
Publ. Math. Debrecen
69/4 (2006), 411–422

Asymptotic properties of the second order
neutral differential equations

By JOZEF DŽURINA (Košice) and DÁŠA LACKOVÁ (Košice)

Abstract. Sufficient conditions for the nonoscillatory solutions of

(
r(t)ψ(x(t))[x(t) − p(t)x(τ(t))]′

)′ + q(t)f(x[σ(t)]
)

= 0

to vanish in infinity are presented. The obtained results extend and improve
various oscillatory criteria.

1. Introduction

In this paper we deal with the oscillatory behavior of the solutions of
the following neutral differential equation

(
r(t)ψ(x(t)

)
[x(t) − p(t)x(τ(t))]′

)′ + q(t)f
(
x[σ(t)]

)
= 0. (E)

Such types of differential equations have been intensively studied in the
literature (see enclosed refferences). Throughout this paper we suppose
that the following conditions (H1)–(H6) hold.

(H1) r(t), q(t) ∈ C([t0,∞)) are positive;

(H2) p(t) ∈ C([t0,∞)), 0 ≤ p(t) ≤ p < 1;

(H3) τ(t) ∈ C([t0,∞)), τ(t) ≤ t, limt→∞ τ(t) = ∞;
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(H4) σ(t) ∈ C1([t0,∞)), σ(t) ≤ t, limt→∞ σ(t) = ∞, σ′(t) ≥ 0;

(H5) ψ(u) ∈ C((−∞,∞)), 0 < m ≤ ψ(u) ≤M ;

(H6) f(u) ∈ C((−∞,∞)) is nondecreasing, f ∈ C1 ((−∞,−t∗) ∪ (t∗,∞)),
t∗ > 0, and uf(u) > 0 for u �= 0.

By a solution of (E) we mean a function x ∈ C1[Tu,∞), Tu ≥ t0, which
has the property r(t)ψ

(
x(t)

)[
x(t)−p(t)x(τ(t))]′ ∈ C1[Tu,∞) and satisfies

(E) on [Tu,∞). We consider only those solutions u(t) of (E) which satisfy
sup{|u(t)| : t ≥ T} > 0 for all T ≥ Tu. We assume that (E) possesses such
a solution.

As usually, we say that a solution of (E) is said to be oscillatory if it
has arbitrarily large zeros on [t0,∞) and (E) is said to be oscillatory if
every its solutions are oscillatory.

For the sake of convenience, we assume that all functional inequali-
ties, used in this paper, hold eventually, that is they are satisfied for all
sufficiently large t.

2. Oscillation

The following theorems provide sufficient conditions for oscillation of
all solutions of (E) with respect to properties of the function f(u).

Theorem 1. Assume that f ′(u) is nondecreasing in (−∞,−t∗) and

nonincreasing in (t∗,∞), with t∗ > 0. Let

R(t) =
∫ t

t0

1
r(s)

ds→ ∞ as t→ ∞, (1)

∫ ∞
q(s)

∣∣∣f(±NR
[
σ(s)

])∣∣∣ ds = ∞ for all N > 0, (2)

∫ ∞(
R
[
σ(t)

]
q(t) − Mσ′(t)

4R[σ(t)]r[σ(t)]f ′(±KR[σ(t)])

)
dt = ∞, (3)

for some K > 0. Then every solution x(t) of equation (E) oscillates or

tends to zero as t→ ∞.

Proof. Assume that K> 0 is such that (3) holds. Let x(t) be a non-
oscillatory solution of (E) on [Tx,∞). We have to show that lim

t→∞x(t)= 0.
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Without loss of generality we may assume that x(t) is an eventually posi-
tive. Set

z(t) = x(t) − p(t)x
(
τ(t)

)
. (4)

Then z(t) ≤ x(t) and (E) can be rewritten as(
r(t)ψ

(
x(t)

)
z′(t)

)′
+ q(t)f

(
x
[
σ(t)

])
= 0. (5)

Hence (r(t)ψ(x(t))z′(t))′ < 0 and taking into account (H1) and (H5), we
obtain that either z′(t) > 0 or z′(t) < 0.

We claim that x(t) is bounded. To prove it assume, on the contrary,
that x(t) is unbounded. Hence there exists a sequence {tm} such that
limm→∞ tm = ∞, moreover limm→∞ x(tm) = ∞ and x(tm) = max{x(s);
t0 ≤ s ≤ tm}. Since τ(t) → ∞ as t → ∞, we can choose large m such that
τ(tm) > t0. As τ(t) ≤ t, we have

x(τ(tm)) ≤ max{x(s); t0 ≤ s ≤ τ(tm)}
≤ max{x(s); t0 ≤ s ≤ tm}
≤ x(tm).

Therefore for all large m

z(tm) ≥ x(tm) − px[τ(tm)] ≥ (1 − p)x(tm).

Thus z(tm) → ∞ as m → ∞ and consequently z′(t) > 0 and z(t) > 0.
From (4) and (H6) we have

f
(
x[σ(t)]

) ≥ f
(
z[σ(t)]

)
and then (5) implies(

r(t)ψ(x(t))z′(t)
)′ + q(t)f

(
z[σ(t)]

) ≤ 0. (7)

Define

w(t) = R
[
σ(t)

] r(t)ψ(x(t))z′(t)
f(z[σ(t)])

.

Then w(t) > 0. Using the fact that r(t)ψ
(
x(t)

)
z′(t) ≤ Mr

[
σ(t)

]
z′
[
σ(t)

]
,

one gets in view of (E)

w′(t) ≤ σ′(t)
r[σ(t)]

· r(t)ψ(x(t))z′(t)
f(z[σ(t)])

−R
[
σ(t)

]
q(t)
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−R
[
σ(t)

] r(t)ψ(x(t))z′(t)
f2(z[σ(t)])

f ′
(
z
[
σ(t)

])
z′
[
σ(t)

]
σ′(t)

≤ σ′(t)
R[σ(t)]r[σ(t)]

w(t) − σ′(t)f ′(z[σ(t)])
MR[σ(t)]r[σ(t)]

w2(t) −R
[
σ(t)

]
q(t).

It is easy to verify that

w′(t) ≤ Mσ′(t)
4R[σ(t)]r[σ(t)]f ′(z[σ(t)])

−R
[
σ(t)

]
q(t)

− σ′(t)f ′(z[σ(t)])
MR[σ(t)]r[σ(t)]

[
w(t) − M

2f ′(z[σ(t)])

]2

.

Therefore

w′(t) ≤ Mσ′(t)
4R[σ(t)]r[σ(t)]f ′(z[σ(t)])

−R
[
σ(t)

]
q(t). (8)

Now let us check that r(t)ψ(x(t))z′(t) → 0 as t → ∞. Assuming the con-
verse, we let r(t)ψ(x(t))z′(t) → 2L as t → ∞, 0 < L < ∞. Then, since
r(t)ψ(x(t))z′(t) is decreasing, we see that r(t)ψ(x(t))z′(t) ≥ 2L. Integrat-
ing this inequality from t1 to σ(t), we obtain

z[σ(t)] ≥ z(t1) +
2L
M

(R[σ(t)] −R(t1)) ≥ L

M
R[σ(t)].

Integrating (7) from t1 to ∞ and using the last estimate, we get

r(t1)ψ(x(t1))z′(t1) ≥
∫ ∞

t1

q(s)f(z[σ(s)])ds

≥
∫ ∞

t1

q(s)f
(
L

M
R[σ(s)]

)
ds.

This contradicts (2) and we conclude that r(t)ψ
(
x(t)

)
z′(t) → 0 as t→ ∞.

Then for λ = mK there exists a t2 ≥ t1 such that for all t ≥ t2

r(t)ψ(x(t))z′(t) ≤ mK

2
.

In other words
r(t)z′(t) ≤ K

2
.
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Dividing both sides by r(t) and then integrating from t2 to σ(t), we get

z[σ(t)] ≤ z(t2) +
K

2
(
R[σ(t) −R(t2)]

) ≤ KR[σ(t)]. (9)

Since limt→∞ z(t) = ∞, in the view of (9)

t∗ < z[σ(t)] ≤ KR
[
σ(t)

]
. (10)

Combining the last inequality with (8) we get

w′(t) ≤ Mσ′(t)
4R[σ(t)]r[σ(t)]f ′(KR[σ(t)])

−R[σ(t)]q(t).

Integrating from t2 to t one can see that

w(t) ≤ w(t2) −
∫ t

t2

(
R[σ(s)]q(s) − Mσ′(s)

4R[σ(s)]r[σ(s)]f ′(KR[σ(s)])

)
ds.

Letting t → ∞ we get w(t) → −∞. This contradicts to positivity of
w(t) and we conclude that x(t) is bounded and in the view of (4) z(t) is
bounded, too. We have that either z′(t) > 0 or z′(t) < 0. The condition
(r(t)ψ(x(t))z′(t))′ < 0 together with (1) and (H5) lead to z(t) → −∞ as
t→ ∞. This contradiction affirms z′(t) > 0. We shall discuss the following
two cases:

1. z(t) > 0, 2. z(t) < 0.

Case 1. Let z(t) > 0. Since z(t) is bounded, there exists

lim
t→∞ z(t) = 2c, 0 < c <∞. (11)

Since f is nondecreasing, then for all sufficiently large t say t ≥ t3 ≥ t2

f(z(σ(t))) ≥ f(c). (12)

By integrating (5) from t to ∞, then from t3 to ∞ and taking into account
(4), (H6), (12), (H5), (10), and (1), one gets

2c ≥ z(t3) +
f(c)
M

∫ ∞

t3

q(s)[R(s) −R(t3)]ds.
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This is a contradiction, since (3) implies
∫∞

q(s)R(s)ds = ∞.

Case 2. Let z(t) < 0. Then there exists

lim
t→∞ z(t) = c ≤ 0.

Denote lim supt→∞ x(t) = a, 0 ≤ a < ∞. Then there exists a sequence
{tk} such that limk→∞ tk = ∞, limk→∞ x(tk) = a. If a > 0, choosing
ε = a(1 − p)/(2p) we see that x[τ(t)] < a+ ε, eventually. Moreover

0 ≥ c = lim
k→∞

z(tk) ≥ lim
k→∞

(x(tk) − p(a+ ε)) =
a

2
(1 − p) > 0.

Thus a = 0 and lim
t→∞x(t)= 0 and moreover (4) implies lim

t→∞ z(t)= 0. �

Now we present several corollaries of Theorem 1. The first one presents
an easily verifiable condition for desired property of (E).

Corollary 1. Let (1) and (2) hold. Assume that f ′(u) is nondecreas-

ing in (−∞,−t∗) and nonincreasing in (t∗,∞), t∗ > 0. If for some K > 0

lim inf
t→∞

R2[σ(t)]r[σ(t)]f ′(±KR[σ(t)])q(t)
σ′(t)

>
M

4
, (13)

then every solution of (E) oscillates or tends to zero as t→ ∞.

Proof. Condition (13) implies that there exists an ε > 0, such that

R2[σ(t)]r[σ(t)]f ′(±KR[σ(t)])q(t)
σ′(t)

>
M

4
+ ε,

eventually. Thus

R[σ(t)]q(t) − Mσ′(t)
4R[σ(t)]r[σ(t)]f ′(±KR[σ(t)])

>
εσ′(t)

R[σ(t)]r[σ(t)]f ′(±KR[σ(t)])
.

(14)

On the other hand, let c > 0 be arbitrary constant. Then properties of
f ′(u) implies 1/f ′(±KR[σ(t)]) ≥ 1/f ′(± c), which together with (14) and
(1) implies that (3) holds. The assertion of this corollary follows from
Theorem 1. �
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For the linear case of (E) we have the following result:

Corollary 2. Assume that (1) holds and∫ ∞(
R[σ(t)]q(t) − Mσ′(t)

4R[σ(t)]r[σ(t)]

)
dt = ∞. (15)

Then every solution of

(
r(t)ψ(x(t))[x(t) − p(t)x(τ(t))]′

)′ + q(t)x[σ(t)] = 0 (EL)

oscillates or tends to zero as t→ ∞.

Proof. Note that for f(u)=u, (3) reduces to (15) and (15) implies (2).
�

Remark. For equation (EL) hypothesis (H5) can be weaken onto 0 <
ψ(u) ≤M .

Corollary 3. Let (1) holds. Assume that for some L > 0∫ ∞(
R[σ(t)]q(t) − Lσ′(t)

Rβ[σ(t)]r[σ(t)]

)
dt = ∞. (16)

Then every solution of

(r(t)ψ(x(t))[x(t) − p(t)x(τ(t))]′)′ + q(t)
∣∣ xβ[σ(t)]

∣∣ sgnx[σ(t)] = 0,

0 < β < 1
(Eβ)

oscillates or tends to zero as t→ ∞.

Proof. Let us set K =
(4βL

M

) 1
1−β . Then clearly (16) implies (3) with

f(u) = |u|β sgnu. Moreover (16) implies (2). �

Now we present easily verifiable criterion for equation (Eβ).

Corollary 4. Let (1) hold. If

lim inf
t→∞

R1+β[σ(t)]r[σ(t)]q(t)
σ′(t)

> 0,

then every solution of (Eβ) oscillates or tends to zero as t→ ∞.
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The proof is left to the reader.

Example 1. We consider

([
2 + x2(t)
1 + x2(t)

] (
x(t) − px(t− τ)

)′)′
+

a

t1+β

∣∣x(λt)∣∣β sgnx(λt) = 0, (17)

where 0 < p < 1, τ > 0, a > 0, 0 < β < 1, 0 < λ < 1. Then by Corollary 4
every nonoscillatory solution of (17) tends to zero as t → ∞.

Using integral averaging technique we can modify our previous results
in the following way:

Let us consider function H(t, s) satisfying the following properties

(i) H(t, s) > 0 for t > s ≥ t0;

(ii) H(t, t) = 0.

For example

H(t, s) = (t− s)n, n is a positive integer. (18)

Denote

h(t, s) =
−∂H(t,s)

∂s√
H(t, s)

, (19)

Q(t, s) =
√
H(t, s)

σ′(s)
R[σ(s)]r[σ(s)]

− h(t, s). (20)

Theorem 2. Assume that f ′(u) is nondecreasing in (−∞,−t∗) and

non-increasing in (t∗,∞), t∗ > 0. Let (1) and (2) hold and for some K > 0

lim sup
t→∞

1
H(t, t0)

∫ t

t0

(
H(t, s)R[σ(s)]q(s)

− MR[σ(s)]r[σ(s)]
4σ′(s)f ′(±KR[σ(s)])

Q2(t, s)

)
ds = ∞.

Then every solution x(t) of equation (E) oscillates or tends to zero as

t→ ∞.
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Proof. Assuming the converse, we admit that (E) has an eventually
positive solution x(t). The case, when x(t) < 0 can be treated by the same
arguments. Setting z(t) as in (4) and proceeding similarly as in the proof
of Theorem 1, we are led to

R[σ(t)]q(t) ≤ σ′(t)
R[σ(t)]r[σ(t)]

w(t) − σ′(t)f ′(z(σ(t)))
MR[σ(t)]r[σ(t)]

w2(t) − w′(t). (21)

Using the same arguments as in the proof of Theorem 1, we obtain (10)
and thus

f ′(z(σ(t))) ≥ f ′(KR[σ(t)]).

Combining the last inequality with (21), we get

R[σ(t)]q(t) ≤ σ′(t)
R[σ(t)]r[σ(t)]

w(t) − σ′(t)f ′(KR[σ(t)])
MR[σ(t)]r[σ(t)]

w2(t) − w′(t).

Multiplying the previous inequality with H(t, s), then integrating (per
partes) from t2 to t, (19) and (20) we acquire∫ t

t2

H(t, s)R[σ(s)]q(s)ds ≤ H(t, t2)w(t2)

−
∫ t

t2

[
H(t, s)

σ′(s)f ′(KR[σ(s)])
MR[σ(s)]r[σ(s)]

w2(s) −
√
H(t, s)Q(t, s)w(s)

]
ds.

It is easy to verify that∫ t

t2

H(t, s)R[σ(s)]q(s)ds ≤ H(t, t2)w(t2)

−
∫ t

t2

([√
H(t, s)

σ′(s)f ′(KR[σ(s)])
MR[σ(s)]r[σ(s)]

w(s)− 1
2

√
MR[σ(s)]r[σ(s)]
σ′(s)f ′(KR[σ(s)])

Q(t, s)

]2

− 1
4
MR[σ(s)]r[σ(s)]
σ′(s)f ′(KR[σ(s)])

Q2(t, s)

)
ds.

Therefore

1
H(t, t1)

∫ t

t2

(
H(t, s)R[σ(s)]q(s)

− MR[σ(s)]r[σ(s)]
4σ′(s)f ′(KR[σ(s)])

Q2(t, s)

)
ds ≤ w(t2). (22)
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Letting t→ ∞, it follows from the assumption of the theorem that the left
hand side of (22) tends to infinity. That is a contradiction. The rest of the
proof is similar to the proof of Theorem 1 and hence it is omitted. �

For H(t, s) defined by (18) Theorem 2 provides the following criterion:

Theorem 3. Assume that f ′(u) is nondecreasing in (−∞,−t∗) and

non-increasing in (t∗,∞), t∗ > 0. Let (1) and (2) hold and for some

positive integer n and some K > 0

lim sup
t→∞

1
(t− t0)n

∫ t

t0

(
(t− s)nR[σ(s)]q(s)

− MR[σ(s)]r[σ(s)]
4σ′(s)f ′(±KR[σ(s)])

Q2(t, s)

)
ds = ∞, (23)

where

Q(t, s) = (t− s)
n
2

{
σ′(s)

R[σ(s)]r[σ(s)]
− n

t− s

}
.

Then every solution x(t) of equation (E) oscillates or tends to zero as

t→ ∞.

Example 2. We consider([
1 +

1
ln(x2(t) + e)

] (
x(t) − px(t− | cos t|))′)′

+
a

t2
x(λt) = 0, (24)

where 0 < p < 1, a > 0, 0 < λ < 1. Then condition (23) of Theorem 3
takes the form

lim sup
t→∞

1
t2

∫ t

t0

(
λa

s
(t− s)2 − s

2

(
t

s
− 3
)2
)
ds = ∞

and it is fulfilled provided that

a >
1
2λ
.

Therefore the last condition guarantees that every nonoscillatory solution
of (24) tends to zero as t→ ∞.
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Our paper generalizes results presented in [4] and [8] where the partial
case of (1), namely the linear neutral differential equation

(x(t) − p x(t− τ))′′ + q(t)x(σ(t)) = 0

has been studied.
In [6] the authors study oscillation properties of the particular case

of (1)
dn

d tn
[
x(t) − c x(t− τ)

]
+ q(t)x(σ(t)) = 0

under strong condition ∫ ∞
q(s) ds = ∞. (25)

Note that in our results the integral in (25) may be convergent.
Our results here complement those in [10], where different condition

f(y)
y

≥ ε > 0, (y �= 0, ε is a constant)

has been imposed onto function f .
The obtained results integrate those presented in [5] and [9], where

the similar type of differential equations are considered.

References

[1] D. D. Bainov and D. P. Mishev, Oscillation Theory for Neutral Differential
Equations with Delay, Marcel Dekker, Inc., 1991.

[2] T. A. Chanturija and I. T. Kiguradze, Asymptotic properties of solutions of
nonautonomous ordinary differential equations, Nauka, Moscow, 1991 (in Russian).

[3] L. H. Erbe, Q. Kong and B. G. Zhang, Oscillation Theory for Functional Dif-
ferential Equations, Adam Hilger, 1991.

[4] J. Dzurina and B. Mihalikova, Oscillation criteria for second order neutral dif-
ferential equations, Math. Bohemica 125 (2000), 145–153.

[5] J. Dzurina and D. Lackova, Oscillation results for second order nonlinear differ-
ential equations, CEJM 2 (2004), 57–66.

[6] K. Gopalsamy, B. S. Lalli and B. G. Zhang, Oscillation of odd order neutral
differential equations, Czech. Math. J. 42 (1992), 313–323.
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