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Some results related to the Laplacian on vector fields

By FAZILET ERKEKOĞLU (Ankara), DEMIR N. KUPELI (Ankara)

and BÜLENT ÜBNAL (Ankara)

Abstract. A characterization of Euclidean spheres out of connected, com-
pact, Einstein Riemannian manifolds of constant scalar curvature is made by a
characterization of a vector field with an eigenvalue equation for the Laplacian
on vector fields.

1. Introduction

In analysis, mostly the existence of a nontrivial solution to a differ-
ential equation on a certain domain is argued. But in geometry, one can
also argue the existence of a domain manifold for a differential equation to
possess a nontrivial solution. This may be considered as an analytic char-
acterization (or representation) of a manifold by a differential equation if
this manifold serves as a unique domain for this differential equation to pos-
sess a nontrivial solution in a certain class of manifolds. In the literature,
some characterizations of rank-one symmetric Riemannian manifolds by
differential equations can be found. For example, some known characteri-
zations of Euclidean spheres, complex projective spaces and quaternionic
projective spaces by differential equations can be found in [9], [10], [6],
[14], [13], [3], [8], [1], and also a survey of these results can be found in [5].
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It seems that one of the most significant example of such a character-
ization of Euclidean spheres is a result of Obata [9], that is, a necessary
and sufficient condition for a connected, complete, n(≥ 2)-dimensional
Riemannian manifold (M,g) to be isometric with the Euclidean sphere
of radius 1/

√
λ, λ > 0, is the existence of a nonconstant function f on

M satisfying the differential equation Hf + λfg = 0, where Hf is the
Hessian form of f on (M,g). In other words, the differential equation
Hf + λfg = 0, λ > 0, on a connected, complete, Riemannian manifold
(M,g) has a nontrivial solution if and only if its domain (M,g) is the
Euclidean sphere of radius 1/

√
λ. Also, in this particular example, on

the domain connected, complete Riemannian manifolds (M,g), the differ-
ential equation Hf + λfg = 0, λ > 0, can be considered as an analytic
characterization (or representative) of Euclidean spheres. As well, if we
take the trace of the differential equation Hf + λfg = 0 on an n(≥ 2)-
dimensional Riemannian manifold (M,g) with respect g then we obtain
another differential equation (in fact, an eigenvalue equation) ∆f = −nλf

on (M,g), where ∆f is the trace of Hf with respect to g. It is shown in [9]
that, if (M,g) is a connected, compact, Einstein n(≥ 2)-dimensional Rie-
mannian manifold with constant scalar curvature τ > 0 and there exists
a nonconstant function f on M satisfying ∆f = −nλf then λ ≤ − τ

n(n−1) ,
and in particular, λ = − τ

n(n−1) if and only if (M,g) is isometric with the

Euclidean sphere of radius
√

n(n− 1)/τ . Also, in [6], there is stated an-
other differential equation (which is “equivalent” to Hf + λfg = 0, λ �= 0)
on connected, complete Riemannian manifolds (M,g) characterizing Eu-
clidean spheres by the existence of a nontrivial solution to that differen-
tial equation. More precisely, it is shown that, a necessary and sufficient
condition for a connected, complete n(≥ 2)-dimensional Riemannian man-
ifold to be isometric with the Euclidean sphere of radius 1/

√
λ, λ > 0,

is the existence of a nonzero vector field Z on (M,g) satisfying the dif-
ferential equation (∇∇Z)(·, ·) + λg(Z, ·)· = 0 on (M,g), where ∇∇Z is
the second covariant differential of Z. Hence, in the class of domain con-
nected, complete Riemannian manifolds (M,g), the differential equation
(∇∇Z)(·, ·) + λg(Z, ·)· = 0, λ > 0, also serves as an analytic charac-
terization (or representative) of Euclidean spheres. Now, if we take the
trace of the differential equation (∇∇Z)(·, ·) + λg(Z, ·)· = 0 on an n(≥ 2)-
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dimensional Riemannian manifold (M,g) with respect g then we obtain
another differential equation (in fact, an eigenvalue equation) ∆Z = −λZ

on (M,g), where ∆Z is the trace of ∇∇Z with respect to g. In fact,
the subject of this paper is the differential equation (in fact, the eigen-
value equation) ∆Z = −λZ on a connected, compact, Einstein n(≥ 2)-
dimensional Riemannian manifold of constant scalar curvature τ . We first
investigate the general analytic properties of the operator ∆ on the space of
vector fields on compact Riemannian manifolds. Secondly we give results
related to the operator ∆ on the space of vector fields on a connected,
compact Einstein n(≥ 2)-dimensional Riemannian manifold (M,g) with
constant scalar curvature τ > 0. We show that the eigenvalues of the
operator ∆ on the space of vector fields on a connected, compact, Ein-
stein n(≥ 2)-dimensional Riemannian manifold (M,g) with τ > 0 are
bounded from above by − τ

n(n−1) , and this upper bound is achieved by
∆ only on Euclidean spheres. That is, a necessary and sufficient condi-
tion for a connected, compact, Einstein n(≥ 2)-dimensional Riemannian
manifold (M,g) with τ > 0 to be isometric with an Euclidean sphere of
radius

√
n(n− 1)/τ is the existence of a nonzero vector field Z on (M,g)

satisfying the differential equation ∆Z = − τ
n(n−1)Z. As well, we com-

pletely determine the eigenvector fields satisfying this eigenvalue equa-
tion and in turn, we show that the differential equations ∆f = − τ

n−1f

and ∆Z = − τ
n(n−1)Z are “equivalent” on a connected, compact, Einstein

n(≥ 2)-dimensional Riemannian manifold (M,g) of constant scalar curva-
ture τ > 0, provided that dimM = n ≥ 3.

2. Preliminaries

Here, we briefly state the main concepts and definitions used through-
out this paper.

Let (V, g) be an n-dimensional inner product space and L(V, V ) be the
space of linear transformations on V . We define an inner product 〈 , 〉 on
L(V, V ) by

〈T, S〉 = trace(∗S ◦ T ),

where ∗S is the adjoint of S on (V, g). Note that 〈T, S〉 =
∑n

i=1 g(Tei, Sei),
where {e1, . . . , en} is an orthonormal basis for (V, g).
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Moreover, let ‖T‖ = 〈T, T 〉1/2 denote the norm of a linear transforma-
tion T in L(V, V ). A linear transformation T in L(V, V ) can be irreducibly
decomposed with respect to g as

T =
trace T

n
I + σ + ω,

where I, σ and ω are, respectively, the identity linear transformation, trace-
less self-adjoint part of T and the skew-adjoint part of T . Note that, in
the above decomposition, I, σ and ω are mutually orthogonal with respect
to 〈 , 〉 and hence,

‖T‖2 =
(trace T )2

n
+ ‖σ‖2 + ‖ω‖2.

Thus ‖T‖2 ≥ (trace T )2

n and, in particular, ‖T‖2 = (trace T )2

n iff σ = 0 = ω

iff T = trace T
n I.

Next we define the Laplacian of a vector field on a Riemannian man-
ifold. Let Z be a vector field on an n-dimensional Riemannian manifold
(M,g) with Levi–Civita connection ∇. The second covariant differential
∇∇Z of Z is defined by

(∇∇Z)(X,Y ) = ∇X∇Y Z −∇∇XY Z,

where X,Y are vector fields on (M,g). We define the Laplacian ∆Z of Z

on (M,g) to be the trace of ∇∇Z with respect to g, that is,

∆Z = trace∇∇Z =
n∑

i=1

(∇∇Z)(Xi,Xi),

where {X1, . . . ,Xn} is a local orthonormal frame for TM .
Also, if (M,g) is a compact Riemannian manifold then we can define

an inner product ( , ) on the vector space ΓTM of vector fields on M by

(X,Y ) =
∫

M
g(X,Y ),

where X, Y are vector fields on (M,g). Then it can be similarly seen
by following page 158 of [7] that the Laplacian ∆ : ΓTM → ΓTM is
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a linear, self-adjoint, negative semi-definite operator with respect to ( , ).
(Also see [2].)

Finally, if Z is a vector field on a Riemannian manifold (M,g) then
the affinity tensor LZ∇ of Z is defined by

(LZ∇)(X,Y ) = LZ∇XY −∇LZXY −∇XLZY,

where LZ is the Lie derivative with respect to Z and X, Y are vector fields
on (M,g). (See, for example page 109 of [11].) We define the tension field
�Z of Z on (M,g) to be the trace of LZ∇ with respect to g, that is,

�Z = trace LZ∇ =
n∑

i=1

(LZ∇)(Xi,Xi),

where {X1, . . . ,Xn} is a local orthonormal frame for TM .
By a straightforward computation, it can be shown by using the tor-

sion-free property of ∇ that

(LZ∇)(X,Y ) = R(Z,X)Y + (∇∇Z)(X,Y )

(see page 110 of [11]) and hence,

�Z = R̂ic(Z) + ∆Z,

where R is the curvature tensor of (M,g), R̂ic is the Ricci operator of
(M,g) and X, Y are vector fields on (M,g). (See page 40 of [15] and [4].)
A vector field Z on (M,g) is called affine if LZ∇ = 0, and is called geodesic
if �Z = 0. (See, for example, page 108 of [11], [16] and [4].)

3. Some results related to the Laplacian

First we consider the eigenspace of ∆ corresponding to the zero eigen-
value on a compact Riemannian manifold, that is, the solutions of ∆Z = 0.

Lemma 3.1. Let (M,g) be a Riemannian manifold and Z be a vector

field on (M,g). Then

1
2
∆g(Z,Z) = g(∆Z,Z) + ‖∇Z‖2,

where ∆ = div∇ also denotes the Laplacian on functions on left.
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Proof. See page 158 of [11] or [2]. �

Theorem 3.2. Let (M,g) be a compact Riemannian manifold and

Z be a vector field on (M,g). Then, ∆Z = 0 iff ∇Z = 0, that is, Z is

parallel on (M,g).

Proof. “Only if” part is obvious. For the “if” part, since∫
M ∆g(Z,Z) = 0, it follows from Lemma 3.1 that

∫
M g(∆Z,Z)+

∫
M ‖∇Z‖2

= 0. Hence by g(∆Z,Z)= 0, we obtain
∫
M ‖∇Z‖2= 0, that is, ∇Z = 0. �

In conclusion, we can say that, on a compact Riemannian manifold
(M,g), the eigenspace corresponding to the zero eigenvalue of ∆ consists
of parallel vector fields on (M,g). Also note here that, since Ric(Z,Z) = 0
for a parallel vector field Z, where Ric is the Ricci tensor of (M,g), the
eigenspace corresponding to the zero eigenvalue of ∆ does not exist if
Ric(x, x) �= 0 for every 0 �= x ∈ TpM at some p ∈M .

Remark 3.3. Note that, on a compact Riemannian manifold (M,g),
∆ : ΓTM → ΓTM is a linear, self-adjoint, negative semi-definite operator.
Furthermore, it can be easily observed that ∆ is an elliptic operator. Thus,
by the spectral theorem, the eigenvalues λi of ∆ are of the form

−∞← · · · < λi < · · · < λ1 < λ0 = 0.

Thus, if Ric(x, x) �= 0 for every 0 �= x ∈ TpM at some p ∈ M , then the
largest eigenvalue of ∆ on the vector space of vector fields on (M,g) is
negative.

Lemma 3.4. Let (M,g) be a compact n-dimensional Riemannian

manifold and Z be a vector field on (M,g). Then∫
M

g(∆Z,Z) ≤ − 1
n

[ ∫
M

Ric(Z,Z) +
∫

M
trace(∇Z)2

]
,

where Ric is Ricci tensor of (M,g).

Proof. To prove this, we use the following two facts: ‖∇Z‖2 ≥
(div Z)2

n (see the Preliminaries) and∫
M

Ric(Z,Z) +
∫

M
trace(∇Z)2 −

∫
M

(div Z)2 = 0
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(see p. 170 of [11]). Now by Lemma 3.1, since
∫
M ∆g(Z,Z) = 0,∫

M
g(∆Z,Z) = −

∫
M
‖∇Z‖2 ≤ − 1

n

∫
M

(div Z)2

= − 1
n

[ ∫
M

Ric(Z,Z) +
∫

M
trace(∇Z)2

]
. �

Recall that a Riemannian manifold (M,g) is called Einstein if Ric =
cg, where c is constant. It can be easily shown that, then c = τ/n, where
τ is the scalar curvature of (M,g). Now we state a relation between the
eigenvalue and eigenvector field in the eigenvalue equation ∆Z = λZ for
compact Einstein Riemannian manifolds.

Theorem 3.5. Let (M,g) be a compact, Einstein n(≥ 2)-dimensional

Riemannian manifold with scalar curvature τ and Z be a nonzero vector

field on (M,g) satisfying the eigenvalue equation ∆Z = λZ. Then

λ ≤ − τ

n2
− 1

n

∫
M trace(∇Z)2∫

M g(Z,Z)
.

The equality holds iff ∇Z = (div Z/n)I, and in this case, λ = − τ
n(n−1) and

hence τ ≥ 0.

Proof. By Lemma 3.4, since ∆Z = λZ and Ric = τ
ng, we have

λ

∫
M

g(Z,Z) ≤ − 1
n

[
τ

n

∫
M

g(Z,Z) +
∫

M
trace(∇Z)2

]
.

Thus

λ ≤ − τ

n2
− 1

n

∫
M trace(∇Z)2∫

M g(Z,Z)
.

Also note that, in the proof of Lemma 3.4, equality holds iff ‖∇Z‖2 =
(div Z)2/n iff ∇Z = (div Z/n)I by the Preliminaries. In this case,
trace(∇Z)2 = (div Z)2/n and it follows from∫

M
Ric(Z,Z) +

∫
M

trace(∇Z)2 −
∫

M
(div Z)2 = 0

that
τ

n

∫
M

g(Z,Z) +
∫

M
trace(∇Z)2 − n

∫
M

trace(∇Z)2 = 0.
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Thus ∫
M trace(∇Z)2∫

M g(Z,Z)
=

τ

n(n− 1)

and hence
λ = − τ

n2
− 1

n

τ

n(n− 1)

= − τ

n(n− 1)
.

Also, since ∆ is negative semi-definite on the vector space of vector fields
on (M,g), it follows that τ ≥ 0. �

Theorem 3.6. Let (M,g) be a compact, connected, Einstein n(≥ 2)-
dimensional Riemannian manifold with τ �= 0. If there exists a nonzero

vector field Z on (M,g) satisfying the eigenvalue equation ∆Z = λZ and

λ = − τ

n2
− 1

n

∫
M trace(∇Z)2∫

M g(Z,Z)
,

then, τ > 0 and (M,g) is isometric with the Euclidean sphere of radius

r =
√

n(n− 1)/τ .

Proof. By Theorem 3.5, λ = − τ
n(n−1) and τ > 0. Then by Theo-

rem 3.2, Z is not parallel and it follows that 0 < ‖∇Z‖2 = (div Z)2/n
at some point p ∈ M because ∇Z = div Z

n I by Theorem 3.5. Now, let
{X1, . . . ,Xn} be an adapted moving frame near p ∈ M , that is, {X1, . . . ,
Xn} is a local orthonormal frame for TM near p with (∇Xi)p = 0, (see
page 152 of [11]). Then at p ∈M ,

∆Z =
n∑

i=1

(∇Xi∇XiZ −∇∇Xi
XiZ

)

=
1
n

n∑
i=1

∇Xi((div Z)Xi)

=
1
n

n∑
i=1

g(∇ div Z,Xi)Xi

=
1
n
∇ div Z.
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Thus from
∆Z = − τ

n(n− 1)
Z,

we have
∇ div Z = − τ

n− 1
Z

and it follows that
∆ div Z = − τ

n− 1
div Z.

Hence by Theorem 5 of [9], (M,g) is isometric with the Euclidean sphere
of radius r =

√
n(n− 1)/τ . �

Now, we give an example of a vector field Z on an n(≥ 2)-dimensional
Euclidean sphere S

n(r) of radius r =
√

n(n− 1)/τ which satisfies the
assumptions of Theorem 3.5. (See page 117 of [11] for details.) Let χ :
S

n(r) − {south pole} → R
n be the stereographic projection and Z be a

vector field on R
n defined by Zp = (p, p). Let g̃ be the metric tensor on

R
n such that χ∗g̃ is the usual metric tensor on S

n(r)−{south pole}. Note
that g̃ is conformally equivalent to the standard metric tensor g on R

n,
specifically,

g̃p = r2

(
2

1 + ‖p‖2
)2

gp

at each p ∈ R
n, where ‖ ‖ is the Euclidean norm. Hence if we denote the

Levi–Civita connection of g̃ by ∇̃, it can be shown that, at each p ∈ R
n,

∇̃Z =
1− ‖p‖2
1 + ‖p‖2 I.

Also by a straightforward computation, it can be shown that

∆̃Z = − 1
r2

Z,

where ∆̃ is the Laplacian on (Rn, g̃). Since (Sn(r) − {south pole}, χ∗g̃)
and (Rn, g̃) are isometric by the stereographic projection, the vector field
on S

n(r), obtained by taking the lift of Z on S
n(r) − {south pole} and

defining its value as the zero vector at the south pole, also satisfies the
above eigenvalue equation on S

n(r). Also, by the form of ∇̃Z, the equality
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in Theorem 3.6 holds. Note that, this way we can construct n + 1 linearly
independent such vector fields on S

n(r). (See also Remark 3.15.)

Remark 3.7. Let (M,g) be a compact, Einstein n(≥ 2)-dimensional
Riemannian manifold with scalar curvature τ and Z be a vector field on
(M,g). Note that, by �Z = R̂ic(Z) + ∆Z (see the Preliminaries), Z is a
geodesic vector field iff

∆Z = − τ

n
Z.

When we consider the equations ∆Z = − τ
n(n−1)Z and ∆Z = − τ

nZ in
the case of dim M = n = 2, then they are equivalent, that is, ∆Z =
− τ

2Z. Thus, on a compact, Einstein 2-dimensional Riemannian manifold
(M,g) with scalar curvature τ , the vector fields in the eigenspace of ∆
corresponding to the eigenvalue − τ

2 are the geodesic vector fields. In the
case of Euclidean spheres, the vector field Z on S

2(r) in the above example
is really a geodesic vector field which is not Killing. This also provides
an explicit example of a geodesic vector field on a compact Riemannian
manifold which is not Killing (see [4]). Moreover a further observation can
also be made here. If we consider the eigenspace of ∆ corresponding to
the eigenvalue − τ

2 on ΓTS
2(r), there are also Killing vector fields Z in this

eigenspace, and since trace(∇Z)2 < 0 for a Killing vector field Z,

−τ

2
< −τ

4
− 1

2

∫
S2(r) trace(∇Z)2∫

S2(r) g(Z,Z)
.

Thus we conclude that, on S
2(r), every vector field Z satisfying ∆Z = − τ

2Z

does not necessarily satisfy the equality in Theorem 3.6. In fact, the ex-
istence of such vector fields is a special property of Euclidean spheres
as we see in Theorem 3.13. On the other hand, it is known that, on
a compact n(≥ 2)-dimensional Riemannian manifold (M,g), a necessary
and sufficient condition for a vector field Z to be conformal is that �Z +
n−2

n ∇ div Z = 0. (See page 47 of [15].) Thus, if (M,g) is a compact, Ein-
stein, 2-dimensional Riemannian manifold with scalar curvature τ , it can
be observed that, a vector field Z is geodesic iff Z is conformal. Thus the
eigenspace of ∆ corresponding to the eigenvalue − τ

2 consists of conformal
vector fields on (M,g). Later in Remark 3.15, we will provide the complete
view of dim M = n = 2.
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Now, it is natural to ask whether − τ
n(n−1) is the largest eigenvalue can

be achieved by the Laplacian ∆ on ΓTM of a compact, Einstein n(≥ 2)-
dimensional Riemannian manifold (M,g) with scalar curvature τ > 0, and
when it is achieved, whether (M,g) is isometric with an Euclidean sphere.
Next we provide affirmative answers to these questions.

Lemma 3.8. Let (M,g) be an Einstein n-dimensional Riemannian

manifold with scalar curvature τ and Z be a vector field on (M,g). Then

div ∆Z =
τ

n
div Z + ∆ div Z

where ∆ denotes both Laplacians on vector fields and functions on (M,g).

Proof. This can be obtained from the commuting properties of ∆̃
with div and ∇. (See, for example, pages 154 and 168 of [11]).) �

It is shown in [9] that, if (M,g) is a compact, connected, Einstein
n(≥ 2)-dimensional Riemannian manifold with τ > 0 then the eigenvalues
λ of the Laplacian ∆ on the vector space of functions on (M,g) are bounded
from above by − τ

n−1 , that is, if ∆f = λf with f �= constant on (M,g) then
λ ≤ − τ

n−1 . In particular, a necessary and sufficient condition for (M,g) to
be isometric with the Euclidean sphere of radius r =

√
n(n− 1)/τ is the

existence of an eigenfunction f of ∆ on (M,g) with eigenvalue λ = − τ
n−1 ,

that is, ∆f = − τ
n−1f .

Now, we prove an analogue of this result for the Laplacian on vector
fields on a compact, Einstein n(≥ 2)-dimensional Riemannian manifold
with τ > 0.

Theorem 3.9. Let (M,g) be a compact, connected, Einstein n(≥ 2)-
dimensional Riemannian manifold with τ > 0. If Z is a nonzero vector

field satisfying the eigenvalue equation ∆Z = λZ on (M,g) then λ ≤
− τ

n(n−1) . In particular, a necessary and sufficient condition for (M,g) to

be isometric with the Euclidean sphere S
n(r) of radius r =

√
n(n− 1)/τ is

the existence of a nonzero vector field Z with div Z �= 0 on (M,g) satisfying

the eigenvalue equation ∆Z = − τ
n(n−1)Z.

Proof. Let ∆Z = λZ for a nonzero vector field Z on (M,g). Then
div ∆Z = λdiv Z and by Lemma 3.8,

λdiv Z =
τ

n
div Z + ∆ div Z.
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Thus ∆ div Z =
(
λ − τ

n

)
div Z. If div Z �= 0, then from Theorem 3 of [9],

we obtain that λ − τ
n ≤ − τ

n−1 , that is, λ ≤ − τ
n(n−1) . In particular, if

λ = − τ
n(n−1) then ∆ div Z = − τ

n(n−1) div Z and the sufficient condition
for (M,g) to be isometric with the Euclidean sphere S

n(r) of radius r =√
n(n− 1)/τ follows from Theorem 5 of [9]. The necessary condition for

(M,g) to be isometric with the Euclidean sphere S
n(r) of radius r =√

n(n− 1)/τ follows from the example of the vector field Z on S
n(r) which

is given below Theorem 3.6. To complete the proof of the first part of the
theorem, we now show that, if div Z = 0 then we still have λ ≤ − τ

n(n−1) .
From the identity∫

M
Ric(Z,Z) +

∫
M

g(∆Z,Z) +
1
2

∫
M
‖L̂Zg‖2 −

∫
M

(div Z)2 = 0

for a vector field Z on a compact Riemannian manifold (M,g) (see p. 170
of [11]), we obtain for our case that

( τ

n
+ λ

) ∫
M

g(Z,Z) +
1
2

∫
M
‖L̂Zg‖2 = 0.

Thus, this does not lead to a contradiction only if τ
n + λ ≤ 0, that is,

λ ≤ − τ
n

(≤ − τ
n(n−1)

)
in completing the proof. �

Remark 3.10. Note that, if dimM = n ≥ 3 in Theorem 3.9, then we
can remove the assumption that div Z �= 0 on the vector field Z satisfying
the eigenvalue equation ∆Z = − τ

n(n−1)Z in the statement of the theorem
above. Indeed, again by using the identity∫

M
Ric(Z,Z) +

∫
M

g(∆Z,Z) +
1
2

∫
M
‖L̂Zg‖2 −

∫
M

(div Z)2 = 0

for a vector field Z on a compact Riemannian manifold (M,g), we obtain
for our case that

τ

(
n− 2

n(n− 1)

)∫
M

g(Z,Z) +
1
2

∫
M
‖L̂Zg‖2 −

∫
M

(div Z)2 = 0.

Thus, if div Z = 0 then this leads to a contradiction when dimM = n ≥ 3.
That is, if dim M = n ≥ 3 then necessarily div Z �= 0.
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Now we state the special case of Theorem 3.9 for dim M = n = 2 below
in terms of geodesic vector fields. Recall that, on a compact, Einstein 2-
dimensional Riemannian manifold, a vector field Z is geodesic iff Z is
conformal. (See Remark 3.7.)

Corollary 3.11. Let (M,g) be a compact, connected, Einstein 2-di-

mensional Riemannian manifold with τ > 0. A necessary and sufficient

condition for (M,g) to be isometric with the 2-dimensional Euclidean

sphere S
2(r) of radius r =

√
2/τ is the existence of a geodesic vector

field Z on (M,g) with div Z �= 0 (that is, Z is not Killing).

Proof. Note that, on a compact, Einstein 2-dimensional Riemannian
manifold, a vector field Z is geodesic iff ∆Z = − τ

2Z, and a geodesic vector
field Z is Killing iff div Z = 0 (see [4]). Hence the proof follows from
Theorem 3.9. �

Recall that, on a compact Einstein n(≥ 2)-dimensional Riemannian
manifold (M,g) with τ > 0, the eigenspace of ∆ corresponding to the
eigenvalue − τ

n consists of geodesic vector fields by their definition. In [16],
it is shown that these vector fields are of the form Z = X +∇f , where X is
a Killing vector field and f is a function satisfying ∆f = −2 τ

nf on (M,g),
and X and f are uniquely determined. Now we determine the form of the
vector fields satisfying ∆Z = − τ

n(n−1)Z on a compact Einstein n(≥ 2)-
dimensional Riemannian manifold. (Note that we already know their form
from the above for dim M = n = 2 since they are geodesic vector fields in
this case.)

Lemma 3.12. Let (M,g) be an Einstein n-dimensional Riemannian

manifold with scalar curvature τ and Z be a vector field on (M,g). Then

∆∇ div Z =
τ

n
∇ div Z +∇∆ div Z,

where ∆ denotes both Laplacians on vector fields and functions on (M,g).

Proof. Note that, by Lemma 3.8,

∇ div ∆Z =
τ

n
∇divZ +∇∆divZ.

Hence it suffices to show that ∇ div ∆Z = ∆∇ div Z. Again this can be
shown by a straightforward computation similar to the proof of Lemma 3.8.

�
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Theorem 3.13. Let (M,g) be an Einstein n(≥ 2)-dimensional Rie-

mannian manifold with scalar curvature τ . If Z is a vector field satisfying

the eigenvalue equation ∆Z = λZ on (M,g) then ∇ div Z also satisfies the

eigenvalue equation ∆∇ divZ = λ∇ div Z on (M,g).

Proof. If ∆Z = λZ then, as in the proof of Theorem 3.9, we obtain
by Lemma 3.8 that ∆ div Z = (λ − τ

n) div Z. Hence by Lemma 3.12, we
have

∆∇ div Z =
(
λ− τ

n

)
∇ div Z +

τ

n
∇ div Z

= λ∇ div Z. �

Theorem 3.14. Let (M,g) be a compact, Einstein n(≥ 3)-dimen-

sional Riemannian manifold with τ > 0. Then every nonzero vector field

Z satisfying the eigenvalue equation ∆Z = − τ
n(n−1)Z on (M,g) is of the

form Z = ∇f , where f is a function on (M,g) satisfying the eigenvalue

equation ∆f = − τ
n−1f , and the function f is uniquely determined.

Proof. Let Z be a nonzero vector field satisfying the eigenvalue
equation ∆Z = − τ

n(n−1)Z and W be a vector field on (M,g) defined by
W = Z + n−1

τ ∇ div Z. Then it follows from Theorem 3.13 that W sat-
isfies the eigenvalue equation ∆W = − τ

n(n−1)W on (M,g). Furthermore,
since ∆ div Z = − τ

n−1 div Z (see the proof of Theorem 3.9), we obtain
that div W = 0. Now if W �= 0, the vanishing divergence of W leads to
a contradiction by Remark 3.10 since dim M = n ≥ 3. Thus W = 0 and
hence Z = −n−1

τ ∇ div Z. That is Z = ∇f , where f satisfies the eigen-
value equation ∆f = − τ

n−1f . Conversely, let Z = ∇f , where f satisfies
the eigenvalue equation ∆f = − τ

n−1f . Note that, then by [9], the Hessian
tensor of f is scalar, that is, ∇∇f = − τ

n(n−1)fI. Now it can be shown
as in the proof of Theorem 3.6 that ∆∇f = − τ

n(n−1)∇f . Finally, to show
that f is uniquely determined, let Z be a nonzero vector field satisfying
∆Z = − τ

n(n−1)Z with Z = ∇f1 = ∇f2, where ∆fi = − τ
n−1fi, i = 1, 2.

Then ∇(f1 − f2) = 0 and consequently, f1 − f2 = constant on each con-
nected component of M . Now by applying ∆ to this equation, we obtain
− τ

n−1(f1 − f2) = 0, and consequently, f1 = f2 on M . �
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Remark 3.15. Note that the above Theorem indicates that an eigen-
vector field of ∆ on ΓTM corresponding to the eigenvalue − τ

n(n−1) on a
compact Einstein n(≥ 3)-dimensional Riemannian manifold (M,g) with
τ > 0 is more than a conformal vector field, in fact, a special confor-
mal vector field-that is a conformal vector field whose covariant differen-
tial consist of only expansion factor-we obtained in Theorem 3.6. Now
we determine the dimension of the eigenspace of ∆ corresponding to the
eigenvalue − τ

n(n−1) on a compact, connected, Einstein n(≥ 3)-dimensional
Riemannian manifold (M,g) with τ > 0. Now note that, by the above
Theorem, the dimensions of the eigenspaces of ∆ corresponding to the
eigenvalues − τ

n(n−1) and − τ
n−1 on the vector spaces of vector fields and

functions on (M,g) respectively, are equal. (Indeed, this can be easily seen
from the fact that; if f1 and f2 are eigenfunctions of ∆ corresponding to
the eigenvalue − τ

n−1 then, f1 and f2 are linearly independent iff ∇f1 and
∇f2 are linearly independent). Hence, if the eigenspace of ∆ correspond-
ing to the eigenvalue − τ

n(n−1) on ΓTM exists, then by Theorem 3.9, (M,g)

is isometric with the Euclidean sphere of radius r =
√

n(n− 1)/τ , and it
follows that the dimension of this eigenspace is equal to n + 1 since the
dimension of the eigenspace of ∆ on the vector space of functions on S

n(r)
is n + 1. (See page 272 of [12].) Now let (M,g) be a compact, connected,
Einstein 2-dimensional Riemannian manifold. Then as we discussed in
Remark 3.7, the eigenspace of ∆ corresponding to the eigenvalue − τ

2 on
ΓTM consists of geodesic vector fields by their definition. (Recall that,
in this dimension, a vector field is geodesic iff it is conformal.) In [16],
the form of a geodesic vector field Z on a compact Einstein 2-dimensional
Riemannian manifold with τ > 0 is given by Z = X +∇f , where X is a
Killing field on (M,g) and f is a function on (M,g) satisfying the eigen-
value equation ∆f = −τf , and X and f are uniquely determined. (Recall
from Corollary 3.11 that, (M,g) is isometric to the Euclidean sphere S

2(r)
of radius r =

√
2/τ iff there exists a geodesic vector field Z on (M,g)

with div Z �= 0.) On the other hand, we have two possibilities for (M,g)
as the Euclidean sphere S

2(r) or real projective space RP
2(r) with radius

r =
√

2/τ . If (M,g) is S
2(r) then the eigenspace of ∆ corresponding to the
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eigenvalue − τ
2 on ΓTS

2(r) is 6-dimensional since the eigenspace of ∆ cor-
responding to the eigenvalue −τ on the vector space of functions on S

2(r)
is 3-dimensional and the vector space of Killing vector fields on S

2(r) is
3-dimensional. (Note that the vector fields of the form ∇f and Killing vec-
tor fields are linearly independent on compact Riemannian manifolds.) If
(M,g) is RP

2(r) then the eigenspace of ∆ corresponding to the eigenvalue
− τ

2 on ΓTRP
2(r) is 3-dimensional since there is no nonconstant function

satisfying the eigenvalue equation ∆f = −τf on RP
2(r) and the vector

space of Killing vector fields on RP
2(r) is 3-dimensional. (Also note that,

on S
n(r), where n ≥ 3, all geodesic vector fields are Killing since −2 τ

n is
not an eigenvalue of ∆ on the space of functions on S

n(r) (see page 272
of [12])) and hence, the vector space of geodesic vector fields on S

n(r) is(n(n+1)
2

)
-dimensional.)

Remark 3.16. Let (M,g) be a compact n(≥ 2)-dimensional Riemann-
ian manifold. Recall that the tension operator � on ΓTM given by
�Z = R̂ic(Z) + ∆Z is also a linear, self-adjoint, elliptic operator with
respect to the inner product ( , ) on ΓTM defined in the Preliminaries.
Hence furthermore, if (M,g) is Einstein with τ > 0 then it follows from
Theorem 3.9 that the eigenvalues of � on ΓTM are bounded from above
by τ

(
n−2

n(n−1)

)
, that is, if Z is a nonzero vector field on (M,g) satisfying the

eigenvalue equation �Z = µZ then µ ≤ τ
(

n−2
n(n−1)

)
. Clearly, � achieves

the eigenvalue τ
(

n−2
n(n−1)

)
only on Euclidean spheres by giving another

necessary and sufficient for a compact, connected, Einstein Riemannian
manifold with τ > 0 to be isometric with the Euclidean sphere of radius
r =

√
n(n− 1)/τ , provided that dimM = n ≥ 3. See Corollary 3.11 when

dim M = n = 2.

Remark 3.17. Let (M,g) be an n(≥ 2)-dimensional Riemannian man-
ifold. The Hodge Laplacian ∆̃Z of a vector field Z on (M,g) is defined
by ∆̃Z = ∆Z − R̂ic(Z). A vector field Z on (M,g) is called harmonic if
∆̃Z = 0. Note that ∆̃ is also a linear elliptic operator on ΓTM , and if
(M,g) is compact, it is self-adjoint with respect to the inner product ( , ) on
ΓTM defined in the Preliminaries. Furthermore if (M,g) is Einstein with
τ > 0 then it follows from Theorem 3.9 that the eigenvalues of ∆̃ on ΓTM
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are bounded from above by − τ
n−1 , that is, if Z is a nonzero vector field

on (M,g) satisfying the eigenvalue equation ∆̃Z = µZ then µ ≤ − τ
n−1 .

Clearly, ∆̃ achieves the eigenvalue − τ
n−1 only on Euclidean spheres by giv-

ing another necessary and sufficient for a compact, Einstein Riemannian
manifold with τ > 0 to be isometric with the Euclidean sphere of radius
r =

√
n(n− 1)/τ , provided that dimM = n ≥ 3. See Corollary 3.11 when

dim M = n = 2.
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DEPARTMENT OF MATHEMATICS

ATILIM UNIVERSITY
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