On generalized pseudo-projective symmetric manifolds

By U. C. DE (Kalyani) and B. K. DE (Kalyani)

Abstract

The object of the present paper is to study a type of non-flat Riemannian manifold called generalized pseudo-projective symmetric manifold.

Introduction

The notions of weakly symmetric and weakly projective symmetric manifold were introduced by L. Tamássy and T. Q. Binh [1]

A non-flat Riemannian manifold $\left(M^{n}, g\right)(n>2)$ (these conditions will be supposed throughout this paper) is called weakly symmetric if there exist 1-forms $\alpha, \beta, \gamma, \delta$ and a vector field F such that

$$
\left(\nabla_{X} R\right)(Y, Z, V)=\alpha(X) R(Y, Z, V)+\beta(Y) R(X, Z, V)+\gamma(Z) R(Y, X, V)
$$

$$
\begin{equation*}
+\delta(V) R(Y, Z, X)+g[R(Y, Z, V), X] F ; X, Y, Z, V \in \chi\left(M^{n}\right) \tag{1}
\end{equation*}
$$

where R is the curvature tensor of $\left(M^{n}, g\right)$. A Riemannian manifold $\left(M^{n}, g\right)$ is called weakly projective symmetric if there exist 1 -forms α, β, γ, δ and a vector field F such that

$$
\begin{gather*}
\quad\left(\nabla_{X} W\right)(Y, Z, V)=\alpha(X) W(Y, Z, V)+\beta(Y) W(X, Z, V) \\
+ \tag{2}\\
\gamma(Z) W(Y, X, V)+\delta(V) W(Y, Z, X)+g[W(Y, Z, V), X] F
\end{gather*}
$$

[^0]where W is the projective curvature tensor given by
\[

$$
\begin{equation*}
W(X, Y, Z)=R(X, Y, Z)-\frac{1}{n-1}[S(Y, Z) X-S(X, Z) Y] \tag{3}
\end{equation*}
$$

\]

where S is the Ricci tensor of $\left(M^{n}, g\right)$. Recently, Tamássy and Binh [3] further studied $(W S)_{n}$ with certain structures.

The object of the present paper is to study a type of non-flat Riemannian manifold (M^{n}, g) whose projective curvature tensor W satisfies the condition

$$
\begin{gather*}
\left(\nabla_{X} W\right)(Y, Z, U)=2 A(X) W(Y, Z, U)+B(Y) W(X, Z, U) \\
+C(Z) W(Y, X, U)+D(U) W(Y, Z, X)+g[W(Y, Z, U), X] \rho \tag{4}
\end{gather*}
$$

where A, B, C, D are non-zero 1 -forms and ρ is a vector field given by

$$
\begin{equation*}
g(X, \rho)=A(X) \quad \forall X \tag{5}
\end{equation*}
$$

Such a manifold will be called a generalized pseudo-projective symmetric manifold; A, B, C, D will be called its associated 1 -forms and an n dimensional manifold of this kind will be denoted by $G(P W S)_{n}$.

Let

$$
\begin{gather*}
g(X, \lambda)=B(X), \quad g(X, \mu)=C(X) \quad \text { and } \\
g(X, \nu)=D(X) \quad \forall X \in \chi\left(M^{n}\right) . \tag{6}
\end{gather*}
$$

Then $\rho, \lambda, \nu, \in \chi\left(M^{n}\right)$ will be called the basic vector fields of $G(P W S)_{n}$ corresponding to the associated 1-forms A, B, C, D respectively. If, in particular, $A=B=C=D$, then the manifold defined by (4) reduces to a pseudo-projective symmetric manifold introduced by ChaKi and SaHA [2]. This justifies the name generalized pseudo-projective symmetric manifold. (4) and (5) together are a little stronger assumptions than (2). (2) gives (4) if α and F are related by

$$
(X, F)=\alpha(X) \quad \forall X .
$$

So the definition of a $G(P W S)_{n}$ is similar to that of a weakly projective symmetric manifold mentioned above.

A non-flat Riemannian manifold is called generalized pseudo-symmetric by M.C. Chaki [4] if the curvature tensor R satifies

$$
\begin{align*}
& \left(\nabla_{X} R\right)(Y, Z, U)=2 A(X) R(Y, Z, U)+B(Y) R(X, Z, U) \\
+ & C(Z) R(Y, X, U)+D(U) R(Y, Z, X)+g[R(Y, Z, U) X] \rho, \tag{7}
\end{align*}
$$

where ρ is a vector field given by

$$
g(X, 2 \rho)=A(X) \quad \forall X
$$

He denoted such a manifold by $G(P S)_{n}$. Recently, Chaki and Mondal [5] also studied $G(P S)_{n}$. TamÁssy and Binh in their paper [1] find necessary and sufficient conditions for a weakly symmetric manifold to be a weakly projective symmetric manifold.

In Section 2 of this paper it is shown that in a $G(P W S)_{n}$ the scalar curvature r of $\left(M^{n}, g\right)$ is an eigenvalue of the Ricci tensor S corresponding to the eigenvector Q defined by $g(Q, X)=A(X)+B(X)$, and also a necessary and sufficient condition for zero scalar curvature in a $G(P W S)_{n}$ is obtained. In Section 3 some properties of $G(P W S)_{n}$ have been proved. In Section 4 it is shown that an Einstein $G(P W S)_{n}$ reduces to a $G(P S)_{n}$ if $A(X)+n D(X) \neq 0$. Further, it is shown that if the vector field ρ defined by (5) is a paralled vector field, then an Einstein $G(P W S)_{n}$ reduces to a $G(P S)_{n}$ provided the vectors ρ and λ are not co-directional.

1. Preliminaries

In this section we derive some formulas which will be required in the study of a $G(P W S)_{n}$

Let

$$
\begin{equation*}
{ }^{\prime} W(X, Y, Z, U)=g[W(X, Y, Z,), U] . \tag{1.1}
\end{equation*}
$$

Then form (3) we get

$$
\begin{align*}
{ }^{\prime} W(X, Y, Z, U)= & ' R(X, Y, Z, U) \\
& -\frac{1}{n-1}[g(X, U) S(Y, Z)-g(Y, U) S(X, Z)], \tag{1.2}
\end{align*}
$$

where

$$
\begin{equation*}
' R(X, Y, Z, U)=g[R(X, Y, Z,), U] . \tag{1.3}
\end{equation*}
$$

Let

$$
\begin{equation*}
P(X, U)={ }^{\prime} W\left(X, e_{i}, e_{i}, U\right) \tag{1.4}
\end{equation*}
$$

where $\left\{e_{i}\right\}, i=1,2, \ldots, n$ is an orthonormal basis of the tangent space at a point and i is summed for $1 \leq i \leq n$. Then using (1.2) we get

$$
\begin{equation*}
P(X, U)=\frac{n}{n-1} S(X, U)-\frac{r}{n-1} g(X, U) \tag{1.5}
\end{equation*}
$$

where S is the Ricci tensor and r is the scalar curvature of $\left(M^{n}, g\right)$. Let ℓ and L be the symmetric endomorphisms of the tangent space at two points corresponding to the tensors P and S respectively, i.e.

$$
\begin{equation*}
g(\ell X, Y)=P(X, Y) \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
g(L X, Y)=S(X, Y) \tag{1.7}
\end{equation*}
$$

Contracting (4) over Y, we get

$$
B(W(X, Z, U))+{ }^{\prime} W(\rho, Z, U, X)=0
$$

or

$$
\left.{ }^{\prime} W(X, Z, U, \lambda)\right)+{ }^{\prime} W(\rho, Z, U, X)=0 .
$$

Putting $Z=U=e_{i}$ in the above relation and taking summation over i, $1 \leq i \leq n$, we have

$$
\begin{equation*}
P(X, \lambda)+P(X, \rho)=0 . \tag{1.8}
\end{equation*}
$$

2. Nature of the scalar curvature of a $G(P W S)_{n}(n>2)$

From (1.5) and (1.8) it follows that $T(X) \frac{r}{n}=\bar{T}(X)$, where $T(X)=$ $A(X)+B(X)$ and $\bar{T}(X)=A(L X)+B(L X)$. Hence

$$
\begin{equation*}
S(X, Q)=\frac{r}{n} g(X, Q) \tag{2.1}
\end{equation*}
$$

where $g(X, Q)=T(X)$. This leads to the following

Theorem 1. In a $G(P W S)_{n}, \frac{r}{n}$ is an eigenvalue of the Ricci tensor S corresponding to the eigenvector Q defined by $g(X, Q)=T(X)$.

Now we obtain a necessary and sufficient condition for zero scalar curvature in a $G(P W S)_{n}$. First we suppose that $r=0$ in a $G(P W S)_{n}$. Then from (2.1) we get $S(X, Q)=0$. Therefore from (3) it follows that

$$
\begin{equation*}
W(X, Y, Q)=R(X, Y, Q) \tag{2.2}
\end{equation*}
$$

Next we suppose that in a $G(P W S)_{n}$ the relation (2.2) holds, then from (3) we get

$$
\begin{equation*}
S(Y, Q) X=S(X, Q) Y \tag{2.3}
\end{equation*}
$$

Contraction of (2.3) gives $S(Y, Q)=0$.
Hence from (2.1) we get $r=0$, if $T(X) \neq 0$.
This leads to the following
Theorem 2. $A G(P W S)_{n}(n>2)$ is of zero scalar curvature if and only if the relation (2.2) holds provided $T \neq 0$.
3. The case of $G(P W S)_{n}$ satisfying $A(W(X, Y, Z))=0$

Contracting (4) over X, we get

$$
\begin{equation*}
(\operatorname{div} W)(Y, Z, U)=3 A(W(Y, Z, U)) \tag{3.1}
\end{equation*}
$$

where 'div' denotes divergence. It is known that in a Riemannian manifold $\left(M^{n}, g\right)(n>2)$

$$
\begin{equation*}
(\operatorname{div} W)(X, Y, Z)=\frac{n-2}{n-1}\left[\left(\nabla_{X} S\right)(Y, Z)-\left(\nabla_{Y} S\right)(X, Z)\right] \tag{3.2}
\end{equation*}
$$

Since $A(W(X, Y, Z))=0$ we get from $(3.1)(\operatorname{div} W)(X, Y, Z)=0$. Hence from (3.2) it follows that $\left(\nabla_{X} S\right)(Y, Z)=\left(\nabla_{Y} S\right)(X, Z)$.

Thus we can state the following
Theorem 3. In a $G(P W S)_{n}$ satisfying $A(W(X, Y, Z))=0$ the Ricci tensor S is of Codazzi type.

Lemma. In order that $\left(\nabla_{X} W\right)(Y, Z, U)+\left(\nabla_{Y} W\right)(Z, X, U)+$ $\left(\nabla_{Z} W\right)(X, Y, U)=0$, it is necessary and sufficient that $(\operatorname{div} W)(X, Y, Z)=0$.

Proof of the Lemma. First suppose that

$$
\begin{equation*}
\left(\nabla_{X} W\right)(Y, Z, U)+\left(\nabla_{Y} W\right)(Z, X, U)+\left(\nabla_{Z} W\right)(X, Y, U)=0 \tag{3.3}
\end{equation*}
$$

Contracting (3.3) over Z, we get $(\operatorname{div} W)(X, Y, U)=0$.
Next suppose that $(\operatorname{div} W)(X, Y, U)=0$. Hence from (3.2) we get

$$
\begin{equation*}
\frac{n-2}{n-1}\left[\left(\nabla_{X} S\right)(Y, U)-\left(\nabla_{Y} S\right)(X, U)\right]=0 \tag{3.4}
\end{equation*}
$$

Again from the Bianchi indentity we get

$$
\begin{equation*}
\left(\nabla_{X} R\right)(Y, Z, U)+\left(\nabla_{Y} R\right)(Z, X, U)+\left(\nabla_{Z} R\right)(X, Y, U)=0 \tag{3.5}
\end{equation*}
$$

Hence from (3.4) and (3.5) it follows that

$$
\left(\nabla_{X} W\right)(Y, Z, U)+\left(\nabla_{Y} W\right)(Z, X, U)+\left(\nabla_{Z} W\right)(X, Y, U)=0
$$

Now from (4) we get

$$
\begin{align*}
&\left(\nabla_{X} W\right)(Y, Z, U)+\left(\nabla_{Y} W\right)(Z, X, U)+\left(\nabla_{Z} W\right)(X, Y, U) \\
&= {[2 A(X)-B(X)-C(X)] W(Y, Z, U)+[2 A(Y)-B(Y)} \\
&-C(Y)] W(Z, X, U)+[2 A(Z)-B(Z)-C(Z)] W(X, Y, U) \tag{3.6}\\
&= G(X) W(Y, Z) U-G(Y) W(X, Z) U-G(Z) W(Y, X) U
\end{align*}
$$

since

$$
\begin{gathered}
W(X, Y, Z)=-W(Y, X) Z \quad \text { and } \\
W(X, Y, Z)+W(Y, Z, X)+W(Z, X, Y)=0
\end{gathered}
$$

where

$$
G(X)=2 A(X)-B(X)-C(X)
$$

Since we assume that $A(W(X, Y, Z))=0$, it follows from (3.1) that $(\operatorname{div} W)(X, Y, Z)=0$. On the other hand, from the above Lemma and (3.6), it follows that

$$
\begin{equation*}
G(X) W(Y, Z) U-G(Y) W(X, Z) U-G(Z) W(Y, X) U=0 \tag{3.7}
\end{equation*}
$$

Putting $X=\rho$ in (3.7) and applying $A(W(X, Y, Z))=0$ we get

$$
G(\rho) W(Y, Z) U=0 .
$$

Then either $G(\rho)=0$ or the manifold is projectively flat.
Now $G(\rho)=0$ implies $g(\rho, \tilde{\rho})=0$, where $\tilde{\rho}$ is a vector field defined by

$$
\begin{equation*}
g(X, \tilde{\rho})=G(X) . \tag{3.8}
\end{equation*}
$$

Thus we have the following
Theorem 4. If a $G(P W S)_{n}$ satisfies $A(W(X, Y, Z))=0$, then either the manifold is of constant curvature or the associated vector ρ is orthogonal to the vector $\tilde{\rho}$ defined by (3.8).

4. Einstein $G(P W S)_{n}(n>3)$

In this section we assume that a $G(P W S)_{n}$ defined by (4) is an Einstein manifold. Then the Ricci tensor S satisfies

$$
\begin{equation*}
S(X, Y)=\frac{r}{n} g(X, Y) \tag{4.1}
\end{equation*}
$$

from which it follows that

$$
\begin{equation*}
d r(X)=0 \quad \text { and } \quad\left(\nabla_{Z} S\right)(X, Y)=0 \tag{4.2}
\end{equation*}
$$

By using (3), (4.1) and (4.2) we get from (4)

$$
\begin{aligned}
\left(\nabla_{X} R\right)(Y, Z) U= & 2 A(X)\left[R(Y, Z) U-\frac{r}{n(n-1)}(g(Z, U) Y-(-g(Y, U) Z)]\right. \\
& +B(Y)\left[R(X, Z) U-\frac{r}{n(n-1)}(g(Z, U) X-g(X, U) Z)\right] \\
& +C(Z)\left[R(Y, X) U-\frac{r}{n(n-1)}(g(X, U) Y-g(Y, U) X)\right] \\
& +D(U)\left[R(Y, Z) X-\frac{r}{n(n-1)}(g(Z, X) Y-g(Y, X) Z)\right] \\
& +g\left[R(Y, Z) U-\frac{r}{n(n-1)}(g(Z, U) Y-g(Y, U) Z)\right] .
\end{aligned}
$$

From the Bianchi identity and (4.3) it follows that

$$
\begin{align*}
3 A(R(Y, Z) U) & +B(R(Y, Z) U)+C(R(Y, Z) U) \\
& +\left[2 S(Z, U)-\frac{2 r}{n-1} g(Z, U)\right] A(Y) \\
& +\left[\frac{(n+1)}{n(n-1)} r g(Y, U)-2 S(Y, U)\right] A(Z) \\
& -\frac{r}{n(n-1)} B(Y) g(Z, U)+\frac{r}{n(n-1)} B(Z) g(Y, U) \tag{4.4}\\
& -\frac{r}{n(n-1)} C(Y) g(Z, U)+\frac{r}{n(n-1)} C(Z) g(Y, U) \\
& -\frac{r}{n} D(U) g(Z, Y)=0
\end{align*}
$$

Putting $Y=Z=e_{i}$ in (4.4) and taking summation over i, we get

$$
r[A(U)+n D(U)]=0
$$

Hence

$$
r=0, \quad \text { if } A(U)+n D(U) \neq 0
$$

Putting $r=0$ in (4.3), it follows that a $G(P W S)_{n}$ is a $G(P S)_{n}$. Hence we can state the following

Theorem 5. An Einstein $G(P W S)_{n}$ is a $G(P S)_{n}$ if $A(X)+n D(X) \neq 0$.
Next we suppose that in an Einstein $G(P W S)_{n}$ the vector field ρ defined by (5) is parallel:

$$
\begin{equation*}
\nabla_{X} \rho=0 \quad \forall X \in \chi G(P W S)_{n} \tag{4.5}
\end{equation*}
$$

Applying the Ricci identity we get

$$
\begin{equation*}
R(X, Y, \rho)=0 \tag{4.6}
\end{equation*}
$$

From (4.6) we get

$$
\begin{equation*}
S(Y, \rho)=0 \tag{4.7}
\end{equation*}
$$

Now by (4.5) and (4.7) it follows that

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, \rho)=0 \tag{4.8}
\end{equation*}
$$

From (4.4) we get

$$
\begin{align*}
\left(\nabla_{X} S\right)(Z, U)= & B(R(X, Z, U)) \\
& -\frac{r}{n(n-1)}[g(Z, U) B(X)-g(X, U) B(Z)] . \tag{4.9}
\end{align*}
$$

Putting $U=\rho$ in (4.9) and using (4.6), (4.7), (4.8) we get $r=0$, if $A(X) B(Z) \neq A(Z) B(X)$

Hence we can state the following
Theorem 6. If the vector field ρ is a paralled vector field in an Einstein $G(P W S)_{n}$, then $G(P W S)_{n}$ reduces to a $G(P S)_{n}$ provided the vector fields ρ and λ corresponding to the 1 -forms A and B are not co-directional.

In conclusion, we thank the Referee for offering some valuable suggestions for the improvement of the paper.

References

[1] L. TAmÁssy and T. Q. Binh, On weakly symmetric and weakly projective symmetric Riemannian manifolds, Colloq. Math. János Bolyai 56 (1989), 663-670.
[2] M. C. Chaki and S. K. Saha, On pseudo-projective symmetric manifold, Academia Sinica 17 no. 1, March, 59-65.
[3] L. TAmÁssy and T. Q. Binh, On weak symmetrics of Einstein and Sasakian manifold, Tensor, N.S. 53 (1993), 140-148.
[4] M. C. Chaki, On generalized pseudo-symmetric manifolds, Publ. Math. Debrecen 45 (1994), 305-312.
[5] M. C. Chaki and S. P. Mondal, On generalized pseudo-symmetric manifolds, Publ. Math. Debrecen 51/1-2 (1997), 35-42.

```
U. C. DE
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF KALYANI
KALYANI - 741 235
WEST BENGAL
INDIA
B. K. DE
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF KALYANI
KALYANI - 741 235
WEST BENGAL
INDIA
```

(Received May 7, 1996; revised February 26, 1998)

[^0]: Mathematics Subject Classification: 53B35, 53B05.
 Key words and phrases: generalized pseudo-symmetric manifold, generalized pseudoprojective symmetric manifold, Einstein manifold.

