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A new kind of infinite dimensional spaces

By F. G. ARENAS (Almeŕıa) and M. L. PUERTAS (Almeŕıa)

Abstract. In this paper we introduce a kind of infinite dimensional spaces, called
finite dimensional separated, related to a dimension defined by G. Steinke in [12].

This new kind of infinite dimensional spaces satisfies some properties such as the
subspace theorem, a product theorem and an addition theorem. Likewise, we shall
obtain characterizations of this property for regular spaces, compactifications of the
space that preserve finite dimensional separateness and relations with some transfinite
dimensions and another kind of infinite dimensionality (w.i.d. spaces, C-spaces). We
also define a related property which has a local theorem.

1. Introduction

A very important part of Dimension Theory is what is called Infinite
Dimensional Theory which is devoted to study spaces like countable di-
mensional, strongly countable dimensional, weakly infinite dimensional (in
the senses of Alexandroff and Smirnov), C-spaces and so on.

In this paper we introduce a kind of infinite dimensional spaces,
called finite dimensional separated, related to the dimension t defined by
G. Steinke in [12].

This new kind of infinite dimensional spaces satisfies some properties
such as the subspace theorem, a product theorem and an addition theorem.
Likewise, we shall obtain characterizations of this property for regular
spaces, compactifications of the space that preserve the finite dimensional
separateness and relations with some transfinite dimensions and another
kind of infinite dimensionality (w.i.d. spaces, C-spaces).
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It is important to note that some of the properties of our new kind of
infinite dimensionality are not satisfied by the classical infinite dimension-
alities cited above.

All the topological spaces considered in this paper are supposed to
be T1.

This definition is quoted from [12], Definition 1.1.

Definition 1.1. A subset T of a nonempty topological space X is called
a (closed) separating set of X if (T is closed and) X \ T is not connected.

The separation dimension of a space X, denoted by t(X) is defined
inductively as follow: t(∅) = −1; t(X) = 0 if |X| = 1. Let |X| ≥ 2 and
n ∈ N ∪ {0}; if for any subset M with |M | ≥ 2 a separating set T of M

exists with t(T ) ≤ n − 1 then we say t(X) ≤ n. If t(X) ≤ n is true and
t(X) ≤ n− 1 is false then t(X) = n. If t(X) ≤ n is false for all n ∈ N then
t(X) = ∞.

Definition 1.2. A space X is finite-dimensional separated (briefly f.d.s.)
if, for any subset M of X with card(M) ≥ 2, there exists a separating set
T of M with t(X) < ∞.

Remark 1.3. If X is a topological space with t(X) < ∞ then X is
f.d.s.

Remark 1.4. For a topological space X, note that t(X) = 0 if and only
if X is totally disconnected (see [12, Corollary 2.1]) and there are totally
disconnected spaces which are not countable dimensional (c.d.) (see [10],
Lemma), then the classes f.d.s. and c.d. are not equal.

For regular spaces the finite-dimensional separateness can be described
in an easier way. To do this we need the following lemma.

Lemma 1.5. In a regular space X with card(X) ≥ 2, for any sepa-

rating set T of X there exists a closed separating set contained in T .

Proof. Let T be a separating set of X. Since Y = X \ T in not
connected, there exist two nonempty disjoint open sets in the subspace Y ,
A and B, such that X = T ∪A∪B. Let then U and V two open subsets in
the space X such that A = U ∩ Y and B = V ∩ Y . Consider the open set
W = U ∩ V . If W = ∅, we take S = ∅. Otherwise, there exists, because
X is regular, a nonempty open subset Z such that Z ⊂ W . Let then
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S = Fr(Z). It can be easily seen that S ⊂ T and S is a closed separating
set of X. ¤

Now we can prove the following characterization of the property f.d.s.
for regular spaces.

Proposition 1.6. For a regular space X are equivalent:

1. X is f.d.s.;
2. for any subset M of X with card(M) ≥ 2 there exists a closed sepa-

rating set T of M with t(T ) < ∞;

3. for any closed subset M of X with card(M) ≥ 2 there exists a sepa-
rating set T of M with t(T ) < ∞;

4. for any closed subset M of X with card(M) ≥ 2 there exists a closed
separating set T of M with t(T ) < ∞.

Proof. The only implication we have to show is 4 ⇒ 1. Let M

a subset of X with card(M) ≥ 2 then M is a closed subset of X with
card(M) ≥ 2 and there exists a closed separating set T of M with t(T ) <

∞. As M \ T ⊂ M \ T ⊂ M \ T and M \ T is not connected, then
M \ T = M \ (M ∩ T ) is not connected and M ∩ T is a separating set of
M with t(M ∩ T ) ≤ t(T ) < ∞. ¤

For locally compact metrizable spaces we have the following charac-
terization.

Proposition 1.7. Let X be a locally compact metrizable space, then
are equivalent:

1. X is f.d.s.;
2. for all closed subset M of X with card(M) ≥ 2 there exists a closed

separating set T of M such that dim(T ) < ∞ ( ind(T ) < ∞, Ind(T ) <
∞).

Proof. Note that for any locally compact metrizable space T , t(T ) =
dim(T ) = ind(T ) = Ind(T ) (see [12, Theorem 4.7]). ¤

2. Classical theorems

In this section we develop some theorems such as the subspace or the
product theorems for f.d.s. spaces.

Theorem 2.1 (The subspace theorem). If A is a subspace of a f.d.s.
space X then A is f.d.s.



24 F. G. Arenas and M. L. Puertas

Proof. Let M be a subset of A with card(M) ≥ 2, then there exists
a separating set T of M (in X) with t(T ) < ∞. Thus T is a separating
set of M in A with t(T ) < ∞. ¤

The following theorem shows a distinguishing property of f.d.s. spaces.

Theorem 2.2. Let {Xi : i ∈ I} be the family of connected components

of the space X, then:

X is f.d.s. if and only if ∀i ∈ I, Xi is f.d.s.

Proof. Suppose that X is f.d.s. For each i ∈ I, Xi ⊂ X and then
Xi is f.d.s.

For the converse, suppose that Xi is f.d.s., ∀i ∈ I. Let M be a
subspace of X with card(M) ≥ 2. If M is not connected then T = ∅
separates M and t(T ) = −1. If M is connected there exists i ∈ I such
that M ⊂ Xi and exists a separating set T of M in Xi with t(T ) < ∞.
Thus T is a separating set of M in X with t(T ) < ∞. ¤

Corollary 2.3. If X =
⊕

i∈I Xi then:

X is f.d.s. if and only if ∀i ∈ I, Xi is f.d.s.

Proposition 2.4. Let X, Y be two nonempty topological spaces and

let f : X → Y be a continuous mapping with t(f) = sup{t(f−1(y)) : y ∈
Y } < ∞ (see [12, 2.1]). If Y is f.d.s. then X is f.d.s.

Proof. Let M be a subspace of X with card(M) ≥ 2, then f(M) ⊂
Y . If card(f(M)) = 1, there exists y ∈ Y such that M ⊂ f−1(y) and
T = M \ {a, b}, with a, b ∈ M a 6= b, is a separating set of M with
t(T ) ≤ t(f−1(y)) ≤ t(f) < ∞, (see [12, Theorem 1.1]). If card(f(M)) ≥ 2,
there exists a separating set K of f(M) in Y with t(K) < ∞. If we put
T = f−1(K), we have, since f is continuous, t(T ) ≤ t(K) + t(f) (see
[12, 2.2]), with implies, because f(M \ T ) = f(M) \ K is not connected
that T is a separating set of M . ¤
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Corollary 2.5 (Product theorem). Let X be a topological space with

t(X) < ∞ and let Y be a f.d.s. space. Then X × Y is f.d.s.

Proof. Let p2 : X × Y → Y the continuous mapping p2(x, y) = y,
∀(x, y) ∈ X × Y . Then t(p2) = Sup{t(p−1

2 (y)) : y ∈ Y } = Sup{t(X ×
{y}) : y ∈ Y }. Since X × {y} is homeomorphic to X for all y ∈ Y and
t(X×{y}) = t(X) ∀y ∈ Y , we have t(p2) = t(X) < ∞. Using the previous
theorem, X × Y is f.d.s. ¤

Remark 2.6. It is not known if the product of two w.i.d. compacta
is w.i.d. However, for f.d.s. spaces, the following example shows that the
product of two f.d.s. spaces is not necessarily f.d.s. In fact, following
Engelking (see [4, p. 260]) one can get a metric continuum X such that
each closed set in X can be separated by a finite-dimensional compactum
(i.e. X is f.d.s.), but the square X ×X can not be separated by any finite-
dimensional set (i.e. the square fails to be f.d.s.).

3. A sum theorem

The following property is a variant of the f.d.s. property in a way
similar to the usual one to construct local dimensions. It will be useful
in order to obtain an addition theorem for f.d.s. spaces and it is also
interesting by itself.

Definition 3.1. A space X is point finite dimensional separated (briefly
p.f.d.s.) if for every x ∈ X and every open neighborhood U of x there ex-
ists an open neighborhood V of x such that V ⊂ U and t(Fr(V )) < ∞.
Moreover, this condition implies that X is a regular space.

Clearly p.f.d.s. spaces fulfill the subspace theorem. We also have the
following theorem that shows that p.f.d.s. is a local concept.

Proposition 3.2 (Local theorem). Let X be a regular space. Then

X is p.f.d.s. if and only if every point of X has a neighborhood which is

p.f.d.s.

Proof. If X is p.f.d.s., then X is a neighborhood of each of its points
which is p.f.d.s.

For the converse, let x ∈ X, W a p.f.d.s. open neighborhood of x and
U an open neighborhood of x; then U ∩W is an open neighborhood of x
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and, as X is a regular space, there exists an open neighborhood B of x

such that B ⊂ B ⊂ U∩W . Thus B is an open neighborhood of x in W and
by hypothesis there exists an open neighborhood of x in W (and so in X),
V , such that V ⊂ V

W ⊂ B and t(FrW (V )) < ∞. Then V ⊂ B ⊂ U ∩W ;
in particular V ⊂ W ⇒ V

W
= V and FrW (V ) = Fr(V ). Hence V is an

open neighborhood of x in X such that V ⊂ U and t(Fr(V )) < ∞. ¤

Here is the relation between p.f.d.s. and f.d.s. spaces.

Proposition 3.3. Let X be a space. If X is p.f.d.s. then X is f.d.s.

Proof. Let M be a subset of X with card(M) ≥ 2 and let x, y ∈ M

be with x 6= y; there exists an open neighborhood U of x such that y /∈ U

and there exists V an open neighborhood of x with V ⊂ U and t(V ) <

∞. Thus M ∩ Fr(V ) is a separating set of M since M \ (M ∩ Fr(V )) =
M \ Fr(V ) = (V ∩ M) ∪ (M \ V ) = (V ◦ ∩ M) ∪ (M ∩ (X \ V )), and
t(M ∩ Fr(V )) ≤ t(Fr(V )) < ∞. Hence X is f.d.s. ¤

Now we have a kind of addition theorem mixing both properties.

Proposition 3.4. Let the regular space X be the union of two sets

A,B. If A is closed and f.d.s. and B is p.f.d.s. then X is f.d.s.

Proof. Let M be a subset of X with card(M) ≥ 2 such that M\A6=∅
and M ∩A 6= ∅ (otherwise M ⊂ A or M ⊂ B and both, A and B, are f.d.s.
spaces and we can find a separating set T of M with t(T ) < ∞ ). Choose
x ∈ M \ A and an open neighborhood U of x with U ⊂ X \ A ⊂ B; for
U there exists an open neighborhood V of x in B such that V

B ⊂ U and
t(FrB(V )) < ∞. From V ⊂ U and V ⊂ B we get that V is open, V

B
= V

is closed and FrB(V ) = Fr(V ); hence T = (V \ V ) ∩ M is a separating
set of M since M \ T = M \ (U \ U) = (M ∩ U◦) ∪ (M ∩ (X \ U)), with
t(T ) ≤ t(Fr(U)) < ∞. Then X is f.d.s. space. ¤

4. Compactifications

In this section we consider compactifications of a nonempty locally
compact, Hausdorff space X and X∗ = X ∪ {a} denotes the one-point
compactification of X.
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Proposition 4.1. For any locally compact, Hausdorff space X:

X is f.d.s. if and only if X∗ is f.d.s.

Proof. Suppose that X∗ is f.d.s. then X ⊂ X∗ is also f.d.s. (see 2.1).
For the converse, suppose that X is a f.d.s. space and let M be a

subset of X∗ with card(M) ≥ 3 (for card(M) = 2 the empty set separates
M). There are two cases:

1. a /∈ M , then M is a subset of X and there exists a separating set T

of M such that t(T ) < ∞;

2. a ∈ M , then M \ {a} ⊂ X and there exists a separating set S of
M \ {a} in X such that t(S) < ∞. Thus T = S ∪ {a} is a separating
set of M with t(T ) ≤ t(S) + 1 (see [12, 3.1]). Then X∗ is f.d.s.

Corollary 4.2. Let Y be a compactification of a nonempty, locally

compact, Hausdorff space X such that t(Y \X) < ∞. Then:

X is f.d.s. if and only if Y is f.d.s.

This especially holds for X∗ and the Freudenthal compactification (see [1,
p. 266–282]).

Proof. It is well known (see [7, p. 12–13]) that the compactifications
of X form a complete lattice with minimal element X∗, i.e. for any com-
pactification Y of X there exists a continuous mapping f : Y → X∗ with
f(x) = x for all x ∈ X and f(Y \X) = {a}. Then t(f) = Sup{t(f−1(y)) :
y ∈ X∗} = Sup{Sup{t(x) : x ∈ X}, t(Y \ X)} < ∞; since X f.d.s. then
X∗ is f.d.s., so Y f.d.s. (from 2.4).

For the converse, see 2.1. ¤

5. Examples

In this section we show some examples of f.d.s. spaces. We first recall
the definition of trind from [3].

Definition 5.1. We define trind(∅) = −1. Let X be a nonempty topo-
logical space. We say that trind X ≤ α, where α is an ordinal number or
zero, if and only if for every point x in X and every open set V with x ∈ V ,
there exists an open subset U with x ∈ U ⊂ V , such that trind FrU < α.
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We say that trind X = α, if and only if trind X ≤ α and it is not
true that trind X ≤ β for every β < α. If trind X > α for every ordinal
number, we say that trind X does not exist.

1. Example 5.2. Let X be a regular space with trind(X) ≤ ω0, then X
is a p.f.d.s. space (and so a f.d.s. space).
Proof. Let x ∈ X and U an open neighborhood of x, then there ex-
ists an open neighborhood V of x such that V⊂U and trind(Fr(V ))<
∞. Thus t(Fr(V )) < ∞ (see [12, Proposition 4.1]). ¤

2. Example 5.3. The Henderson’s spaces Jα, (see [6, Definition 2.2]) are
f.d.s. spaces for every ordinal number α.
Proof. We define, for every ordinal number α, Jα as follows:
(a) J0 = {0}, p0 = {0};
(b) J1 = I = 3D[0, 1], p1 = {0};
(c) Jα+1 = Jα × I, pα+1 = pα × {0};
(d) if α is a limit ordinal, for β < α, let Aβ

α be a half-open arc
with Aβ

α ∩ Jβ = pβ , let Jα = (
⊕

β<α Aβ
α ∪ Jβ)∗, and let pα the

compactification point.
Let show that Jα is a f.d.s. space for every ordinal number α. We
proceed inductively. For α = 0 is trivial. Supposed for an ordinal
number α that Jβ is a f.d.s. space ∀β < α, then there are two cases:
(a) α is not a limit ordinal, then Jα = Jα−1 × I where Jα−1 is a

f.d.s. space by the inductive hypothesis and t(I) = 1; using 2.5
Jα is a f.d.s. space;

(b) α is a limit ordinal, then Jα is the one-point compactification of
the space

⊕
β<α Aβ

α ∪ Jβ . For every ordinal number β < α, Jβ

is closed in Aβ
α ∪ Jβ and f.d.s. by the inductive hypothesis and

easily Aβ
α is p.f.d.s., so using 3.4, the space Aβ

α ∪ Jβ is f.d.s. By
2.3,

⊕
β<α Aβ

α ∪ Jβ is a f.d.s. space and from 4.1, its one-point
compactification Jα is also f.d.s. ¤

3. Example 5.4. The Smirnov’s spaces Sα (see [3, Example 2.2]) are f.d.s.
spaces for every ordinal number α.
Proof. The Smirnov’s spaces Sα, with α an ordinal number, are
defined by transfinite induction:
(a) S0 = {0} is a one-point space;
(b) Sα+1 = Sα × I;
(c) if α is a limit ordinal, Sα = (

⊕
β<α Sβ)∗.

In a similar way to last example, this spaces are f.d.s. spaces. ¤
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6. Relation with other dimension functions

This definition is quoted from [2, Definition 1.2].

Definition 6.1. A continuous mapping f : X → Y of a space X into
another space Y is called light if for every point y ∈ Y , f−1(y) is totally
disconnected. In particular a light mapping f satisfies t(f) = 0.

The following definition is quoted from [2, 2.1].

Definition 6.2. Let X be a topological space. We define the light
dimension of the space, denoted by L-dimX, as follows: L-dim(∅) = −1.
Let α be an ordinal number or zero, L-dim X ≤ α if and only if there exists
a light mapping f : X → Jα. If the last condition is not satisfied for any
α ordinal number or zero, we say that L-dim(X) does not exists.

Remark 6.3. Note that, if L-dim(X) exists, using that Jα is f.d.s. and
2.4, it is clear that X is f.d.s.

We also quote the definition of countable dimensionality from [3].

Definition 6.4. A space X is called countable dimensional (c.d.) if it
can be written as a countable union of finite-dimensional subspaces.

Proposition 6.5. Let f : X → Y be a continuous mapping from a

compact metrizable space X onto a Hausdorff c.d. space Y with t(f) < ∞.

Then X is c.d. In particular if X is a compact metrizable space such that

L-dim(X) exists, then X is c.d.

Proof. For every y ∈ Y , f−1(y) is a compact metrizable space, so
dim(f−1(y)) = t(f−1(y)) ≤ t(f) < ∞ (see [12, Theorem 4.7]) where dim
is the covering dimension (see [9, Definition I.4]). Then f is a closed
continuous mapping from a metrizable space X onto a c.d. space Y such
that dim f−1(y) < ∞ for every y ∈ Y and so X is c.d. (see Theorem 7.7
of [5]).

Finally, if X is a compact metric space with light dimension, using
that Jα is compact metric and c.d. (see [6]), all its subspaces are c.d. (see
[5, Proposition 2.2]) and so we can obtain a light mapping from X onto a
c.d. subspace of Jα. ¤

The following result gives a relation between our new concept of f.d.s.
spaces and the classical one of C-spaces.
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Theorem 6.6. If X is a compact metric f.d.s. space, then X is a C-

space (see [5, 8.15]) and hence is weakly infinite-dimensional (w.i.d.) (see

[5, 8.1 and 8.17]).

Proof. Suppose that X is a compact metric space which is not a C-
space. Then there exists a non-trivial metric continuum K ⊂ X without
any compact subsets of positive finite dimension (see [8, Theorem 3.6]).
By a theorem of Tumarkin (see [13], also see footnote 3 in p. 162 of [9], K

contains an infinite-dimensional Cantor manifold (that is,a compact space
F such that dim(F ) = ∞ and for any subset A of F with dim(A) < ∞,
F \A is connected) and then X is not f.d.s. ¤

Remark 6.7. Recall from Example 8.19 of [5] that there is a compact
metric C-space that has a subspace that is not C-space. However it is f.d.s.,
so com pactness is essential in the above theorem. From [10], Comment C,
we can also conclude that f.d.s. does not imply w.i.d. if compactness is
suppressed.

Remark 6.8. If X is the space of remark 2.6, X × X is a compact
metric C-space (see Theorem 3 of [11]) (and hence w.i.d.) that is not f.d.s.,
so Theorem 6.6 cannot be reversed even for compact metric spaces.

Acknowledgement. We would like to acknowledge the referee, who cor-
rected several misprints, shortened one of the proofs and made useful com-
ments about the organization of the results in sections.
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SPAIN

E-mail: farenas@ualm.es

M. L. PUERTAS
AREA OF GEOMETRY AND TOPOLOGY
UNIVERSITY OF ALMERÍA
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