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A few remarks related to the four exponentials conjecture

By LAURENT HABSIEGER (Villeurbanne)

Abstract. We consider classical results on alternants from a combinatorial point

of view. This provides an alternative approach to the analytic one. We illustrate it

by studying the following question: does there exist a real number t, which is not an

integer, such that both 2t and 3t are integers? We explain why the usual approach

related to this problem does not lead to a proof.

1. Introduction

The four exponentials conjecture may be stated as follows (see [11] for a
complete description).

Conjecture 1. Let x1, x2 (resp. y1, y2) be two Q-linearly independant

complex numbers. Then at least one of the four numbers exp(xiyj), (i = 1, 2,

j = 1, 2) is transcendental.

A weaker result is known: the six exponentials theorem. It may be deduced
from Schneider’s work [10] and has also been proved by Lang [1], [2] and
Ramachandra [7], [8].

Theorem 1. Let x1, x2, x3 (resp. y1, y2) be three (resp. two) Q-linearly

independant complex numbers. Then at least one of the six numbers exp(xiyj),
(i = 1, 2, 3, j = 1, 2) is transcendental.

Specializing these two statements leads to the following ones.
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Conjecture 2. Let t be a real number such that both 2t and 3t are integers.

Then t is also an integer.

Theorem 2. Let t be a real number such that both 2t, 3t and 5t are integers.

Then t is also an integer.

We shall investigate these questions in this article. More precisely, we shall
study an important tool for this matter, the alternants. An alternant is a deter-
minant of the form

D(f ,x) = det (fi(xj))1≤i≤n
1≤j≤n

,

where the fi’s are entire functions and where the xj ’s are complex numbers. Most
of the classical estimates for alternants rely on analytical lemmas and we shall
get other estimates using combinatorial lemmas. We shall explain why the usual
approach does not provide a proof of Conjecture 2.

In the next section, we shall give a classical analytic approach to Theorem 2.
We shall also introduce the notations and tools that we shall use in this paper.
The third section will be devoted to alternants: we shall expand them to get
numerous properties, and we shall apply these results to a special alternant, the
Pólya alternant. In the last section, we shall focus on examples, namely Theorem 2
and Conjecture 2.

2. Preliminaries

2.1. The classical analytic approach. Let x=(x1, . . . , xn) and y=(y1, . . . , yn)
be two n-uples of complex numbers. Define the Pólya alternant:

∆(x,y) = det (exjyi)1≤i≤n
1≤j≤n

.

With the notations of the introduction, we thus have fi(z) = exp(yiz).
Pólya [6] proved the following lemma by using real analysis.

Lemma 1. Assume that all the xj ’s and all the yi’s are real numbers, with

x1 < x2 < · · · < xn and y1 < y2 < · · · < yn. Then

∆(x,y) > 0.

One also deduces from a Schwarz’s lemma an upper bound for an alternant
(see Lemma 2.5 p. 37–38 in [11] for details).
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Lemma 2. Let r and R be two real numbers with 0 < r ≤ R, such that the

xj ’s belong to the disk |z| ≤ r. Then

∣∣∣∣det (fi(xj))1≤i≤n
1≤j≤n

∣∣∣∣ ≤
(

R

r

)−(n
2)

n!
n∏

i=1

|fi|R,

where |f |R = sup|z|=R |f(z)|.
We can deduce from these two lemmas a proof of Theorem 2. Assume that t

is an irrational real number such that both 2t, 3t and 5t are integers. Let us take
n = L6, where L is a large integer. We choose

x = (s1 + ts2)0≤s1,s2≤L3−1

and
y = (t1 log 2 + t2 log 3 + t3 log 5)0≤t1,t2,t3≤L2−1.

One easily checks that the exiyj ’s are integers, of the form

2s1t13s1t25s1t3
(
2t

)s2t1 (
3t

)s2t2 (
5t

)s2t3
.

We want to get lower and upper bounds for Pólya’s alternant. By Lemma 1, the
alternant ∆(x,y) is therefore a nonzero integer and we obtain |∆(x,y)| ≥ 1.

It is obvious that |fi|R = eyiR. We find that, for R ≥ r = L3(1 + t),

(
R

r

)−(n
2)

n!
n∏

i=1

|fi|R = exp

((
L6

2

)
log(L3(1 + t)/R) + log((L6)!) +

L6∑

i=1

yiR

)
.

Note that

L6∑

i=1

|yi| =
∑

0≤t1,t2,t3≤L2−1

(t1 log 2 + t2 log 3 + t3 log 5) = L4

(
L2

2

)
log 30.

We then deduce from Lemma 2 that

log |∆(x,y)| ≤
(

L6

2

)
(3 log L− log R) + L4

(
L2

2

)
R log 30 + O(L12).

We want to minimize the function

R 7→
(

L6

2

)
(3 log L− log R) + L4

(
L2

2

)
R log 30
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on the interval [L3(1 + t), +∞[. The optimal choice of the parameter R occurs
for R0 = (L4 + L2 + 1)/ log 30, which is allowed for L large enough. In this case
we get

log |∆(x,y)| ≤ −L12

2
log L + O(L12),

which contradicts the property |∆(x,y)| ≥ 1. Therefore the only real numbers t

such that (2t, 3t, 5t) ∈ N3 are rationals. In this case, if t = p/q, then (2t)q is a
power of 2, which implies that 2t is also a power of 2 and finally t is an integer.

We can try to follow the same approach to attack Conjecture 2. Assume that
t is an irrational real number such that both 2t and 3t are integers. Take n = L2,
and choose

x = (s1 + ts2)0≤s1,s2≤L−1

and
y = (t1 log 2 + t2 log 3)0≤t1,t2≤L−1.

The alternant ∆(x,y) is still a nonzero integer. However Schwarz’s. Lemma
2 only provides a bound of the size O(L4), which is too weak to conclude. It
even seems impossible to get the precise asymptotic behaviour of ∆(x,y) by this
method. In the last section, we shall give the right order of magnitude of ∆(x,y):
log |∆(x,y)| ³ L4.

2.2. A few combinatorial objects. Let us consider special alternants. When
fi(z) = zi−1, we get the Vandermonde determinant

V (x) = det
(
xi−1

j

)
1≤i≤n
1≤j≤n

=
∏

1≤i<j≤n

(xj − xi).

More generally, the alternant of polynomials is an antisymmetrical polynomial in
the xi’s and is therefore divisible by the Vandermonde determinant.

Let Pn denote the set of partitions of length at most n:

Pn = {λ = (λ1, . . . , λn) ∈ Nn : 0 ≤ λ1 ≤ · · · ≤ λn}.

When fi(t) = tλi+i−1, with λ ∈ Pn, the Schur function associated to λ is a
symmetrical polynomial in the xj ’s. It may be defined as the quotient of two
alternants:

Sλ(x) =
1

V (x)
det

(
xλi+i−1

j

)
1≤i≤n
1≤j≤n

.

There exist other definitions for the Schur functions. The interested reader
is referred to Macdonald’s book [5] for more details. A fundamental property
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of the Schur functions is that they are a Z-basis of the ring of symmetric polyno-
mials in n variables with integer coefficients. Since the quotient D(f ,x)/V (x) is
symmetric in the xi’s, it is a natural problem to find its expansion in the basis of
Schur functions. This will be given in the next section.

Let us present an alternative combinatorial definition of special interest. The
Ferrers diagram of a partition λ is

{(i, j) ∈ Z2 : 1 ≤ j ≤ n et 1 ≤ i ≤ λj} .

A semistandard Young tableau T is a Ferrers diagram in which each point has been
replaced by an integer in such a way that one obtains nondecreasing sequences
in the rows and increasing sequences in the columns, as the coordinates increase.
The partition λ is called the shape of T . We put xT =

∏
1≤i≤n xmi

i , where mi

denotes the number of i’s in T . We can now state a deep result.

Theorem 3. We have

Sλ(x) =
∑

T

xT ,

where the sum runs over all semistandard Young tableaux of shape λ.

The interested reader may find an approach of Schur functions based on this
other definition of Schur functions in Sagan’s book [9].

3. Alternants

3.1. Expansions of alternants. The results given in this subsection may also
be deduced from results of Laurent [4] on interpolation determinants. For the
sake of simplicity, we omit the indices for determinants: the integers i and j run
from 1 to n throughout this section. The following lemma describes the expansion
of an alternant in the basis of symmetric functions.

Lemma 3. We have

D(f ,x) = V (x)
∑

λ∈Pn

(
n∏

i=1

1
(λi + i− 1)!

)
det

(
f

(λj+j−1)
i (0)

)
Sλ(x).

Proof. Let us expand each fi in a Taylor series:

D(f ,x) = det

(
+∞∑

k=0

f
(k)
i (0)
k!

xk
j

)
=

∑

k1,...,kn∈Nn

f
(k1)
1 (0) . . . f

(kn)
n (0)

k1! . . . kn!
det

(
xki

j

)
.
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If the ki’s are not pairwise distinct, the determinant det(xki
j ) vanishes. If they

are pairwise distinct, there exists an unique partition λ ∈ Pn and an unique
permutation σ ∈ Sn such that ki = σ.(λi + i− 1) = λσ(i) + σ(i)− 1. We thus find

D(f ,x) =
∑

λ∈Pn

∑

σ∈Sn

(
n∏

i=1

f
(σ.(λi+i−1))
i (0)

(σ.(λi + i− 1))!

)
det

(
x

σ.(λi+i−1)
j

)

=
∑

λ∈Pn

∑

σ∈Sn

(
n∏

i=1

f
(σ.(λi+i−1))
i (0)
(λi + i− 1)!

)
ε(σ) det

(
xλi+i−1

j

)

=
∑

λ∈Pn

(
n∏

i=1

1
(λi + i− 1)!

)
det

(
f

(λj+j−1)
i (0)

)
det

(
xλi+i−1

j

)
.

The lemma then follows from the first definition of Schur functions. ¤

We can also consider the case where x1 = x2 = · · · = xn = x.

Lemma 4. We have

det
(
f

(j−1)
i (x)

)
=

∑

λ∈Pn

(
n∏

i=1

(i− 1)!
(λi + i− 1)!

)
det

(
f

(λj+j−1)
i (0)

)
Sλ(x, . . . , x).

Proof. Let us take xi = x + (i− 1)h, where h tends to zero. We obtain

V (x) = h(n
2)

∏

1≤i<j≤n

(j − i) = h(n
2)

n−1∏

i=0

i!.

By Taylor’s formula and by iterating j− 1 the difference operator P (x) → P ·
(x + h)− P (x), we find the relation

j∑

k=1

(−1)j−k

(
j − 1
k − 1

)
f(xk) = f (j−1)(x)hj−1 + O(hj).

This uppertriangular system of relations (with ones on the main diagonal) enables
us to write

D(f ,x) = det

(
j∑

k=1

(−1)j−k

(
j − 1
k − 1

)
fi(xk)

)
∼ det

(
f

(j−1)
i (x)

)
h(n

2),

and the lemma follows. ¤
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3.2. General properties of the Pólya alternant. Let us recall the definition
of the Pólya alternant:

∆(x,y) = det(exjyi)1≤i≤n
1≤j≤n

.

Let 1 denote the vector with all coordinates equal to 1.

Lemma 5. We have ∆(x,y) = ∆(y,x) and

∆(x + a1,y) = ea(y1+···+yn)∆(x,y),

for any complex number a.

Proof. Since the determinant is invariant under transposition, the symme-
try is obvious. The second property is also easy:

∆(x + a1,y) = det
(
e(xj+a)yi

)
= det

(
exjyi+ayi

)

=

(
n∏

i=1

eayi

)
det

(
exjyi

)
= ea(y1+···+yn)∆(x,y). ¤

The Lemma 3 now becomes (see [3] for a direct proof).

Lemma 6. We have

∆(x,y) = V (x)V (y)
∑

λ∈Pn

(
n∏

i=1

1
(λi + i− 1)!

)
Sλ(x)Sλ(y).

Proof. In this special case we have f
(k)
i (0) = yk

i . We thus get

∆(x,y) = V (x)
∑

λ∈Pn

(
n∏

i=1

1
(λi + i− 1)!

)
det

(
y

λj+j−1
i

)
Sλ(x)

= V (x)V (y)
∑

λ∈Pn

(
n∏

i=1

1
(λi + i− 1)!

)
Sλ(x)Sλ(y),

using the definition of Schur functions. ¤

Let us also give the analog of Lemma 4.

Lemma 7. We have

ex(y1+···+yn) =
∑

λ∈Pn

(
n∏

i=1

(i− 1)!
(λi + i− 1)!

)
Sλ(y)Sλ(x, . . . , x).



186 Laurent Habsieger

Proof. In this special case we have f
(k)
i (t) = yk

i eyit. We thus find

det
(
f

(j−1)
i (x)

)
= det

(
yj−1

i eyix
)

= ex(y1+···+yn)V (y).

We also get

det
(
f

(λj+j−1)
i (0)

)
= det

(
y

λj+j−1
i

)
= V (y)Sλ(y).

We deduce that

∑

λ∈Pn

(
n∏

i=1

(i− 1)!
(λi + i− 1)!

)
det

(
f

(λj+j−1)
i (0)

)
Sλ(x, . . . , x)

= V (y)
∑

λ∈Pn

(
n∏

i=1

(i− 1)!
(λi + i− 1)!

)
Sλ(y)Sλ(x, . . . , x),

and the lemma follows. ¤

We can also deduce from Lemma 6 an alternative proof of Pólya’s Lemma 1
(see [4] for a more general property).

Proof of Lemma 1. By Lemma 5, we may assume that all the xj ’s and all
the yi’s are positive. By Theorem 3, the sum

∑

λ∈Pn

n∏

i=1

1
(λi + i− 1)!

Sλ(x)Sλ(y)

is also positive. It now follows from Lemma 6 that ∆(x,y) is nonzero, with the
same sign than the product V (x)V (y). ¤

We can also get estimates.

Lemma 8. If all the xj ’s and all the yi’s are nonnegative real numbers, we

have

|∆(x,y)| ≥ |V (x)V (y)| 1
0!1! . . . (n− 1)!

.

Proof. Since all the xj ’s and all the yi’s are nonnegative, all the terms

(
n∏

i=1

1
(λi + i− 1)!

)
Sλ(x)Sλ(y)
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are nonnegative by Theorem 3, and we get

|∆(x,y)| = |V (x)V (y)|
∑

λ∈Pn

(
n∏

i=1

1
(λi + i− 1)!

)
Sλ(x)Sλ(y)

≥ |V (x)V (y)| 1
0!1! . . . (n− 1)!

,

since the sum is bounded below by its first term (the one indexed by the partition
with all the parts equal to zero). ¤

Lemma 9. If |xj | ≤ X for every j, we have

|∆(x,y)| ≤ |V (x)V (y)| e
X(|y1|+···+|yn|)

0!1! . . . (n− 1)!
.

Proof. By Lemma 6 and Theorem 3, we get

|∆(x,y)| ≤ |V (x)V (y)|
∑

λ∈Pn

(
n∏

i=1

1
(λi + i− 1)!

)
Sλ(X, . . . ,X)Sλ(|y1|, . . . , |yn|).

We then use Lemma 7 to get the announced result. ¤

4. Examples from diophantine approximation

4.1. Theorem 2. We shall need the following lemma in this section.

Lemma 10. We have
n−1∑

i=0

log(i!) =
(

n

2

)
log n− 3n2

4
+ O(n),

when n goes to infinity.

Proof. Let us recall Stirling’s formula: log(i!) = i log i− i + o(i). By sum-
mation, we get
n−1∑

i=1

i log i =
n−1∑

i=1

((
i + 1

2

)
−

(
i

2

))
log i

=
n−1∑

i=1

((
i + 1

2

)
log(i + 1)−

(
i

2

)
log i

)
−

n−1∑

i=1

((
i + 1

2

)
log

(
1 +

1
i

))

=
(

n

2

)
log n−

n−1∑

i=1

i + 1
2

+ O(n) =
(

n

2

)
log n− n2

4
+ O(n).

¤
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As in Subsection 2.1, we assume that t is an irrational real number such that
both 2t, 3t and 5t are integers. We choose n = L6 with L large enough,

x = (s1 + ts2)0≤s1,s2≤L3−1

and
y = (t1 log 2 + t2 log 3 + t3 log 5)0≤t1,t2,t3≤L2−1,

so that 0 ≤ xj ≤ (1 + t)L3 := X and 0 ≤ yi ≤ L2 log(30) := Y . We thus have
X(|y1|+ · · ·+ |yn|) = O(L11). We easily obtain

log |V (x)| ≤
(

n

2

)
log X = 3

(
n

2

)
log L + O(n2) = 3

(
L6

2

)
log L + O(L12)

and

log |V (y)| ≤
(

n

2

)
log Y = 2

(
n

2

)
log L + O(n2) = 2

(
L6

2

)
log L + O(L12).

By Lemma 10, we get the formulas (see [3] for similar ones)

L6−1∑

i=0

log i! =
(

L6

2

)
log(L6) + O(L12)

and

log |∆(x,y)| ≤ −
(

L6

2

)
log L + O(L12),

by Lemma 9. Note that we find here the same upper bound than in Subsection 2.1.
Therefore ∆(x,y) tends to zero when L goes to infinity. Since this alternant

is an integer (see Subsection 2.1), this implies it vanishes for L large enough,
which contradicts Lemma 8 (or Lemma 1).

4.2. Conjecture 2. In Subsection 2.1, we assumed that t is an irrational real
number such that both 2t and 3t are integers. Here we can withdraw the hypoth-
esis 3t integer to prove the following result.

Theorem 4. Assume that t is an irrational real number such that 2t is an

integer. Take n = L2 and choose

x = (s1 + ts2)0≤s1,s2≤L−1

and

y = (t1 log 2 + t2 log 3)0≤t1,t2≤L−1.
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There exist two constants C1(t) and C2(t) such that

C1(t) ≤ lim inf
L→∞

log |∆(x,y)|
L4

≤ lim sup
L→∞

log |∆(x,y)|
L4

≤ C2(t).

More precisely, we can choose

C1(t) =
3
4

+
1
2

∫ 1

−1

∫ 1

−1

(1− |v1|)(1− |v2|)

× log (|v1 + tv2| |v1 log 2 + v2 log 3|) d v1 d v2

and C2(t) = C1(t) + (1 + t) log 6/2.

Proof. Here we have 0 ≤ xj ≤ (1 + t)L = X and 0 ≤ yi. We get

L2∑

i=1

|yi| =
(

L

2

)
L log 6,

so that X(|y1|+ · · ·+ |yn|) ∼ L4(1 + t) log 6/2.
In order to use Lemmas 8–10, we need to get the precise asymptotic behaviour

of V (x) and V (y). We find

log |V (x)| −
(

n

2

)
log L =

∑

0≤s1,s2,s′1,s′2≤L−1

s1+ts2<s′1+ts′2

log |(s1 + ts2)− (s′1 + ts′2)| −
(

n

2

)
log L

=
1
2

∑

0≤s1,s2,s′1,s′2≤L−1

(s1,s2)6=(s′1,s′2)

log
∣∣∣∣
s1 − s′1

L
+ t

s2 − s′2
L

∣∣∣∣

=
1
2

∑

−(L−1)≤i,j≤L−1
(i,j) 6=(0,0)

(L− |i|)(L− |j|) log
∣∣∣∣
i

L
+ t

j

L

∣∣∣∣

=
L4

2

∫ 1

−1

∫ 1

−1

(1− |v1|)(1− |v2|) log |v1 + tv2| d v1 d v2 + o(L4).

We used here a convergence result for Riemann sums. The validity of this relation
is not quite obvious and we shall show it in the next subsection. Similarly we also
have

log |V (y)| −
(

n

2

)
log L

=
L4

2

∫ 1

−1

∫ 1

−1

(1− |v1|)(1− |v2|) log |v1 log 2 + v2 log 3| d v1 d v2 + o(L4).
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We deduce from these last estimates and from Lemma 10 that

log |V (x)V (y)| −
n−1∑

i=0

log(i!) ∼ C1(t)L4.

By Lemmas 8–9, we thus get

C1(t) ≤ lim inf
L→∞

log |∆(x,y)|
L4

≤ lim sup
L→∞

log |∆(x,y)|
L4

≤ C2(t),

with C1(t) and C2(t) as defined above. ¤

As a matter of fact, one can compute C1(t), by the formula

∫ 1

0

∫ 1

0

(1− x)(1− y) log |x + yt| dx d y

=
(2t4 + 8t3) log |1 + 1/t|+ (12t2 + 8t + 2) log |t + 1| − 2t3 − 25t2 − 2t

48t2
.

Tedious calculations show that C1(t) is an increasing function of t for t ≥ 1. The
only zero of C1(t) in this range occurs at t = 3.278662088 . . . and therefore C1(t)
is positive for 2t ≥ 10.

This explains why the usual approach for the alternant ∆(x,y) does not
allow to show Conjecture 2: the constant C1(t) may be positive. The property
∆(x,y) ∈ N∗, which follows from the hypothesis 3t ∈ N, leads to the inequality
∆(x,y) ≥ 1, which is weaker than the general lower bound given in Theorem 4,
for 2t ≥ 10.

When comparing the attempt of proof of Conjecture 2 with the proof of
Theorem 2, one notices that the Vandermonde determinants are the main factors
(in the right-hand side of the formula in Lemma 6). Here the points defining
x and y are not dense enough to get very small Vandermonde determinants. It
seems impossible to me to get sufficiently small Vandermonde determinants by
another choice of points. Another possibility would be to show that ∆(x,y) is
quite large, by exhibiting a large divisor. It is rather easy to find prime factors
dividing ∆(x,y), but it seems very difficult to get a divisor with the correct order
of magnitude.

4.3. Convergence of the Riemann sums. The aim of this subsection is to
prove the following result.
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Lemma 11. For any real irrational number t such that 2t is an integer, we

have

∑

−(L−1)≤i,j≤L−1
(i,j)6=(0,0)

(
1−

∣∣∣∣
i

L

∣∣∣∣
)(

1−
∣∣∣∣
j

L

∣∣∣∣
)

log
∣∣∣∣
i

L
+ t

j

L

∣∣∣∣

= L2

∫ 1

−1

∫ 1

−1

(1− |v1|)(1− |v2|) log |v1 + tv2| d v1 d v2 + O
(
L(log L)2

)
.

Since t is the quotient of the logarithms of two integers (t = log a/ log 2 for
some integer a), we have the bounds

−(log L)2 ¿ log |i + jt| ¿ log L, (1)

for 1 ≤ |j| ≤ L and i ∈ {−dLte − 1, . . . ,−1, 0}, by the theory of linear forms of
logarithms (see [11], pp. 187–188). Also note that t is greater than 1.

Let us introduce further notations. Put ϕ(x, y) = (1−|x|)(1−|y|) log |x+yt|
and

δ(i, j) = ϕ

(
i

L
,

j

L

)
− L2

∫ (i+1)/L

i/L

∫ (j+1)/L

j/L

ϕ(x, y) d xd y,

for −(L− 1) ≤ i, j ≤ L− 1, when (0, 0) /∈ [i/L, (i + 1)/L]× [j/L, (j + 1)/L]. We
also define the sets

Ij = {−d(j + 1)te − 1, . . . ,−bjtc − 1,−bjtc},

for j ∈ Z. We then have the following properties:

∀i /∈ Ij , ∀(x, y) ∈ [i/L, (i + 1)/L]× [j/L, (j + 1)/L],
{

L(x + yt) ≤ i + 1 + d(j + 1)te ≤ −1 if i < −d(j + 1)te − 1,

L(x + yt) ≥ i + bjtc ≥ 1 if i > −bjtc.
(2)

We also have, for xy 6= 0:

∂ϕ

∂x
(x, y) = ±(1− |y|) log |x + yt|+ (1− |x|)(1− |y|)

x + yt

and
∂ϕ

∂y
(x, y) = ±(1− |x|) log |x + yt|+ t(1− |x|)(1− |y|)

x + yt
.
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From (2), we deduce that, for i < −d(j + 1)te − 1:

|δ(i, j)| = L2

∣∣∣∣∣
∫ (i+1)/L

i/L

∫ (j+1)/L

j/L

(
ϕ

(
i

L
,

j

L

)
− ϕ(x, y)

)
dxd y

∣∣∣∣∣

≤ L2

∫ (i+1)/L

i/L

∫ (j+1)/L

j/L

∣∣∣∣ϕ
(

i

L
,

j

L

)
− ϕ(x, y)

∣∣∣∣ d xd y

¿ L

∫ (i+1)/L

i/L

∫ (j+1)/L

j/L

max
x∈[i/L,(i+1)/L]
y∈[j/L,(j+1)/L]

(∣∣∣∣
∂ϕ

∂x
(x, y)

∣∣∣∣ +
∣∣∣∣
∂ϕ

∂y
(x, y)

∣∣∣∣
)

d xd y

¿ log L

L
− 1

i + 1 + d(j + 1)te .

The same kind of bound is also valid for i > −bjtc. We thus get by summation:
∑

−(L−1)≤i≤L−1
i/∈Ij

|δ(i, j)| ¿ log L,

for any j, since
∑

1≤k≤n 1/k ¿ log n when n goes to infinity. We find a first
estimate: ∣∣∣∣∣

∑

−(L−1)≤i,j≤L−1
i/∈Ij

δ(i, j)

∣∣∣∣∣ ¿ L log L. (3)

For any j ∈ {−(L− 1), . . . , L− 1}, we have |Ij | ¿ 1. It follows from (1) that

∑

i∈Ij

∣∣∣∣ϕ
(

i

L
,

j

L

)∣∣∣∣ ¿ (log L)2.

By summation, this gives

∑

−(L−1)≤i,j≤L−1
(i,j) 6=(0,0), i∈Ij

∣∣∣∣ϕ
(

i

L
,

j

L

)∣∣∣∣ ¿ L(log L)2. (4)

For any j ∈ {−(L− 1), . . . , L− 1}, we also have
∣∣∣∣∣
∑

i∈Ij

∫ (i+1)/L

i/L

∫ (j+1)/L

j/L

ϕ(x, y) d xd y

∣∣∣∣∣ ≤
∫ (−bjtc+1)/L

(−d(j+1)te−1)/L

∫ (j+1)/L

j/L

|ϕ(x, y)|d xd y

≤
∫ (j+1)/L

j/L

(∫ −yt+(t+2)/L

−yt−(t+2)/L

∣∣ log |x + yt|∣∣ dx

)
d y
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¿
∫ (j+1)/L

j/L

log L

L
d y ¿ log L

L2
,

from which we deduce

∑

−(L−1)≤i,j≤L−1
(i,j)6=(0,0), i∈Ij

∣∣∣∣∣L
2

∫ (i+1)/L

i/L

∫ (j+1)/L

j/L

ϕ(x, y) d x d y

∣∣∣∣∣ ¿ L log L. (5)

Since

∑

−(L−1)≤i,j≤L−1
(i,j) 6=(0,0)

δ(i, j) =
∑

−(L−1)≤i,j≤L−1
(i,j) 6=(0,0)

(
1−

∣∣∣∣
i

L

∣∣∣∣
)(

1−
∣∣∣∣
j

L

∣∣∣∣
)

log
∣∣∣∣
i

L
+ t

j

L

∣∣∣∣

−L2

∫ 1

−1

∫ 1

−1

(1− |v1|)(1− |v2|) log |v1 + tv2|d v1 d v2,

Lemma 11 then follows from (3–5).
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