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A composite functional equation with additive solutions

By ZOLTÁN BOROS (Debrecen) and ZOLTÁN DARÓCZY (Debrecen)

Dedicated to the centenary of the Hamel basis

Abstract. Hamel’s celebrated paper is recalled on the centenary of its pub-
lication. Then the concept of Hamel basis is applied for the discussion of a recent
problem of the American Mathematical Monthly.

1. Hamel bases and additive functions

Georg Hamel’s celebrated paper [4], in which the author introduced
the concept of basis for real numbers and proved its existence, was pub-
lished in 1905, exactly 100 years ago. In the same paper, applying the
existence of such a basis, he described all solutions of Cauchy’s functional
equation and established the existence of discontinuous solutions.

We can interpret Hamel’s original statement, “Es existiert eine Basis
aller Zahlen,” in a contemporary terminology as follows. The set R of
real numbers is a linear space over the field Q of rational numbers. This
linear space has a basis. Namely, there exists a subset H ⊂ R such that
every non-zero x ∈ R can uniquely be written as a linear combination of
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the elements of H with rational coefficients. That is, there exist distinct
elements h1, h2, . . . , hk of H and non-zero rational numbers r1, r2, . . . , rk

such that

x =
k∑

i=1

rihi. (1)

We consider two such representations identical if they differ only in the
order of their terms.

Hamel based his argument on Zermelo’s fundamental result [10],
published in the previous year, which states that every set can be well-
ordered. This statement is equivalent with the axiom of choice. Hamel’s
argument is valid for an arbitrary linear space L �= {0} over a field F . For
this reason, recently such a basis is called a Hamel basis (see also [2], [3],
[6], [7], [8], and [9]).

Observing that the Hamel bases of a linear space L coincide with the
maximal linearly independent subsets of L, in contemporary textbooks, the
existence of a Hamel basis is established with the aid of Zorn’s maximum
principle [11]. We call a member A0 of a family of sets A maximal if A0

is not contained as a proper subset in any other A ∈ A. In its original
form, Zorn’s maximum principle reads as follows: If a family A of sets
contains the union

⋃
B∈B B of every chain B ⊂ A, then there exists at

least one maximal set A0 ∈ A. As it was noted by Zorn, this principle is
also equivalent with the axiom of choice. We also apply this convenient
method in the proof of our Theorem 2. However, Zorn introduced this
principle in 1935, thirty years after the publication of Hamel’s famous
results.

Now assume that the function f : R → R is additive, i.e., the Cauchy
functional equation

f(x + y) = f(x) + f(y) (2)

holds for all x, y ∈ R. Then, as it is easy to derive, we have

f(rx) = rf(x) (3)

for every r ∈ Q and x ∈ R. Thus, if H ⊂ R is a Hamel basis and x is a
non-zero real number, then, applying (2) and (3) to (1), we obtain

f(x) = f

(
k∑

i=1

rihi

)
=

k∑
i=1

f(rihi) =
k∑

i=1

rif(hi). (4)
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Conversely, if f : H → R is an arbitrary mapping, we can extend it to each
non-zero real number x by the formula (4) (and, of course, let f(0) = 0).
We show that such an extension must be additive. Namely, for arbitrary
x, y ∈ R, we may add terms of the form 0·hj to the (1) type representations
of x and y so that the same elements of H be involved, that is, let

x =
n∑

i=1

rihi and y =
n∑

i=1

sihi,

where hi ∈ H and ri, si ∈ Q (i = 1, 2, . . . , n) such that h1, h2, . . . , hn are
distinct and ri = 0 or si = 0 is not excluded. Then (4) yields

f(x + y) = f

(
n∑

i=1

(ri + si)hi

)
=

n∑
i=1

(ri + si)f(hi)

=
n∑

i=1

rif(hi) +
n∑

i=1

sif(hi) = f(x) + f(y),

hence f is additive.
Let h1 and h2 be distinct elements of a Hamel basis H and f : H → R

satisfy f(h1) = f(h2) = 1. Then the additive extension (4) of f is not
continuous anywhere. As it is formulated in Hamel’s paper as well, the
graph of a discontinuous additive function f : R → R is dense in R2.

It is reasonable to mention that Hamel was one of Hilbert’s many
students and he worked in the geometry of Euclidean spaces as well.

2. On a problem of the American Mathematical Monthly

The following problem was published in 2001 in the American Math-
ematical Monthly (AMM) [1].

10854. Proposed by Wu Wei Chao, Guang Zhou Normal University,
Guang Zhou City, China. Find every function f : R → R that is continuous
at 0 and satisfies

f(x + 2f(y)) = f(x) + y + f(y) (5)

for all real numbers x and y.
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The solution was published in 2004 in the AMM [5]. It had been
submitted by Doyle Henderson (Omaha, NE). The argument consists
of two major steps:

(i) it is proved that every solution of (5) is additive;

(ii) due to (i), we have f(x) = cx (x ∈ R), where c = 1 or c = −1
2 .

Neither the text of the problem nor that of the solution contains the
question whether there exist nowhere continuous solutions of equation (5).
Moreover, if there exist such solutions, it is reasonable to ask for a descrip-
tion of them. We may also look for possible generalizations of the problem.
We begin our considerations into this direction.

Theorem 1. Let (G,+) be an Abelian group with no elements of

order 2 (i.e., 2a = 0 implies a = 0). If f : G → G fulfils the functional

equation (5) for all x, y ∈ G, then f is additive (a homomorphism), that

is,

f(x + y) = f(x) + f(y)

for all x, y ∈ G.

Proof. We first find f(0). Let a = f(0). By setting x = y = 0 in
(5), we obtain f(2a) = 2a. Letting x = 0 and y = 2a in (5) shows that
f(4a) = 5a. Finally, setting x = 2a and y = 0 in (5) yields f(4a) = 3a.
From these we have 5a = 3a, i.e., 2a = 0. Thus, f(0) = 0.

We now show that f is an odd function. Setting x = 0 in (5) yields
f(2f(y)) = y + f(y) for all y ∈ G. Using 2f(x) for x in (5) yields

f(2f(x) + 2f(y)) = f(2f(x)) + y + f(y)

= x + f(x) + y + f(y). (6)

Fixing an element x ∈ G, let b = f(x) + f(−x). By (6), f(2b) = b,
and hence f(2f(2b)) = f(2b). However, our earlier computation yields
f(2f(2b)) = 2b + f(2b), and hence 2b = 0. Thus, b = 0.

Let us now fix x, y ∈ G. With

c(x, y) := f(x + y) − f(x) − f(y),

we have

f(2c(x, y)) = f (−2 (f(x) + f(y)) + 2f(x + y))

= f (−2 (f(x) + f(y))) + x + y + f(x + y). (7)
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Using the oddness of f and then (6) we obtain

f (−2 (f(x) + f(y))) = −f (2f(x) + 2f(y))

= −x − f(x) − y − f(y). (8)

From (7) and (8) we have

f(2c(x, y)) = c(x, y).

The argument applied to f(2b) = b to obtain b = 0 now similarly yields
c(x, y) = 0, which completes the proof. �

Corollary 1. If (G,+) is an Abelian group with no elements of order 2

and f : G → G is a solution of the functional equation (5), then f is

additive and

2f(f(y)) = y + f(y) (9)

for all y ∈ G. Conversely, if (G,+) is an arbitrary Abelian group and

f : G → G is a homomorphism such that (9) holds for all y ∈ G, then f

satisfies the functional equation (5).

Corollary 2. If (G,+) is a uniquely 2-divisible Abelian group (i.e.,

2G = G and G contains no elements of order 2), then the homomorphisms

f1(x) = x and f2(x) = −x

2
(x ∈ G)

satisfy the functional equation (5).

Clearly, in an arbitrary Abelian group, one cannot consider the map-
ping x �→ −x

2
.

In terms of the Hamel basis, we can describe the general solution of
equation (5) in uniquely divisible Abelian groups (i.e., in linear spaces over
the field of rational numbers).

Theorem 2. Let X be a linear space over Q and let us assume that

f : X → X is additive. Then

2f(f(x)) = x + f(x) (10)

for every x ∈ X if, and only if, there exist a Hamel basis H ⊂ X and a

mapping � : H → {−1
2 , 1} such that f(h) = �(h)h for every h ∈ H.
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Proof. We begin with the elementary part of the proof, namely, we
check that the existence of such H and � yields (10). For an arbitrary
x ∈ X, let x =

∑n
i=1 rihi, where each ri ∈ Q and hi ∈ H (i = 1, . . . , n).

Then we have

2f(f(x)) = 2f

(
n∑

i=1

ri�(hi)hi

)
= 2

n∑
i=1

ri�(hi)�(hi)hi

and

x + f(x) =
n∑

i=1

rihi +
n∑

i=1

ri�(hi)hi =
n∑

i=1

ri(1 + �(hi))hi.

Thus, it suffices to verify the equality

2(�(hi))2 = 1 + �(hi) (i = 1, . . . , n),

which is satisfied by both �(hi) = 1 and �(hi) = −1
2 . This completes the

first part of the proof.
We shall apply Zorn’s maximum principle [11] to prove that the ad-

ditivity of f and equation (10) imply the existence of H and �. Let B
denote the family of all Q-linearly independent subsets B of X for which
there exists a mapping �B : B → {1,−1/2} such that f(b) = �B(b)b for
every b ∈ B. If B0 ⊂ B is a chain (i.e., for every B1, B2 ∈ B0, we have
B1 ⊂ B2 or B2 ⊂ B1), let B0 =

⋃B0 (the union of all sets belonging to
the family B0). One can easily check that B0 ∈ B. Namely, we have to
verify that B0 is Q-linearly independent and �0 =

⋃
B∈B0

�B is a function.
Let us assume that n ∈ N, bj ∈ B0, and rj ∈ Q (j = 1, . . . , n) such that∑n

j=1 rjbj = 0. Then, for each j ∈ {1, . . . , n}, there exists Bj ∈ B0 such
that bj ∈ Bj. The family B0 was supposed to be a chain, hence there exists
k ∈ {1, . . . , n} such that Bj ⊂ Bk and thus bj ∈ Bk for all j ∈ {1, . . . , n}.
Since Bk is Q-linearly independent, we have rj = 0 (j = 1, . . . , n). Thus,
B0 is also Q-linearly independent. Obviously, if b ∈ B0 and qi ∈ {1,−1/2}
(i = 1, 2) such that q1b = f(b) = q2b, then q1 = q2. This proves that
�0 : B0 → {1,−1/2} is a function. Clearly, we have f(b) = �0(b)b for every
b ∈ B0.

According to Zorn’s maximum principle, there exists a maximal set H

in B (in the sense that H is not a proper subset of any other member of B).
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We are going to prove that H is a maximal Q-linearly independent subset
of X and, therefore, it is a Hamel basis. Let us assume, on the contrary,
that there exists x0 ∈ X \H such that H ∪{x0} is Q-linearly independent.
Let

y0 = x0 + 2f(x0) and y1 = x0 − f(x0).

Then

f(y0) = f (x0 + 2f(x0)) = f(x0) + 2f(f(x0)) = f(x0) + x0 + f(x0)

= x0 + 2f(x0) = y0,

f(y1) = f (x0 − f(x0)) = f(x0) − f(f(x0)) = f(x0) − 1
2

(x0 + f(x0))

= −1
2

(x0 − f(x0)) = −1
2
y1,

and
x0 =

1
3
y0 +

2
3
y1,

hence H ∪ {yi} ∈ B \ {H} for some i ∈ {0, 1}, which contradicts the
maximality of H. �

Corollary 3. Let X be a linear space over Q. A function f : X → X

satisfies the functional equation (5) for every x, y ∈ X if, and only if, f is

additive and there exist a Hamel basis H ⊂ X and a mapping � : H →
{−1

2 , 1} such that f(h) = �(h)h for every h ∈ H.

We can present various possibilities by describing all solutions of the
functional equation (5) in particular subgroups G of the additive group of
real numbers.

Case G = Z. The only solution of (5) is f(x) = x (x ∈ Z). Namely,
due to Theorem 1, f is additive. Obviously, every additive mapping f :
Z → Z has the form f(x) = cx with c = f(1) ∈ Z. Moreover, we have
2c2 = 2f(f(1)) = 1 + f(1) = 1 + c, which yields c = 1 as the single integer
solution.

Case G = Q. Equation (5) has two solutions:

f1(x) = x and f2(x) = −x

2
(x ∈ Q).
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This can be obtained from Corollary 3 by observing that every Hamel basis
of Q is a singleton, which consists of a non-zero rational number.

Case G = R. Equation (5) has infinitely many solutions, which are
described by Corollary 3. These solutions are non-linear (and thus discon-
tinuous at 0), except two particular cases. Namely, the solution described
in Corollary 3 is linear if, and only if, the mapping � : H → {−1

2 , 1} is
constant.

Finally, considering the structure of the functional equation (5), it is
clear that the equation is non-symmetric. It is well known, that symmet-
ric equations are more difficult to handle. It is therefore reasonable to
investigate the symmetric version of the original equation. We ask for a
description of the solutions of the functional equation

f(x + 2f(y)) + f(y + 2f(x)) = 2f(x) + 2f(y) + x + y, (11)

where f : G → G is the unknown function and (G,+) is an Abelian group.
Obviously, every solution of (5) (that is, any homomorphism with property
(9)) satisfies (11). It is the question whether all solutions of (11) can be
obtained in this way.
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