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On super quasi Einstein manifolds

By M. C. CHAKI (Calcutta)

Abstract. The notion of a super quasi Einstein manifold is introduced and
some properties of such a manifold are obtained.

Introduction

The notion of a quasi Einstein manifold was introduced in a recent
paper [1] by the author and R. K. Maity. According to them a non-flat
Riemannian manifold (Mn, g) (n ≥ 3) is called quasi Einstein if its Ricci
tensor S of type (0, 2) is not identically zero and satisfies the condition

S(X,Y ) = ag(X,Y ) + bA(X)A(Y ) (1)

where a, b are scalars of which b 6= 0, A is a non-zero 1-form such that

g(X,U) = A(X)∀X and U is a unit vector field. (2)

In such a case a, b are called the associated scalars. A is called the
associated 1-form and U is called the generator of the manifold. Such an
n-dimensional manifold is denoted by the symbol (QE)n.

Subsequently, the author introduced in another recent paper [2] a gen-
eralization of a (QE)n, called a generalized quasi Einstein manifold which
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was defined as follows:
A non-flat Riemannian manifold (Mn, g) (n ≥ 3) is called genaralized

quasi Einstein if its Ricci tensor S of type (0, 2) is not identically zero and
satisfies the condition

S(X, Y ) = ag(X, Y ) + bA(X)A(Y ) + c[A(X)B(Y ) + A(Y )B(X)] (3)

where a, b, c are scalars of which b 6= 0, c 6= 0 and A, B are two non-zero
1-forms such that

g(X, U) = A(X), g(X, V ) = B(X)∀X (4)

and U , V are two unit vector fields perpendicular to each other. In such a
case a, b, c are called the associated scalars, A, B are called the associated
main and auxiliary 1-forms and U , V are called the main and auxiliary
generators of the manifold. Such an n-dimensional manifold was denoted
by the symbol G(QE)n.

This paper deals with super quasi Einstein manifolds which are defined
as follows:

A non-flat Riemannian manifold (Mn, g) (n ≥ 3) is called super quasi
Einstein if its Ricci tensor S of type (0, 2) is not identically zero and
satisfies the condition

S(X,Y ) = ag(X,Y ) + bA(X)A(Y )

+ c[A(X)B(Y ) + A(Y )B(X)] + dD(X, Y ) (5)

where a, b, c, d are scalars of which b 6= 0, c 6= 0, d 6= 0, A, B are two
non-zero 1-forms such that

g(X, U) = A(X), g(X, V ) = B(X)∀X (6)

U , V being mutually orthogonal unit vector fields, D is a symmetric (0, 2)
tensor with zero trace which satisfies the condition

D(X,U) = 0 ∀X. (7)

In such a case a, b, c, d are called the associated scalars, A, B are
called the associated main and auxiliary 1-forms, U , V are called the main
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and the auxiliary generators and D is called the associated tensor of the
manifold. Such an n-dimenisonal manifold shall be denoted by the symbol
S(QE)n.

In this paper it is shown that the scalars a+b and a+dD(V, V ) are the
Ricci curvatures in the directions of the vector fields U and V respectively
and the scalar d is less than the ratio which the length of the Ricci tensor
S bears to the length of the associated tensor D. Further, some interesting
properties of the curvature tensor R of type (1, 3) are obtained. Moreover,
it is shown that a viscous fluid space time admitting heat flux and obeying
Einstein’s equation without cosmological constant is a 4-dimensional semi
Riemannian super quasi Einstein manifold.

1. The associated scalars of a S(QE)n, (n ≥ 3)

In this section we consider a S(QE)n, (n ≥ 3) with associated scalars
a, b, c, d associated main and auxiliary 1-forms A, B, main and auxiliary
generators U , V and associated symmetric (0, 2) tensor D.

Then (5), (6) and (7) will hold. Since U and V are mutually orthogonal
unit vector fields, we have

g(U,U) = 1, g(V, V ) = 1 and g(U, V ) = 0. (1.1)

Further
trace D = 0 (1.2)

D(X,U) = 0 ∀X. (1.3)

In virtue of (4), g(U, V ) = 0 can be expressed as

A(V ) = B(U) = 0. (1.4)

Now contracting (5) over X and Y we get

r = na + b (1.5)

where r is the scalar curvature. Again from (5) we get

S(U,U) = a + b, (1.6)
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S(V, V ) = a + dD(V, V ) and (1.7)

S(U, V ) = c. (1.8)

If X is a unit vector field, then S(X,X) is the Ricci curvature in
the direction of X. Hence from (1.6) and (1.7) we can state that a + b

and a + dD(V, V ) are the Ricci curvatures in the directions of U and V

respectively. Let

g(LX, Y ) = S(X,Y ) and (1.9)

g(`X, Y ) = D(X, Y ). (1.10)

Further, let d1
2, and d2

2 denote the squares of the lengths of the Ricci
tensor S and the associated tensor D. Then

d1
2 = S (Lei, ei) and (1.11)

d2
2 = D (`ei, ei) (1.12)

where {ei} i = 1, 2, . . . , n is an orthonormal basis of the tangent space at
a point of S(QE)n. Now from (5) we get

S(Lei, ei) = (n− 1)a2 + (a + b)2 + dS(`ei, ei). (1.13)

Again from (5) we have

S(`ei, ei) = dD(`ei, ei). (1.14)

From (1.13) and (1.14) it follows that

S(Lei, ei) = (n− 1)a2 + (a + b)2 + d2D(`ei, ei). (1.15)

Hence
d1

2 = (n− 1)a2 + (a + b)2 + d2(d2)2. (1.16)

From (1.16) we can write d1
2 − d2d2

2 > 0. Hence

d <
d1

d2
. (1.17)
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Summing up we can state the following theorem:

Theorem 1. In a S(QE)n (n ≥ 3) the scalars a+b and a+d D(V, V )
are the Ricci curvatures in the directions of the generators U and V respec-

tively and the associated scalar d is less than the ratio which the length of

the Ricci tensor S bears to the length of the associated tensor D.

2. Conformally flat S(QE)n (n > 3)

Let R be the curvature tensor of type (1, 3) of a conformally flat
S(QE)n (n > 3). Then

′R(X, Y, Z, W ) =
1

n− 2
[g(Y, Z)S(X,W )− g(X,Z)S(Y, W )

+ g(X, W )S(Y, Z)− g(Y, W )S(X, Z)] (2.1)

− r

(n− 1)(n− 2)
[g(Y, Z)g(X, W )− g(X, Z)g(Y, W )]

where ′R(X, Y, Z, W ) = g[R(X, Y, Z),W ]. Using (5) we can express (2.1)
as follows:

′R(X, Y, Z, W ) = a′[g(Y, Z)g(X, W )− g(X,Z)g(Y, W )]

+ b′[g(Y, Z)A(X)A(W )− g(X, Z)A(Y )A(W )

+ g(X, W )A(Y )A(Z)− g(Y,W )A(X)A(Z)]

+ c′[g(Y, Z){A(X)B(W ) + A(W )B(X)}
− g(X, Z){A(Y )B(W ) + A(W )B(Y )}
+ g(X, W ){A(Y )B(Z) + A(Z)B(Y )}
− g(Y, W ){A(X)B(Z) + A(Z)B(X)}]
+ d′[g(Y, Z)D(X,W )− g(X, Z)D(Y, W )

+ g(X, W )D(Y, Z)− g(Y,W )D(X, Z)] (2.2)

where

a′ =
2a(n− 1)− r

(n− 1)(n− 2)
, b′ =

b

n− 2
, c′ =

c

n− 2
, d′ =

d

n− 2
. (2.3)
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Let U⊥ denote the (n − 1)-dimensional distribution orthogonal to U in a
conformally flat S(QE)n. Then g(X,U) = 0 if X ∈U⊥. Again if g(X,U)= 0,
then X ∈ U⊥. Hence from (2.2) we get the following properties of R :

R(X,Y, Z) = λ[g(Y, Z)X − g(X, Z)Y ]

+ c′[g(Y, Z)B(X)− g(X, Z)B(Y )]U (2.4)

+ d′[D(Y, Z)X −D(X, Z)Y + g(Y,Z)`X − g(X, Z)`Y ]

when X, Y, Z ∈ U⊥ and

R(X,U,U) = µX + d′`X when X ∈ U⊥ (2.5)

where λ = (n−2)a−b
(n−1)(n−2) , µ = a+b

n−1 and c′, d′ have values given by (2.3). We
can therefore state as follows:

Theorem 2. In a conformally flat S(QE)n (n > 3) the curvature

tensor R of type (1, 3) satisfies the properties given by (2.4) and (2.5).

3. General relativistic viscous fluid space time
admitting heat flux

Let (M4, g) be a viscous fluid space time admitting heat flux and
satisfying Einstein’s equation without cosmological constant. Further, let
U be the unit timelike velocity vector field of the fluid, V be the unit heat
flux vector field and D be the anisotropic pressure tensor of the fluid. Then

g(U,U) = −1, g(V, V ) = 1, g(U, V ) = 0 (3.1)

D(X, Y ) = D(Y, X), trace D = 0 and (3.2)

D(X,U) = 0 ∀X. (3.3)

Let
g(X, U) = A(X), g(X,V ) = B(X) ∀X. (3.4)

Further, let T be the (0, 2) type of energy momentum tensor describing
the matter distribution of such a fluid. Then [3]

T (X, Y ) = (σ + p)A(X)A(Y ) + pg(X,Y )
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+ [A(X)B(Y ) + A(Y )B(X)] + D(X,Y ) (3.5)

where σ, p denote the density and isotropic pressure and D denotes the
anisotropic pressure tensor of the fluid.

It is known [4] that Einstein’s equation without cosmological constant
can be written as follows:

S(X, Y )− 1
2
rg(X, Y ) = kT (X, Y ) (3.6)

where k is the gravitational constant and T is the energy momentum tensor
of type (0, 2).

In the present case (3.6) can be written as follows:

S(X,Y )− 1
2
rg(X, Y ) = k[(σ + p)A(X)A(Y ) + pg(X, Y )

+ A(X)B(Y ) + A(Y )B(X) + D(X, Y )].

Hence

S(X, Y ) =
(

kp +
1
2
r

)
g(X, Y ) + k(σ + p)A(X)A(Y )

+ k[A(X)B(Y ) + A(Y )B(X)] + kD(X,Y ). (3.7)

From (3.7) it follows that the space time under consideration is a super
quasi Einstein manifold with kp+ 1

2r, k(σ+p), k, k as associated scalars, A

and B as associated 1-forms, U , V as generators and D as the associated
symmetric (0, 2) tensor.

Hence we can state the following theorem

Theorem 3. A viscous fluid spacetime admitting heat flux and satis-

fying Einstein’s equation without cosmological constant is a 4-dimensional

semi Riemannian super quasi Einstein manifold.
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