x, y) ∈ C(H) lim
n→+∞Hn(x, y) = H(x, y),

and
∀(x, y) ∈ C(K) lim

n→+∞Kn(x, y) = K(x, y).

The question naturally arises of whether, for ψ ∈ P that induces the opera-
tion ϕ on ∆2, the sequence of bivariate distribution functions {ϕ(Hn,Kn)}
converges weakly to ϕ(H,K). While we do not know a general answer to
this question, the following result provides a useful sufficient condition.

Theorem 5.1. Under the conditions just specified, if ψ is (separately)

continuous in each place, viz. if the functions s 	→ ψ(s, t) and s 	→ ψ(t, s)
are continuous for all t ∈ [0, 1], then the sequence {ϕ(Hn,Kn)} converges

weakly to ϕ(H,K).

Proof. The set C(H) ∩ C(K) is dense in R2. For every point (x, y)
in C(H) ∩ C(K), one has

Hn(x, y) −−−−−→
n→+∞ H(x, y) and Kn(x, y) −−−−−→

n→+∞ K(x, y).

Then, because of inequality (3.5), one has

|ϕ(Hn,Kn)(x, y) − ϕ(H,K)(x, y)|
= |ψ (Hn(x, y),Kn(x, y)) − ψ (H(x, y),K(x, y))|
≤ |ψ (Hn(x, y), 1) − ψ (H(x, y), 1)| + |ψ (1,Kn(x, y)) − ψ (1,K(x, y))| .

The assertion now follows directly from the continuity assumptions on ψ.
�

The previous result can be strengthened in an obvious way in view of
Theorem 4.1 (also recall that weak convergence of copulas means uniform
convergence in [0, 1]2).
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Theorem 5.2. Let ψ be a P -increasing function such that ψ(x, x) = x

for all x ∈ [0, 1]. Let ρ be the operation induced pointwise by ψ on C. If

{An} and {Bn} are sequences of copulas that converge pointwise, and,

hence, uniformly, to the copulas A and B, respectively, the sequence of

copulas {ρ(An, Bn)} converges pointwise, and, hence, uniformly, to the

copula ρ(A,B).
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