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Pell numbers, squares and cubes

By PAULO RIBENBOIM (Kingston)

Abstract. We consider the sequence of Pell numbers Un (n ≥ 0) and of associated
Pell numbers Vn (n ≥ 0) and we determine the finitely many indices n such that
U2n+1 = x3 ± 1, U2n = x3 ± 2, V2n+1 = x3 ± 2, or V2n = x3 ± 6. We obtain results
about the square classes in these sequences. We also show, among other facts, that for
odd n, Un 6= � ± 1 (except for n = 3), Un 6= � ± 5, Vn 6= � ± 2 (except for n = 3),
Vn 6= � ± 14. For even n, we show that Un 6= � ± 2, Vn 6= � ± 6. Concerning cubes,
we show for all n that Vn 6= C ± 2 (except for n = 2), for odd n, Un 6= C ± 1 and for n
even, Un 6= C ± 2, Vn 6= C ± 1, Vn 6= C ± 6.

1. Introduction

In this paper we consider the sequences of Pell numbers

Un = 0, 1, 2, 5, 12, 29, 70, 169 . . .

and of “associated” Pell numbers

Vn = 2, 2, 6, 14, 34, 82 . . . .

These are second order linear recurrences with parameters 2, −1.
We are interested in products and certain sums and differences which

are squares or cubes. The squares and cubes in these sequences were
determined by Ljunggren, respectively Pethő (see [3], [6]).

After a review of the required facts we discuss when UmUn, VmVn

are squares. Even though our results are partial, it is possible to deduce
many instances when necessarily m = n. For the applications, we deal
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also with products UmVn and 2UmUn. By considering expressions like
Us+2k ± (−1)kUs we tackle the question of determining Pell numbers of
the form x2 ± 1, x2 ± 2, etc. In the last two sections we consider cubes,
investigate the analogous problems obtaining numerous results stated in
detail in the text of the article.

It is very convenient to indicate any unspecified square by the symbol
¤; thus 2¤ stand for the double of a square. Similarly, an unspecified cube
is denoted by C and 3C indicates the triple of a cube.

2. Preliminaries

Let P , Q be non-zero integers such that D = P 2 − 4Q 6= 0. Let
(Un)n≥0, (Vn)n≥0 be the Lucas sequences with parameters (P,Q), which
are so defined:

{
U0 = 0, U1 = 1,

Un = PUn−1 −QUn−2 (for n ≥ 2)
(1)

and
{

V0 = 2, V1 = P,

Vn = PVn−1 −QVn−2 (for n ≥ 2)
(2)

for (P, Q) = (1,−1), U is the sequence of Fibonacci numbers and V is the
sequence of Lucas.

For (P, Q) = (2,−1), U and V are the sequences of Pell numbers of
first, respectively second kind. In this paper we deal exclusively with these
sequences:

U : 0, 1, 2, 5, 12, 29, 70, 169, 408 . . .

V : 2, 2, 6, 14, 34, 82, 198, 478 . . .

We extend these sequences defining the terms with negative indices
as follows:

(3)





U−n = − Un

(−1)n

V−n =
Vn

(−1)n
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With this definition, (1), (2) hold for all integers n. We note that D =
P 2 − 4Q = 8. The following properties will be used:

V 2
n − 8U2

n = 4(−1)n(4)

Um+n = UmVn − (−1)nUm−n(5)

Vm+n = VmVn − (−1)nVm−n = 8UmUn + (−1)nVm−n(6)

In particular:

U2n = UnVn(7)

V2n = V 2
n − 2(−1)n = 8U2

n + 2(−1)n(8)

and also

U3n = Un

(
V 2

n − (−1)n
)

= Un

(
8U2

n + 3(−1)n
)

(9)

V3n = Vn

(
V 2

n − 3(−1)n
)
.(10)

More generally:

2.1. Let k ≥ 3 be odd. Then there exist uniquely defined polynomials

f+
k , f−k ∈ Z[x] such that

deg(f+
k ) = deg(f−k ) =

k − 1
2

,

f±k (0) = (±1)
k−1
2 k

and

Ukn =
{

Unf+
k (U2

n) when n is even

Unf−k (U2
n) when n is odd.

Proof. For k = 3 we have f+
3 = 8X + 3 and f−3 = 8X − 3, so the

statement is true for k = 3 (by (9)). We proceed by induction on k:

Ukn = U(k−2)nV2n − U(k−4)n

= U(k−2)n

[
8U2

n + 2(−1)n
]− U(k−4)n

= Un

{
f±k−2(U

2
n)

[
8U2

n + 2(−1)n
]− f±k−4(U

2
n)

}
.
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Therefore we define f±k (x) = (8x±2)f±k−2(x)−f±k−4(x). We have deg f±k =
k−1
2 , and

f±k (0) = ±2f±k−2(0)− f±k−4(0)

= ±2(±1)
k−3
2 (k − 2)− (±1)

k−5
2 (k − 4) = (±1)

k−1
2 k.

It is immediate to deduce that the above polynomials are unique satisfying
the properties indicated. ¤

2.2. Let k ≥ 3 be odd. Then there exist uniquely defined polynomials

g+
k , g−k ∈ Z[x] such that

deg(g±k ) =
k − 1

2
, g±k (0) = ±(−1)

k−1
2 k

and

Vkn =
{

Vng+
k (V 2

n ) when n is even

Vng−k (V 2
n ) when n is odd.

Proof. We take g+
3 (x) = x − 3 and g−3 (x) = x + 3. We proceed by

induction on k:

Vkn = V(k−2)nV2n − V(k−4)n

= V(k−2)n

(
V 2

n − 2(−1)n
)− V(k−4)n

= V 3
n g±k−2(V

2
n )∓ 2Vng±g−2(V

2)− Vng±k−4(V
2
n )

= Vng±k (V 2
n )

where g±k (X) = Xg±k−2(X)∓ 2g±k−2(X)− g±k−4(X). So deg(g±) = k−1
2 and

g±k (0) = ∓2g±k−2(0)− g±k−4(0)

= ∓2(−1)
k−3
2 (k − 2)∓ (−1)

k−5
2 (k − 4)

= ±(−1)
k−1
2 [±2(k − 2)∓ (k − 4)] = ±(−1)

k−1
2 k,

as it was required. It is also immediate that the polynomials g+
k , g−k are

unique with the properties indicated. ¤
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Concerning divisibility properties we shall require:

Um | Un if and only if m | n
while Vm | Vn if and only if m | n and

n

m
is odd.

Next we shall also need: Let m ≥ 1, n ≥ 1 and d = gcd(m,n). Then:

gcd(Um, Un) = Ud(11)

gcd(Vm, Vn) =
{

Vd if m
d , n

d are odd

2 otherwise
(12)

gcd(Um, Vn) =
{

Vd if m
d is even, n

d is odd

1 or 2 otherwise.
(13)

For each n 6= 0, n = ±2tg with g odd, we denote by val2(n) = t the 2-adic
value of n. We have val2(U2tg) = val2(2tg) = t. In particular, Un is even
if and only if n is even. Similarly val2(Vn) = 1 for every n; in particular,
4 - Vn.

By considering the sequences U , V modulo 3, we observe that 3 | Un

if and only if 4 | n and 3 | Vn if and only if n ≡ 2 (mod 4).
If p is any odd prime, there exists the smallest integer ρ(p) such that

p | Uρ(p); moreover, p | Un if and only if ρ(p) | n. For the sequence V there
exist primes, like p = 5, such that p - Vn for all n.

We shall investigate powers in connection with Pell sequences. The
following basic theorem was proved by Ljunggren [3]:

2.3. The only solutions in positive integers of the equation X2−8Y 4 =
−4 are (2, 1), (478, 13). The equation X2 − 8Y 4 = 4 has no solution in

integers. Equivalently, Un = ¤ if and only if n = 1, 7.

The difficult proof of this statement is omitted.

Concerning cubes, Pethő [6] showed:

2.4. Un is not a proper power with exponent, larger than 2, for all n.

The proof of this theorem is also difficult.

The analogous results for the sequence V are:

2.5. Vn is not a proper power, for all n.
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Proof. If Vn = xm (for some m ≥ 2) and Un = y then x2m − 8y2 =
±4. Then x is even, say x = 2z and 22mz2m − 8y2 = ±4. Since m ≥ 2
then 8 divides the left-hand side, which is impossible. ¤

We shall also need the next two facts.

2.6. Un = 2¤ if and only if n = 2.

Proof. Let n > 2 be the smallest integer such that Un = 2¤ (if one
such integer exists). Since 2 | Un then 2 | n. Let n = 2m, so 2¤ = UnVm

with e = gcd(Um, Vm) = 1 or 2. Thus we have:
{

Um = ¤
Vm = ¤

or
{

= 2¤
= 2¤.

The first case is impossible by 2.5.
In the second case, by the minimality of n, we have m = 2, so n = 4.

However, U4 = 12 6= 2¤. ¤

The next result may be found in Sierpiński’s book [10]:

2.7. If Vn = 2¤ then n = 1.

Proof. Let n be even, Vn = 2v2, Un = u, so 4v4 − 8u2 = 4 hence
v4− 2u2 = 1. So v is odd, hence v2 = 8k + 1 hence 8k(4k + 1) = y2. Since
gcd(2k, 4k + 1) = 1 then 8k = a2 and v2 = 9a2 + 1 which is impossible.

Let n be odd, let Vn = 2v2, Un = u, so 4v2 − 8u2 = −4, hence
v4 − 2u2 = −1 and therefore u4 − v4 = (u2 − 1)2. By the classical result
of Fermat, u = v = 1, so n = 1.

3. Square classes

Let S be a set of positive integers. We say that s1, s2 ∈ S are square
equivalent if there exist non-zero integers x1, x2 such that s1x

2
1 = s2x

2
2.

The equivalence classes are called the square classes of S. It is clear that
s1, s2 are square equivalent if and only if s1s2 = ¤. When 1 ∈ S the
square class of 1 consists of all the squares in S. A square class with only
on element is said to be trivial.

In this section we give some results about the square classes of the
sequences U , V of Pell numbers.
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In [8] it was shown that if S is any Lucas sequence with positive
discriminant, each square class of S is finite and its terms are effectively
computable.

The determination of the square classes of the sequences U and V is
difficult. We obtain here only very partial results and we illustrate with
the determination of some special cases.

As already mentioned, U1 = 1, U7 = 169 are the only squares in the
sequence U . Then {U1, U7} is a square class. It is not known if every other
square class of U is trivial.

We may prove:

3.1. Let m = 2eg, n = 2fh be distinct non-zeo integers, with e, f ≥ 0,

g, h odd. Let d = gcd(g, h) and g = dr, h = ds. Let UmUn = ¤. Then

a) e = f .

b) UgUh = ¤, VgVh = ¤, . . . , V2e−1gV2e−1h = ¤.

c) If p is a prime dividing gcd(Ud, r) (respectively gcd(Ud, s)) then

valp(r) 6= 1 (respectively valp(s) 6= 1).

Proof. a) We assume for example that 0 ≤ f < e, then ¤ = UmUn =
UgVgV2g · · ·V2e−1gU2f h. We have gcd(V2e−1g, UgVg · · ·V2e−2gU2f h) = 1 or
a power of 2. Then V2e−1g = ¤ or 2¤. The first case is impossible by (2.5),
while the second case, 2e−1g = 1 by (2.7). Then e = 1, g = 1, f = 0, so
¤ = UmUn = 2Uh with h odd, Uh is odd. This is impossible. Therefore
e = f .

b) From ¤ = UmUn = UgV2g · · ·V2e−1g ·UhVh · · ·V2e−1h and gcd(UgUh,

Vg · · ·V2e−1gVh · · ·V2e−1h) = 1 then UgUh = ¤. Also Vg · · ·V2e−1gVh · · ·
V2e−1h = ¤. But gcd(V2e−1gV2e−1h, Vg · · ·V2e−2gVh · · ·V2e−1h) is a power of
2, so {

V2e−1gV2e−1h = ¤
Vg · · ·V2e−2gVh · · ·V2e−2h = ¤

or
{

= 2¤
= 2¤.

The second case is impossible, because 4 - Vg, 4 - Vh. So V2e−1gV2f−1h = ¤
and the argument may be repeated leading to the stated conclusion.

c) We have Ud = gcd(Ug, Uh), so

Ug

Ud
· Uh

Ud
= ¤,

hence UdUg = UdUdr = ¤ and also UdUh = UdUds = ¤. ¤
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By 2.1, U2
d f−r (U2

d ) = ¤, so f−r
(
U2

d

)
= ¤. The constant term of

f−r ∈ Z[X] is ±r. If p | gcd(Ud, r) and vp(r) = 1 since p2 | U2
d then

vp(f−r (U2
d )) = 1, which is impossible because f−q (U2

d ) = ¤.
We also prove:

3.2. If g, h are odd and UgUh = ¤ then g ≡ ±h mod 8 and

val2(g − h) 6= 2.

Proof. We consider the sequence U modulo 8,

U/8 : 1 2 5 4 5 6 1 0 · · ·

So UgUh = ¤ implies that g ≡ ±h mod 8. It follows that val2(g−h) 6= 2.
¤

We use particular arguments to determine certain square classes. For
the next two results, see also Robbins [9]:

3.3. Let

S = {3¤, 5¤, 6¤, 10¤, 15¤, 30¤}.
Then Un ∈ S if and only if n = 3, 4. In particular, the square class of

U3 = 5 is trivial.

Proof. U1, U2 6∈ S, U3 = 5. Assume that there exists the smallest
n > 3 such that Un ∈ S.

First case. 5 | Un then 3 | n. Let n=3m, so Un=Um

(
8U2

m + 3(−1)m
)
.

Let
d = gcd

(
Um, 8U2

m + 3(−1)m
)
,

hence d = 1 or 3. If d = 1 then Um ∈ {¤, 2¤} ∪ S. If Um = ¤, 2¤ then
m = 1, 7, 2 so n = 3, 21, 6. But U21, U6 6∈ S as verified by calculation (note
that 4 - 21 so 3 - U21). If Um ∈ S by minimality of n then m = 3, so n = 9,
however U9 /∈ S as seen by calculation. If d = 3 then

Um

3
· 8U2

m + 3(−1)m

3
∈ S,

hence Um ∈ {¤, 2¤}∪S. We note that 3 | Um implies that 4 | m. If Um ∈ S

by the minimality, m ≤ 3, which is impossible; similarly Um 6= ¤, 2¤.
Second case. 5 - Um. Then 3 | Un so 4 | n. Let n = 2k with k even.

So UkVk ∈ S, with e = gcd(Uk, Vk) = 2, since k is even. Thus Uk

2
Vk

2 ∈ S
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and therefore Uk ∈ {¤, 2¤} ∪ S. Since k is even and by the minimality of
n, k = 2 and n = 4. ¤

3.4. The square class of U5 is trivial, or equivalently if Un = 29¤ then

n = 5.

Proof. Let n be minimal such that Un = 29¤. By 3.1, n is odd.
Since 29 = U5 divides Un then 5 | n. Let n = 5m, so by 2.1 Un =
Umf5(U2

m) where f5 ∈ Z[x] with constant term ±5. Then d = gcd(
Um, f5(U2

m)
)

= 1 or 5. If d = 1 then Um = ¤ or 29¤. The second
case is not possible. By the minimality of n. In the first case by Ljung-
gren’s result, m = 1 or 7, so n =5 or 35. But, we see by direct calculation
that U35/29 6= ¤.

If d = 5 then 3 | m so 3 | n; let n = 3k hence Un = Uk

(
8U2

k − 3
)
.

Since k is odd then 3 - Uk so the above factors are coprime. Thus Uk = ¤
or 29¤. The second case is excluded by the minimality of n; by Ljunggren’s
result, n = 3 or 21. However, 5 - 3, 5 - 21, so 29 - U3, U21. ¤

3.5. Let

S = {3¤, 6¤, 197¤, 2× 197¤, 5× 197¤, 10× 197¤, 3× 197¤,

6× 197¤, 15× 197¤, 30× 197¤}.

Then Un ∈ S if and only if n = 4 or 9. In particular, the square class of

U9 = 5× 197 is trivial.

Proof. If n ≤ 9 and Un ∈ S then n = 4, 9. Let n > 9 be the smallest
index such that Un ∈ S.

First case. 197 | Un. Then 9 | n. Let n = 3m, so
Un = Um

(
8U2

n + 3(−1)m
)
. Let

d = gcd
(
Um, 8U2

m + 3(−1)m
)

so d = 1 or 3. If d = 1 then Um = S ∪ {¤, 2¤, 5¤, 10¤}. By minimality
of n, if Um ∈ S then m = 9 so n = 27. However, U27 /∈ S, which may
be verified by direct calculation. If Um ∈ {¤, 2¤, 5¤, 10¤} then by the
previous results, m = 1, 7, 2, 3 hence n = 3, 21, 6, 9; only 21 is not excluded,
but U21 /∈ S, as seen by direct calculation. If d = 3 then 3 | Um so 4 | m

and
Um

3
· 8U2

m + 3(−1)m

3
∈ S
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so Um ∈ S ∪{¤, 2¤, 5¤, 10¤}. If Um ∈ S then by minimality of n, m = 9,
so n = 27, however U27 /∈ S, as seen by calculation. If Um /∈ S then by
the previous results m = 4, so n = 12, however U12 /∈ S (since 9 - 12 then
197 - U12).

Second case. 197 - Un. Then Un ∈ {3¤, 6¤} so 4 | n. Let n = 2k

with k even. Then UkVk ∈ {3¤, 6¤} with gcd(Uk, Vk) = 2. So Uk ∈
{¤, 2¤, 3¤, 6¤}. By the minimality of n and k even then k = 2, n = 4,
which was found already as a possibility. ¤

Concerning the sequence V , me may prove:

3.6. Let m, n be distinct integers such that VmVn = ¤, let d =
gcd(m,n) = 1. Then:

a)
m

d
,
n

d
are odd,

b) m ≡ n (mod 8),

c) for any primep | Vd, both valp
(m

d

)
6= 1 and valp

(n

d

)
6= 1

Proof. a) Let VmVn = ¤ and e = gcd(Vm, Vn). If e = 2 then
Vm = 2¤, Vn = 2¤, so m = n = 1, which is contrary to the hypothesis.
Thus e = Vd, where d = gcd(m,n) and m

d , n
d are odd.

b) If d is even then m, n are even, while if d is odd, then m, n are
odd. Considering the sequence 1

2V modulo 4, namely

1, 3, 3, 1, 1, 3, 3, 1 . . .

if VmVn = ¤ and if m, n are odd then m ≡ n (mod 4); similarly if m,
n are even, then m ≡ n (mod 4). Let n = m + 4t. If t is odd, from
Vn = Vm+2tV2t − Vm then

VnVm = −V 2
m

(
mod

1
2
V2 = 3

)

so
(−1

3

)
= +1, which is absurd. This shows that m ≡ n (mod 8).

c) We have also VmVd = ¤ and by 2.2

Vm = Vdg
±
m/d

(
V 2

d

)
where g±m/d ∈ Z[x],
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g±m/d have degree (m
d −1)/2 and constant term ±m/d. So g±m/d(V

2
d ) = ¤. If

p is any prime dividing Vd, if valp(m
d ) = 1 then g±m/2 6= ¤; thus valp(m

p ) 6= 1
and valp(n

p ) 6= 1. We note in passing that either valp(m
d ) or valp(n

d ) is 0.
¤

3.7. The square class of V3 = 14 is trivial.

Proof. Let n > 3 be the smallest index such that Vn = 14¤. By
considering the sequence V modulo 14, we deduce that n ≡ 3 (mod 6) so
n = 6m− 3 and Vn = V2m−1(V 2

2m−1 + 3). Let d = gcd(V2m−1, V
2
2m−1 + 3)

so d = 1 or 3. But 3 | Vk if and only if k ≡ 2 (mod 4). Thus d = 1. From
Vn = 14¤ it follows that V2m−1 = 14¤ (impossible by the minimal choice
of n) or V2m−1 = 7¤ (impossible since 4 - V2m−1), or V2m−1 = 2¤ (this
implies that 2m− 1 = 1, so m = 1, n = 3, contrary to the assumption) or
V2m−1 = ¤ (impossible). ¤

3.8. The square class of V5 = 82 is trivial.

Proof. By considering the sequence 1
2V modulo 41, we observe that

41 | Vk if and only if k ≡ 5 (mod 10). Thus if n is the smallest integer
n > 5, such that Vn = 82¤ we have n = 5m. Thus Vn = Vmg±5 (V 2

m), where
g±5 ∈ Z[x] with constant term ±5. Thus d = gcd

(
Vm, g±5 (V 2

m)
)

is 1 or 5.
However, by considering the sequence 1

2V modulo 5, we note that 5 - Vk

for all k. So d = 1, hence Vm = 82¤, which implies that m = 5 so n = 25;
or Vm = 41¤ (impossible since 4 - Vm), Vm = 2¤ (so m = 1 and n = 5,
which is contrary to the assumption), or Vm = ¤ (impossible). Finally, by
direct numerical computation, we verify that V25 6= 82¤, concluding the
proof that the square class of V5 is trivial. ¤

We shall require the explicit determination of the square class of V7.

3.9. The square class of V7 = 2× 239 is trivial.

Proof. We assume that there exists the smallest n > 7 such that

Vn ∈ {2× 239¤, 2× 239× 7¤}.

If Vn = 478¤ then by 3.6 n ≡ 7 (mod 8), so n is odd. Similarly, if
Vn = 7× 478¤ since 7 | Vn then n ≡ 3 or 9 (mod 12), so n is odd also in
this case.
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Since 239 | Vn then 7 | n. Let n = 7m hence m is odd and by 2.2
Vn = Vmg±7 (V 2

m) where g±7 ∈ Z[x] with constant term ±7. Let d =
gcd

(
Vm, g±7 (V 2

n )
)
, so d = 1 or 7.

If d = 1 then Vm ∈ {¤, 2¤, 7¤, 239¤, 2×7¤, 2×239¤, 7×239¤, 2×
7×239¤}. First we note that Vm /∈ {¤, 7¤, 239¤, 7×239¤} because 4 - Vm.
Also by minimality of n, Vm /∈ {2 × 239¤, 2 × 7 × 239¤}. If Vm = 14¤
by 3.7 m = 3 hence n = 21, however V21 /∈ {2 × 239¤, 2 × 7 × 239¤}, as
seen by direct calculation. Finally, if Vm = 2¤ then m = 1 so n = 7.

Now let d = 7 so 7 | Vm and Vm/7 is a factor of 2×239¤ or 2×7×239¤,
that is Vm ∈ {¤, 2¤, 7¤, 239¤, 14¤, 2×239¤, 7×239¤, 2×7×239¤},
hence we are in the preceding situation, leading to n = 7. ¤

We shall also require the following result:

3.10. Let 1 ≤ m < n and assume that UmUn = 2¤. Then (m,n) =
(1, 2) or (2, 7).

Proof. It is clear that U1U2 = 2¤, U2U7 = 2¤. Now let 0 ≤ e ≤
f, g, h odd and U2egU2f h = 2¤. We have val2(U2eg) = e, val2(U2f h) = f

so e + f is odd. So 0 ≤ e < f . If e = 0 then

UgU2f h = UgUhVh · · ·V2f−1h = 2¤.

We have gcd (UgUh, Vh · · ·V2f−1h) = 1. Since f is odd then Vh · · ·V2f−1h =
2¤. But gcd (Vh · · · V2f−2h, V2f−1h) = 2 so V2f−1h = 2¤, thus 2f−1h = 1
and U2f h = U2 = 2. Thus 2Ug = 2¤ so g = 1 or 7.

We show that if 1 ≤ e then U2egU2f h 6= 2¤. Assuming the contrary,
let 1 < e be smallest such that U2egU2f h = 2¤ (for g, h odd and e < f).
Then

U2e−1gV2e−1gU2f−1hV2f−1h = 2¤

with
gcd(U2e−1gU2f−1h, V2e−1gV2f−1h) = 1, 2, or 4.

Then {
U2e−1gU2f−1h = ¤

V2e−1gV2f−1h = 2¤,
or

{
= 2¤

= ¤.

Since e + f is odd, the first case is impossible. In the second case, by the
minimality of e, we have e = 1 so UgU2f−1h = 2¤. By the preceding proof
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2f−1h = 2 so f = e = 1, and this is a contradiction, proving the statement.
¤

Now we shall determine when a product Um Vn is a square.

3.11. If m, n are non-zero integers and UmVn = ¤ then (m,n) = (2, 1)
or (14, 7).

Proof. Let UmVn = ¤ and e = gcd(Um, Vn) so e = 1, 2 or Vd where
d = gcd(m,n) and m/d is even.

If e = 1 then Um = ¤ and Vn = ¤, which is impossible. If e = 2 then
Um = 2¤ and Vn = 2¤ so m = 2, n = 1.

Let e = Vd with m/d even, hence n/d is odd. Then m is even and we
write m = 2fg with f ≥ 1, g odd, hence d = 2lh with 0 ≤ l < f , h odd
and h divides g. Now UmVd = ¤ and we have

Ug Vg V2g · · · V2f−1g V2lh = ¤.

Since gcd(Ug, V2ig) = 1, gcd(Ug, V2lh) = 1 then Ug = ¤, hence g = 1
or 7, and Vg · · ·V2f−1g V2lh = ¤. But gcd(V2ig, V2jg) = 2 (for i < j),
gcd(V2ig, V2lh) = 2 (for i 6= l) and gcd(V2lg, V2lh) = V2lh, then V2lg, V2lh =
¤ or 2¤ and

Vg · · ·V2f−1g

V2lg

= ¤ or 2¤.

The second case cannot happen.
1) Let f > 1. If i 6= l, 0 ≤ i ≤ f−1 then V2ig = ¤ or 2¤, so V2ig = 2¤

hence 2ig = 1, so i = 0, g = 1, f = 2, l = 1, h = 1. Thus m = 4, d = 2 but
U4V2 = 12× 6 6= ¤.

2) Let f = 1 then l = 0. If g = h = 1 then m = 2. If UmVn = ¤
then Vn = 2¤ so n = 1. If g = 7 and h = 1 then V7V1 = ¤ so V7 = 2¤,
which is absurd. If g = h = 7 then m = 14, d = 7 so n is odd. From
U14Vn = U7V7Vn = ¤, U7 = ¤ then V7Vn = ¤. By 3.9 n = 7, m = 14.

¤

Using the fundamental relation V 2
n − 8U2

n = ±4 or equivalently v2 −
2U2

n = ±1 (where v = 1
2Vn), we may apply the above result to elliptic

curves. Thus we obtain: The only solutions in positive integers of the
following equations are the ones indicated:

X2 − 2Y 4 = 1 No solution
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X2 − 2Y 4 = −1 (x, y) = (1, 1), (239, 7)

X2 − 4Y 4 = 1 (x, y) = (3, 2)

X2 − 4Y 4 = −1 No solution

X2 − 50Y 4 = 1 No solution

X2 − 50Y 4 = −1 (x, y) = (7, 1)

X2 − 288Y 4 = 1 (x, y) = (17, 1)

X2 − 288Y 4 = −1 No solution

X2 − 1682Y 4 = 1 No solution

X2 − 1682Y 4 = −1 (x, y) = (41, 1)

X2 − 9800Y 4 = 1 (x, y) = (99, 1)

X2 − 9800Y 4 = −1 No solution

and also

X4 − 2Y 2 = 1 No solution

X4 − 2Y 2 = −1 (x, y) = (1, 1)

9X4 − 2Y 2 = 1 (x, y) = (1, 2) is the only known solution

9X4 − 2Y 2 = −1 No solution

49X4 − 2Y 2 = 1 No solution

49X4 − 2Y 2 = −1 (x, y) = (1, 5)

289X4 − 2Y 2 = 1 (x, y) = (1, 12) is the only known solution

289X4 − 2Y 2 = −1 No solution

1681X4 − 2Y 2 = 1 No solution

1681X4 − 2Y 2 = −1 (x, y) = (1, 29)

9801X4 − 2Y 2 = 1 (x, y) = (1, 70) is the only known solution

9801X4 − 2Y 2 = −1 No solution
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57121X4 − 2Y 2 = 1 No solution

57121X4 − 2Y 2 = −1 (x, y) = (1, 169)

4. Sums or differences which are squares

We shall determine, wherever possible, the indices s, k such that the
expressions below are squares:

Us+2k ± (−1)kUs = ¤

Vs+2k ± (−1)kVs = ¤

4.1. Let s ≥ 1, k ≥ 1. Then

(14) Us+2k − (−1)kUs 6= ¤.

Proof. Let s ≥ 1, k ≥ 1 be such that (14) does not hold. Then

¤ = Us+2k − (−1)kUs = UkVs+k

By 3.11 (k, s + k) = (2,1) or (14,7) which is impossible. ¤

4.2. Let s ≥ 1, k ≥ 1. Then

(15) Us+2k + (−1)kUs = ¤

if and only if (s, k) = (1, 1), or (7, 7).

Proof. Let s ≥ 1, k ≥ 1 be such that (15) holds. Then

¤ = Us+2k + (−1)kUs = Us+kVk

It follows from 3.11 that (s + k, k) = (2, 1) or (14, 7) hence (s, k) = (1, 1)
or (7, 7). Both solutions satisfy (15). ¤

As particular cases of 4.1, 4.2, with s = 1, 2, 3, we deduce: If m is odd
then Um 6= ¤± 1 (except U3 = ¤+1) and Um 6= ¤± 5. If m is even, then
Um 6= ¤± 2.
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4.3. Let s ≥ 1, k ≥ 1. Then

(16) Vs+2k − (−1)kVs = ¤

if and only if (s, k) = (1, 1), (5, 2).

Proof. It is clear that if (s, k) = (1, 1) or (5, 2) then (16) holds.
Conversely if ¤ = Vs+2k − (−1)kVs = 8Us+kUk, hence Us+kUk = 2¤.
By 3.10, (k, s + k) = (1, 2) or (2, 7), hence (s, k) = (1, 1) or (5, 2). ¤

4.4. Let s ≥ 1, k ≥ 1 be integers such that

(17) Vs+2k + (−1)kVs = ¤

Then the square classes of Vk and Vs+k are not trivial and 8 | s. Moreover,

if d = gcd(s, k) then k/d is odd, s/d is even. Also, if p is any prime dividing

Vd then valp(k
d ) 6= 1 and valp( s+k

d ) 6= 1.

Proof. If (17) holds then ¤ = Vs+2k + (−1)kVs = VkVs+k so the
square classes of Vk, Vs+k are not trivial and by 3.6 we deduce that 8 | s

and that if d = gcd(s, k) = gcd(s + k, k) then k/d, (s + d)/d are odd. So
s/d is even. Moreover if p | Vd then valp(k

d ) 6= 1, valp( s+k
d ) 6= 1. ¤

Combining 4.3 and 4.4 we deduce as particular cases (s = 1, 2, 3): If
m is odd then Vm 6= ¤± 2, (except V3 = ¤− 2) and also Vm 6= ¤± 14. If
m is even then Vm 6= ¤± 6.

5. Pell sequences and cubes

In this section we treat problems similar to the ones of the preceding
sections, but concerned with cubes. Like ¤ designated an arbitrary square,
we shall denote an arbitrary cube by the letter C. In this connection we
quote the following fundamental result of Pethő [6]:

5.1. If Un is a cube, then n = 1.

The proof involves Baker’s bounds for linear forms in logarithms.

As it was indicated in 2.5, Vm is not a cube, for all n.
We shall need:

5.2. If Un = 2C or 4C then n = 2.
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Proof. Assume that there exists the smallest n > 2 such that
Un ∈ {2C, 4C}. Then n is even, n = 2m, and UmVm ∈ {2C, 4C}. Let
gcd(Um, Vm) = d, so d = 1 or 2. If d = 1 then Um ∈ {2C, 4C} with
m < n, so m = 2 and n = 4, but U4 = 12 /∈ {2C, 4C}. If d = 2 then
Um

2
Vm

2 ∈ {2C, 4C}, so Um ∈ {C, 2C, 4C}; since Um 6= C, m < n. Then
m = 2, but U4 6= 2C, 4C. ¤

5.3. If Un ∈ {3C, 6C, 12C} then n = 4.

Proof. Assume that there exists the smallest n > 4 such that

Un ∈ {3C, 6C, 12C}.

Since 3 | Un then 4 | n so n = 4m and

U2mV2m ∈ {3C, 6C, 12C}.

We have gcd (U2m, V2m) = 2, so

U2m

2
V2m

2
∈ {3C, 6C, 12C}.

Therefore, U 2m
2
∈ {C, 2C, 3C, 4C, 6C, 12C} and U2m ∈ {C, 2C, 3C, 4C, 6C,

12C}. By the minimality of n and 5.2 this implies that 2m = 2 so n = 4.
¤

5.4. Un /∈ {9C, 18C, 36C} for all n.

Proof. Let n be the smallest integer such that Un ∈ {9C, 18C, 36C}.
Since 3 | Un then 4 | n. Let n = 4m so U2mV2m ∈ {9C, 18C, 36C}.
Since gcd(U2m, V2m) = 2 then U2m

2
V2m

2 ∈ {9C, 18C, 36C}. So U2m ∈
{C, 2C, 4C, 9C, 18C, 36C}. By the minimality of n and (5.2) U2m = 2C so
2m = 2, n = 4. However, U4 = 12 6= 9C, 18C, 36C. ¤

As a further example of the method, we show:

5.5. If Un ∈ {5C, 10C, 20C, 15C, 30C, 60C, 45C, 90C, 180C} then

n = 3.

Proof. Let n > 3 be the smallest index such that

Un ∈ {5C, 10C, 20C, 15C, 30C, 60C, 45C, 90C, 180C}.
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Since 5 | Un then 3 | n. Let n = 3m, so Un = Um

(
8U2

m + 3(−1)m
)

with
d = gcd (Um, 8Um + 3(−1)m) = 1 or 3.

If d = 1 then Um ∈ {C, 5C, 2C, 10C, 4C, 20C, 3C, 15C, 6C, 30C, 12C,

60C, 9C, 45C, 18C, 90C, 36C, 180C}. By the previous results and the min-
imality of n, we have m = 2, 3 or 4. Hence n = 6, 9 or 12; however, U6,
U9, U12 are not of the form under consideration.

If d = 3 then

Um

3
· 8U2

m + 3(−1)m

3
∈ {15C, 30C, 60C, 45C, 90C, 180C, 5C, 10C, 20C},

so Um

3 ∈ {C, 3C, 5C, 15C, 2C, 6C, 10C, 30C, 4C, 12C, 20C, 60C, 9C, 45C,

18C, 90C, 36C, 180C} and Un ∈ {3C, 9C, 15C, 45C, 6C, 18C, 30C, 90C,12C,

36C, 60C, 180C, C, 5C, 2C, 10C, 4C, 20C}. By the preceding results and the
minimality of n, this is only possible when m = 2, so n = 6. However,
U6 = 70 is not of the required form. ¤

The above results may be translated in terms of elliptic curves, by
using the fundamental relation

V 2
n − 8U2

n = ±4

hence

v2
n − 2U2

n = ±1

where vn = 1
2Vn.

Thus for example 5.1 and 5.2:

5.1’. The equation x2 − 2y6 = ±1 has no solutions in integers.

5.2’. The only solution in positive integers of x2 − 8y6 = 1 is
(x, y) = (3, 1). The equations x2− 8y6 = −1, and x2− 32y6 = ±1 have no
solution in integers.

We shall require the following fact:

5.6. Let m ≥ 1, n ≥ 1 with gcd(m,n) = 1 or 2. Then UmVn 6= C.

Proof. Assume that UmVn = C and let e = gcd(Um, Vn). If e = 1
then Um = C, Vn = C which is impossible. If e = 2 then Um

2
Vn

2 = 2C so
{

Um/2 = 2C

Vn/2 = C
or

{
= C

= 2C
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hence {
Um = 4C

Vn = 2C
or

{
= 2C

= 4C.

By 5.2 the first case is not possible, while the second case is impossible
since 4 - Vn. Let d = gcd(m,n) and assume that m/d is even, so n/d is
odd. Then Vd = gcd(Um, Vn). If d = 1 then Vd = 2 and this case was
already considered. If d = 2 then V2 = 6 hence Um

6
Vn

6 = 6C; so

{
Um/6 = 6C

Vn/6 = C
or

{
= 3C

= 2C
or

{
= 2C

= 3C
or

{
= C

= 6C

hence
{

Um = 36C

Vn = 6C
or

{
= 18C

= 12C
or

{
= 12C

= 18C
or

{
= 6C

= 36C
.

Since 4 - Vn then cases 2, 4 are impossible. By 5.4 the first case is impossi-
ble. In case 3, by 5.3 m = 4 so C = 4Vn = 4× 18C = 9C which is absurd.

¤

6. Sums or differences which are cubes

As in §4, we shall consider expressions

Us+2k ± (−1)kUs and Vs+2k ± (−1)kVs

and determine indices s, k for which the above expressions are cubes.

6.1. Let k ≥ 1, s ≥ 1 be integers with d = gcd(s, k) = 1 or 2. Then

Us+2k − (−1)kUs 6= C.

Proof. If C = Us+2k +(−1)kUs = UkVs+k since gcd(s+ k, k) = 1 or
2, it follows from 5.6 that this is impossible. ¤

6.2. Let s ≥ 1, k ≥ 1 be integers such that d = gcd(s, k) = 1 or 2.

Then Us+2k + (−1)kUs 6= C

Proof. If C = Us+2k+(−1)kUs = Us+kVk since d = gcd(s+k, k) = 1
or 2, thus impossible by 5.6. ¤
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Now we prove similar results for the sequence V .

6.3. Let s ≥ 1, k ≥ 1 be integers such that d = gcd(s, k) = 1 or 2.

Then Vs+2k − (−1)kVs 6= C.

Proof. Let C = Vs+2k−(−1)kVs = 8Us+kUk and let d = gcd(s+k, k)
so Ud = gcd(Us+k, Uk). If d = 1 then Us+k = C, Uk = C, which is
impossible. If d = 2, so U2 = 2, hence

{
Us+k/2 = 2C

Uk/2 = C.
or

{
= C

= 2C
.

Both cases are impossible by 5.2. ¤

6.4. If s ≥ 1, k ≥ 1 then Vs+2k + (−1)kVs 6= C.

Proof. Assume that C = Vs+2k + (−1)kVs = Vs+kVk. Let e =
gcd(Vs+k, Vk). If e = 2 then

{
Vs+k/2 = 2C

Vk/2 = C
or

{
= C

= 2C
.

Both cases are impossible, since 4 - Vn for every n ≥ 1. Let d = gcd(s+k, k)
and s+k

d , k
d odd. So Vd = gcd(Vs+k, Vk). Then

{
Vs+k/Vd = 2aC

Vk/Vd = bC
or

{
= aC

= 2bC

where ab = 1
2Vd. Then again both cases are impossible, because 4 - Vn for

all n ≥ 1. ¤

As special cases of the above results, we note:

Un 6= C ± 1 for all odd n,

Un 6= C ± 2 for all even n,

Vn 6= C ± 2 for all odd n,

Vn 6= C ± 6 for all even n ≥ 1.

For the next result we require:
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6.5. Let x 6= 0, y > 0 be integers.

a) If x3 = y2 − 1 then (x, y) = (2, 3).

b) x3 6= y2 + 1.

c) If x3 = y2 − 3 then (x, y) = (1, 2).

d) x3 6= y2 + 3.

e) x3 6= y2 − 4.

f) If x3 = y2 + 4 then (x, y) = (2, 2), (5, 11).

See [1], [4], and [6].

6.6. If n is even then Vn 6= C ± 1, except n = 0, C = 1.

Proof. Let Vn = C + 1 with n = 2m. Then V 2
m − 2(−1)m = C + 1.

If m is even V 2
m = C + 3. So Vm = 2, which is absurd. If m is odd then

V 2
m = C − 1 which is impossible.

If Vn = C−1 then V 2
m−2(−1)m = C−1. If m is even then V 2

m = C+1
so Vm = 3, which is absurd. Finally, if m is odd, then V 2

m = C − 3 which
is impossible. ¤

6.7. If V2n = C ± 2 then n = 1.

Proof. If V 2
n −2(−1)m = V2n = C+2 and n is even then V 2

n = C +4
which is impossible. If n is odd, V 2

n = C so Vn = C which is again
impossible.

If V 2
n −2(−1)n = V2n = C−2 and n is even, then V 2

n = C so Vn = C,
which is not true.

If n is odd, then V 2
n = C − 4 so Vn = 2, hence n = 1. ¤
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