Pell numbers, squares and cubes

By PAULO RIBENBOIM (Kingston)

Abstract

We consider the sequence of Pell numbers $U_{n}(n \geq 0)$ and of associated Pell numbers $V_{n}(n \geq 0)$ and we determine the finitely many indices n such that $U_{2 n+1}=x^{3} \pm 1, U_{2 n}=x^{3} \pm 2, V_{2 n+1}=x^{3} \pm 2$, or $V_{2 n}=x^{3} \pm 6$. We obtain results about the square classes in these sequences. We also show, among other facts, that for odd $n, U_{n} \neq \square \pm 1$ (except for $n=3$), $U_{n} \neq \square \pm 5, V_{n} \neq \square \pm 2$ (except for $n=3$), $V_{n} \neq \square \pm 14$. For even n, we show that $U_{n} \neq \square \pm 2, V_{n} \neq \square \pm 6$. Concerning cubes, we show for all n that $V_{n} \neq C \pm 2$ (except for $n=2$), for odd $n, U_{n} \neq C \pm 1$ and for n even, $U_{n} \neq C \pm 2, V_{n} \neq C \pm 1, V_{n} \neq C \pm 6$.

1. Introduction

In this paper we consider the sequences of Pell numbers

$$
U_{n}=0,1,2,5,12,29,70,169 \ldots
$$

and of "associated" Pell numbers

$$
V_{n}=2,2,6,14,34,82 \ldots
$$

These are second order linear recurrences with parameters $2,-1$.
We are interested in products and certain sums and differences which are squares or cubes. The squares and cubes in these sequences were determined by Ljunggren, respectively Pethő (see [3], [6]).

After a review of the required facts we discuss when $U_{m} U_{n}, V_{m} V_{n}$ are squares. Even though our results are partial, it is possible to deduce many instances when necessarily $m=n$. For the applications, we deal
also with products $U_{m} V_{n}$ and $2 U_{m} U_{n}$. By considering expressions like $U_{s+2 k} \pm(-1)^{k} U_{s}$ we tackle the question of determining Pell numbers of the form $x^{2} \pm 1, x^{2} \pm 2$, etc. In the last two sections we consider cubes, investigate the analogous problems obtaining numerous results stated in detail in the text of the article.

It is very convenient to indicate any unspecified square by the symbol \square; thus $2 \square$ stand for the double of a square. Similarly, an unspecified cube is denoted by C and $3 C$ indicates the triple of a cube.

2. Preliminaries

Let P, Q be non-zero integers such that $D=P^{2}-4 Q \neq 0$. Let $\left(U_{n}\right)_{n \geq 0},\left(V_{n}\right)_{n \geq 0}$ be the Lucas sequences with parameters (P, Q), which are so defined:

$$
\begin{align*}
& \qquad\left\{\begin{array}{l}
U_{0}=0, U_{1}=1, \\
U_{n}=P U_{n-1}-Q U_{n-2}(\text { for } n \geq 2)
\end{array}\right. \tag{1}\\
& \text { and }\left\{\begin{array}{l}
V_{0}=2, V_{1}=P, \\
V_{n}=P V_{n-1}-Q V_{n-2}(\text { for } n \geq 2)
\end{array}\right. \tag{2}
\end{align*}
$$

for $(P, Q)=(1,-1), U$ is the sequence of Fibonacci numbers and V is the sequence of Lucas.

For $(P, Q)=(2,-1), U$ and V are the sequences of Pell numbers of first, respectively second kind. In this paper we deal exclusively with these sequences:

$$
\begin{aligned}
& U: 0,1,2,5,12,29,70,169,408 \ldots \\
& V: 2,2,6,14,34,82,198,478 \ldots
\end{aligned}
$$

We extend these sequences defining the terms with negative indices as follows:

$$
\left\{\begin{align*}
U_{-n} & =-\frac{U_{n}}{(-1)^{n}} \tag{3}\\
V_{-n} & =\frac{V_{n}}{(-1)^{n}}
\end{align*}\right.
$$

With this definition, (1), (2) hold for all integers n. We note that $D=$ $P^{2}-4 Q=8$. The following properties will be used:

$$
\begin{align*}
V_{n}^{2}-8 U_{n}^{2} & =4(-1)^{n} \tag{4}\\
U_{m+n} & =U_{m} V_{n}-(-1)^{n} U_{m-n} \tag{5}\\
V_{m+n} & =V_{m} V_{n}-(-1)^{n} V_{m-n}=8 U_{m} U_{n}+(-1)^{n} V_{m-n}
\end{align*}
$$

In particular:

$$
\begin{align*}
& U_{2 n}=U_{n} V_{n} \tag{7}\\
& V_{2 n}=V_{n}^{2}-2(-1)^{n}=8 U_{n}^{2}+2(-1)^{n} \tag{8}
\end{align*}
$$

and also

$$
\begin{align*}
& U_{3 n}=U_{n}\left(V_{n}^{2}-(-1)^{n}\right)=U_{n}\left(8 U_{n}^{2}+3(-1)^{n}\right) \tag{9}\\
& V_{3 n}=V_{n}\left(V_{n}^{2}-3(-1)^{n}\right) . \tag{10}
\end{align*}
$$

More generally:
2.1. Let $k \geq 3$ be odd. Then there exist uniquely defined polynomials $f_{k}^{+}, f_{k}^{-} \in \mathbb{Z}[x]$ such that

$$
\begin{aligned}
\operatorname{deg}\left(f_{k}^{+}\right) & =\operatorname{deg}\left(f_{k}^{-}\right)=\frac{k-1}{2} \\
f_{k}^{ \pm}(0) & =(\pm 1)^{\frac{k-1}{2}} k
\end{aligned}
$$

and

$$
U_{k n}= \begin{cases}U_{n} f_{k}^{+}\left(U_{n}^{2}\right) & \text { when } n \text { is even } \\ U_{n} f_{k}^{-}\left(U_{n}^{2}\right) & \text { when } n \text { is odd. }\end{cases}
$$

Proof. For $k=3$ we have $f_{3}^{+}=8 X+3$ and $f_{3}^{-}=8 X-3$, so the statement is true for $k=3$ (by (9)). We proceed by induction on k :

$$
\begin{aligned}
U_{k n} & =U_{(k-2) n} V_{2 n}-U_{(k-4) n} \\
& =U_{(k-2) n}\left[8 U_{n}^{2}+2(-1)^{n}\right]-U_{(k-4) n} \\
& =U_{n}\left\{f_{k-2}^{ \pm}\left(U_{n}^{2}\right)\left[8 U_{n}^{2}+2(-1)^{n}\right]-f_{k-4}^{ \pm}\left(U_{n}^{2}\right)\right\} .
\end{aligned}
$$

Therefore we define $f_{k}^{ \pm}(x)=(8 x \pm 2) f_{k-2}^{ \pm}(x)-f_{k-4}^{ \pm}(x)$. We have $\operatorname{deg} f_{k}^{ \pm}=$ $\frac{k-1}{2}$, and

$$
\begin{aligned}
f_{k}^{ \pm}(0) & = \pm 2 f_{k-2}^{ \pm}(0)-f_{k-4}^{ \pm}(0) \\
& = \pm 2(\pm 1)^{\frac{k-3}{2}}(k-2)-(\pm 1)^{\frac{k-5}{2}}(k-4)=(\pm 1)^{\frac{k-1}{2}} k
\end{aligned}
$$

It is immediate to deduce that the above polynomials are unique satisfying the properties indicated.
2.2. Let $k \geq 3$ be odd. Then there exist uniquely defined polynomials $g_{k}^{+}, g_{k}^{-} \in \mathbb{Z}[x]$ such that

$$
\operatorname{deg}\left(g_{k}^{ \pm}\right)=\frac{k-1}{2}, \quad g_{k}^{ \pm}(0)= \pm(-1)^{\frac{k-1}{2}} k
$$

and

$$
V_{k n}= \begin{cases}V_{n} g_{k}^{+}\left(V_{n}^{2}\right) & \text { when } n \text { is even } \\ V_{n} g_{k}^{-}\left(V_{n}^{2}\right) & \text { when } n \text { is odd }\end{cases}
$$

Proof. We take $g_{3}^{+}(x)=x-3$ and $g_{3}^{-}(x)=x+3$. We proceed by induction on k :

$$
\begin{aligned}
V_{k n} & =V_{(k-2) n} V_{2 n}-V_{(k-4) n} \\
& =V_{(k-2) n}\left(V_{n}^{2}-2(-1)^{n}\right)-V_{(k-4) n} \\
& =V_{n}^{3} g_{k-2}^{ \pm}\left(V_{n}^{2}\right) \mp 2 V_{n} g_{g-2}^{ \pm}\left(V^{2}\right)-V_{n} g_{k-4}^{ \pm}\left(V_{n}^{2}\right) \\
& =V_{n} g_{k}^{ \pm}\left(V_{n}^{2}\right)
\end{aligned}
$$

where $g_{k}^{ \pm}(X)=X g_{k-2}^{ \pm}(X) \mp 2 g_{k-2}^{ \pm}(X)-g_{k-4}^{ \pm}(X)$. So $\operatorname{deg}\left(g^{ \pm}\right)=\frac{k-1}{2}$ and

$$
\begin{aligned}
g_{k}^{ \pm}(0) & =\mp 2 g_{k-2}^{ \pm}(0)-g_{k-4}^{ \pm}(0) \\
& =\mp 2(-1)^{\frac{k-3}{2}}(k-2) \mp(-1)^{\frac{k-5}{2}}(k-4) \\
& = \pm(-1)^{\frac{k-1}{2}}[\pm 2(k-2) \mp(k-4)]= \pm(-1)^{\frac{k-1}{2}} k
\end{aligned}
$$

as it was required. It is also immediate that the polynomials g_{k}^{+}, g_{k}^{-}are unique with the properties indicated.

Concerning divisibility properties we shall require:

$$
U_{m} \mid U_{n} \quad \text { if and only if } m \mid n
$$

while $V_{m} \mid V_{n} \quad$ if and only if $m \mid n$ and $\frac{n}{m}$ is odd.
Next we shall also need: Let $m \geq 1, n \geq 1$ and $d=\operatorname{gcd}(m, n)$. Then:

$$
\begin{align*}
& \operatorname{gcd}\left(U_{m}, U_{n}\right)=U_{d} \tag{11}\\
& \operatorname{gcd}\left(V_{m}, V_{n}\right)= \begin{cases}V_{d} & \text { if } \frac{m}{d}, \frac{n}{d} \text { are odd } \\
2 & \text { otherwise }\end{cases} \tag{12}\\
& \operatorname{gcd}\left(U_{m}, V_{n}\right)= \begin{cases}V_{d} & \text { if } \frac{m}{d} \text { is even, } \frac{n}{d} \text { is odd } \\
1 \text { or } 2 & \text { otherwise. }\end{cases} \tag{13}
\end{align*}
$$

For each $n \neq 0, n= \pm 2^{t} g$ with g odd, we denote by $\operatorname{val}_{2}(n)=t$ the 2 -adic value of n. We have $\operatorname{val}_{2}\left(U_{2^{t} g}\right)=\operatorname{val}_{2}\left(2^{t} g\right)=t$. In particular, U_{n} is even if and only if n is even. Similarly $\operatorname{val}_{2}\left(V_{n}\right)=1$ for every n; in particular, $4 \nmid V_{n}$.

By considering the sequences U, V modulo 3 , we observe that $3 \mid U_{n}$ if and only if $4 \mid n$ and $3 \mid V_{n}$ if and only if $n \equiv 2(\bmod 4)$.

If p is any odd prime, there exists the smallest integer $\rho(p)$ such that $p \mid U_{\rho(p)}$; moreover, $p \mid U_{n}$ if and only if $\rho(p) \mid n$. For the sequence V there exist primes, like $p=5$, such that $p \nmid V_{n}$ for all n.

We shall investigate powers in connection with Pell sequences. The following basic theorem was proved by LJungaren [3]:
2.3. The only solutions in positive integers of the equation $X^{2}-8 Y^{4}=$ -4 are $(2,1),(478,13)$. The equation $X^{2}-8 Y^{4}=4$ has no solution in integers. Equivalently, $U_{n}=\square$ if and only if $n=1,7$.

The difficult proof of this statement is omitted.
Concerning cubes, Ретнő [6] showed:
2.4. U_{n} is not a proper power with exponent, larger than 2 , for all n.

The proof of this theorem is also difficult.
The analogous results for the sequence V are:
2.5. V_{n} is not a proper power, for all n.

Proof. If $V_{n}=x^{m}$ (for some $m \geq 2$) and $U_{n}=y$ then $x^{2 m}-8 y^{2}=$ ± 4. Then x is even, say $x=2 z$ and $2^{2 m} z^{2 m}-8 y^{2}= \pm 4$. Since $m \geq 2$ then 8 divides the left-hand side, which is impossible.

We shall also need the next two facts.
2.6. $U_{n}=2 \square$ if and only if $n=2$.

Proof. Let $n>2$ be the smallest integer such that $U_{n}=2 \square$ (if one such integer exists). Since $2 \mid U_{n}$ then $2 \mid n$. Let $n=2 m$, so $2 \square=U_{n} V_{m}$ with $e=\operatorname{gcd}\left(U_{m}, V_{m}\right)=1$ or 2 . Thus we have:

$$
\left\{\begin{array} { l }
{ U _ { m } = \square } \\
{ V _ { m } = \square }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
=2 \square \\
=2 \square .
\end{array}\right.\right.
$$

The first case is impossible by 2.5 .
In the second case, by the minimality of n, we have $m=2$, so $n=4$. However, $U_{4}=12 \neq 2 \square$.

The next result may be found in Sierpiński's book [10]:
2.7. If $V_{n}=2 \square$ then $n=1$.

Proof. Let n be even, $V_{n}=2 v^{2}, U_{n}=u$, so $4 v^{4}-8 u^{2}=4$ hence $v^{4}-2 u^{2}=1$. So v is odd, hence $v^{2}=8 k+1$ hence $8 k(4 k+1)=y^{2}$. Since $\operatorname{gcd}(2 k, 4 k+1)=1$ then $8 k=a^{2}$ and $v^{2}=9 a^{2}+1$ which is impossible.

Let n be odd, let $V_{n}=2 v^{2}, U_{n}=u$, so $4 v^{2}-8 u^{2}=-4$, hence $v^{4}-2 u^{2}=-1$ and therefore $u^{4}-v^{4}=\left(u^{2}-1\right)^{2}$. By the classical result of Fermat, $u=v=1$, so $n=1$.

3. Square classes

Let S be a set of positive integers. We say that $s_{1}, s_{2} \in S$ are square equivalent if there exist non-zero integers x_{1}, x_{2} such that $s_{1} x_{1}^{2}=s_{2} x_{2}^{2}$. The equivalence classes are called the square classes of S. It is clear that s_{1}, s_{2} are square equivalent if and only if $s_{1} s_{2}=\square$. When $1 \in S$ the square class of 1 consists of all the squares in S. A square class with only on element is said to be trivial.

In this section we give some results about the square classes of the sequences U, V of Pell numbers.

In [8] it was shown that if S is any Lucas sequence with positive discriminant, each square class of S is finite and its terms are effectively computable.

The determination of the square classes of the sequences U and V is difficult. We obtain here only very partial results and we illustrate with the determination of some special cases.

As already mentioned, $U_{1}=1, U_{7}=169$ are the only squares in the sequence U. Then $\left\{U_{1}, U_{7}\right\}$ is a square class. It is not known if every other square class of U is trivial.

We may prove:
3.1. Let $m=2^{e} g, n=2^{f} h$ be distinct non-zeo integers, with $e, f \geq 0$, g, h odd. Let $d=\operatorname{gcd}(g, h)$ and $g=d r, h=d s$. Let $U_{m} U_{n}=\square$. Then
a) $e=f$.
b) $U_{g} U_{h}=\square, V_{g} V_{h}=\square, \ldots, V_{2^{e-1} g} V_{2^{e-1} h}=\square$
c) If p is a prime dividing $\operatorname{gcd}\left(U_{d}, r\right)\left(\right.$ respectively $\left.\operatorname{gcd}\left(U_{d}, s\right)\right)$ then $\operatorname{val}_{p}(r) \neq 1\left(\right.$ respectively $\left.\operatorname{val}_{p}(s) \neq 1\right)$.

Proof. a) We assume for example that $0 \leq f<e$, then $\square=U_{m} U_{n}=$ $U_{g} V_{g} V_{2 g} \cdots V_{2^{e-1} g} U_{2^{f} h}$. We have $\operatorname{gcd}\left(V_{2^{e-1} g}, U_{g} V_{g} \cdots V_{2^{e-2} g} U_{2^{f} h}\right)=1$ or a power of 2 . Then $V_{2^{e-1} g}=\square$ or $2 \square$. The first case is impossible by (2.5), while the second case, $2^{e-1} g=1$ by (2.7). Then $e=1, g=1, f=0$, so $\square=U_{m} U_{n}=2 U_{h}$ with h odd, U_{h} is odd. This is impossible. Therefore $e=f$.
b) From $\square=U_{m} U_{n}=U_{g} V_{2 g} \cdots V_{2^{e-1} g} \cdot U_{h} V_{h} \cdots V_{2^{e-1} h}$ and $\operatorname{gcd}\left(U_{g} U_{h}\right.$, $\left.V_{g} \cdots V_{2^{e-1} g} V_{h} \cdots V_{2^{e-1} h}\right)=1$ then $U_{g} U_{h}=\square$. Also $V_{g} \cdots V_{2^{e-1} g} V_{h} \cdots$ $V_{2^{e-1} h}=\square$. But $\operatorname{gcd}\left(V_{2^{e-1} g} V_{2^{e-1} h}, V_{g} \cdots V_{2^{e-2} g} V_{h} \cdots V_{2^{e-1} h}\right)$ is a power of 2 , so

$$
\left\{\begin{array} { l }
{ V _ { 2 ^ { e - 1 } g } V _ { 2 ^ { e - 1 } h } = \square } \\
{ V _ { g } \cdots V _ { 2 ^ { e - 2 } g } V _ { h } \cdots V _ { 2 ^ { e - 2 } h } = \square }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
=2 \square \\
=2 \square .
\end{array}\right.\right.
$$

The second case is impossible, because $4 \nmid V_{g}, 4 \nmid V_{h}$. So $V_{2^{e-1} g} V_{2^{f-1} h}=\square$ and the argument may be repeated leading to the stated conclusion.
c) We have $U_{d}=\operatorname{gcd}\left(U_{g}, U_{h}\right)$, so

$$
\frac{U_{g}}{U_{d}} \cdot \frac{U_{h}}{U_{d}}=\square,
$$

hence $U_{d} U_{g}=U_{d} U_{d r}=\square$ and also $U_{d} U_{h}=U_{d} U_{d s}=\square$.

By $2.1, U_{d}^{2} f_{r}^{-}\left(U_{d}^{2}\right)=\square$, so $f_{r}^{-}\left(U_{d}^{2}\right)=\square$. The constant term of $f_{r}^{-} \in \mathbb{Z}[X]$ is $\pm r$. If $p \mid \operatorname{gcd}\left(U_{d}, r\right)$ and $v_{p}(r)=1$ since $p^{2} \mid U_{d}^{2}$ then $v_{p}\left(f_{r}^{-}\left(U_{d}^{2}\right)\right)=1$, which is impossible because $f_{q}^{-}\left(U_{d}^{2}\right)=\square$.

We also prove:
3.2. If g, h are odd and $U_{g} U_{h}=\square$ then $g \equiv \pm h \bmod 8$ and $\operatorname{val}_{2}(g-h) \neq 2$.

Proof. We consider the sequence U modulo 8,

$$
U / 8: 12545610 \cdots
$$

So $U_{g} U_{h}=\square$ implies that $g \equiv \pm h \bmod 8$. It follows that $\operatorname{val}_{2}(g-h) \neq 2$.

We use particular arguments to determine certain square classes. For the next two results, see also Robbins [9]:
3.3. Let

$$
S=\{3 \square, 5 \square, 6 \square, 10 \square, 15 \square, 30 \square\} .
$$

Then $U_{n} \in S$ if and only if $n=3$, 4. In particular, the square class of $U_{3}=5$ is trivial.

Proof. $U_{1}, U_{2} \notin S, U_{3}=5$. Assume that there exists the smallest $n>3$ such that $U_{n} \in S$.

First case. $5 \mid U_{n}$ then $3 \mid n$. Let $n=3 m$, so $U_{n}=U_{m}\left(8 U_{m}^{2}+3(-1)^{m}\right)$. Let

$$
d=\operatorname{gcd}\left(U_{m}, 8 U_{m}^{2}+3(-1)^{m}\right),
$$

hence $d=1$ or 3 . If $d=1$ then $U_{m} \in\{\square, 2 \square\} \cup S$. If $U_{m}=\square, 2 \square$ then $m=1,7,2$ so $n=3,21,6$. But $U_{21}, U_{6} \notin S$ as verified by calculation (note that $4 \nmid 21$ so $\left.3 \nmid U_{21}\right)$. If $U_{m} \in S$ by minimality of n then $m=3$, so $n=9$, however $U_{9} \notin S$ as seen by calculation. If $d=3$ then

$$
\frac{U_{m}}{3} \cdot \frac{8 U_{m}^{2}+3(-1)^{m}}{3} \in S,
$$

hence $U_{m} \in\{\square, 2 \square\} \cup S$. We note that $3 \mid U_{m}$ implies that $4 \mid m$. If $U_{m} \in S$ by the minimality, $m \leq 3$, which is impossible; similarly $U_{m} \neq \square, 2 \square$.

Second case. $5 \nmid U_{m}$. Then $3 \mid U_{n}$ so $4 \mid n$. Let $n=2 k$ with k even. So $U_{k} V_{k} \in S$, with $e=\operatorname{gcd}\left(U_{k}, V_{k}\right)=2$, since k is even. Thus $\frac{U_{k}}{2} \frac{V_{k}}{2} \in S$
and therefore $U_{k} \in\{\square, 2 \square\} \cup S$. Since k is even and by the minimality of $n, k=2$ and $n=4$.
3.4. The square class of U_{5} is trivial, or equivalently if $U_{n}=29 \square$ then $n=5$.

Proof. Let n be minimal such that $U_{n}=29 \square$. By 3.1, n is odd. Since $29=U_{5}$ divides U_{n} then $5 \mid n$. Let $n=5 m$, so by $2.1 U_{n}=$ $U_{m} f_{5}\left(U_{m}^{2}\right)$ where $f_{5} \in \mathbb{Z}[x]$ with constant term ± 5. Then $d=\operatorname{gcd}$ $\left(U_{m}, f_{5}\left(U_{m}^{2}\right)\right)=1$ or 5 . If $d=1$ then $U_{m}=\square$ or $29 \square$. The second case is not possible. By the minimality of n. In the first case by Ljunggren's result, $m=1$ or 7 , so $n=5$ or 35 . But, we see by direct calculation that $U_{35} / 29 \neq \square$.

If $d=5$ then $3 \mid m$ so $3 \mid n$; let $n=3 k$ hence $U_{n}=U_{k}\left(8 U_{k}^{2}-3\right)$. Since k is odd then $3 \nmid U_{k}$ so the above factors are coprime. Thus $U_{k}=\square$ or $29 \square$. The second case is excluded by the minimality of n; by Ljunggren's result, $n=3$ or 21 . However, $5 \nmid 3,5 \nmid 21$, so $29 \nmid U_{3}, U_{21}$.

3.5. Let

$$
\begin{aligned}
S= & \{3 \square, 6 \square, 197 \square, 2 \times 197 \square, 5 \times 197 \square, 10 \times 197 \square, 3 \times 197 \square, \\
& 6 \times 197 \square, 15 \times 197 \square, 30 \times 197 \square\} .
\end{aligned}
$$

Then $U_{n} \in S$ if and only if $n=4$ or 9 . In particular, the square class of $U_{9}=5 \times 197$ is trivial.

Proof. If $n \leq 9$ and $U_{n} \in S$ then $n=4,9$. Let $n>9$ be the smallest index such that $U_{n} \in S$.

First case. $197 \mid U_{n}$. Then $9 \mid n$. Let $n=3 m$, so $U_{n}=U_{m}\left(8 U_{n}^{2}+3(-1)^{m}\right)$. Let

$$
d=\operatorname{gcd}\left(U_{m}, 8 U_{m}^{2}+3(-1)^{m}\right)
$$

so $d=1$ or 3 . If $d=1$ then $U_{m}=S \cup\{\square, 2 \square, 5 \square, 10 \square\}$. By minimality of n, if $U_{m} \in S$ then $m=9$ so $n=27$. However, $U_{27} \notin S$, which may be verified by direct calculation. If $U_{m} \in\{\square, 2 \square, 5 \square, 10 \square\}$ then by the previous results, $m=1,7,2,3$ hence $n=3,21,6,9$; only 21 is not excluded, but $U_{21} \notin S$, as seen by direct calculation. If $d=3$ then $3 \mid U_{m}$ so $4 \mid m$ and

$$
\frac{U_{m}}{3} \cdot \frac{8 U_{m}^{2}+3(-1)^{m}}{3} \in S
$$

so $U_{m} \in S \cup\{\square, 2 \square, 5 \square, 10 \square\}$. If $U_{m} \in S$ then by minimality of $n, m=9$, so $n=27$, however $U_{27} \notin S$, as seen by calculation. If $U_{m} \notin S$ then by the previous results $m=4$, so $n=12$, however $U_{12} \notin S$ (since $9 \nmid 12$ then $\left.197 \nmid U_{12}\right)$.

Second case. $197 \nmid U_{n}$. Then $U_{n} \in\{3 \square, 6 \square\}$ so $4 \mid n$. Let $n=2 k$ with k even. Then $U_{k} V_{k} \in\{3 \square, 6 \square\}$ with $\operatorname{gcd}\left(U_{k}, V_{k}\right)=2$. So $U_{k} \in$ $\{\square, 2 \square, 3 \square, 6 \square\}$. By the minimality of n and k even then $k=2, n=4$, which was found already as a possibility.

Concerning the sequence V, me may prove:
3.6. Let m, n be distinct integers such that $V_{m} V_{n}=\square$, let $d=$ $\operatorname{gcd}(m, n)=1$. Then:
a) $\frac{m}{d}, \frac{n}{d}$ are odd,
b) $\quad m \equiv n(\bmod 8)$,
c) for any primep $\mid V_{d}$, both $\operatorname{val}_{p}\left(\frac{m}{d}\right) \neq 1$ and $\operatorname{val}_{p}\left(\frac{n}{d}\right) \neq 1$

Proof. a) Let $V_{m} V_{n}=\square$ and $e=\operatorname{gcd}\left(V_{m}, V_{n}\right)$. If $e=2$ then $V_{m}=2 \square, V_{n}=2 \square$, so $m=n=1$, which is contrary to the hypothesis. Thus $e=V_{d}$, where $d=\operatorname{gcd}(m, n)$ and $\frac{m}{d}, \frac{n}{d}$ are odd.
b) If d is even then m, n are even, while if d is odd, then m, n are odd. Considering the sequence $\frac{1}{2} V$ modulo 4 , namely

$$
1,3,3,1,1,3,3,1 \ldots
$$

if $V_{m} V_{n}=\square$ and if m, n are odd then $m \equiv n(\bmod 4)$; similarly if m, n are even, then $m \equiv n(\bmod 4)$. Let $n=m+4 t$. If t is odd, from $V_{n}=V_{m+2 t} V_{2 t}-V_{m}$ then

$$
V_{n} V_{m}=-V_{m}^{2}\left(\bmod \frac{1}{2} V_{2}=3\right)
$$

so $\left(\frac{-1}{3}\right)=+1$, which is absurd. This shows that $m \equiv n(\bmod 8)$.
c) We have also $V_{m} V_{d}=\square$ and by 2.2

$$
V_{m}=V_{d} g_{m / d}^{ \pm}\left(V_{d}^{2}\right) \quad \text { where } g_{m / d}^{ \pm} \in \mathbb{Z}[x]
$$

$g_{m / d}^{ \pm}$have degree $\left(\frac{m}{d}-1\right) / 2$ and constant term $\pm m / d$. So $g_{m / d}^{ \pm}\left(V_{d}^{2}\right)=\square$. If p is any prime dividing V_{d}, if $\operatorname{val}_{p}\left(\frac{m}{d}\right)=1$ then $g_{m / 2}^{ \pm} \neq \square ;$ thus $\operatorname{val}_{p}\left(\frac{m}{p}\right) \neq 1$ and $\operatorname{val}_{p}\left(\frac{n}{p}\right) \neq 1$. We note in passing that either $\operatorname{val}_{p}\left(\frac{m}{d}\right)$ or $\operatorname{val}_{p}\left(\frac{n}{d}\right)$ is 0 .
3.7. The square class of $V_{3}=14$ is trivial.

Proof. Let $n>3$ be the smallest index such that $V_{n}=14 \square$. By considering the sequence V modulo 14 , we deduce that $n \equiv 3(\bmod 6)$ so $n=6 m-3$ and $V_{n}=V_{2 m-1}\left(V_{2 m-1}^{2}+3\right)$. Let $d=\operatorname{gcd}\left(V_{2 m-1}, V_{2 m-1}^{2}+3\right)$ so $d=1$ or 3 . But $3 \mid V_{k}$ if and only if $k \equiv 2(\bmod 4)$. Thus $d=1$. From $V_{n}=14 \square$ it follows that $V_{2 m-1}=14 \square$ (impossible by the minimal choice of n) or $V_{2 m-1}=7 \square$ (impossible since $4 \nmid V_{2 m-1}$), or $V_{2 m-1}=2 \square$ (this implies that $2 m-1=1$, so $m=1, n=3$, contrary to the assumption) or $V_{2 m-1}=\square$ (impossible).
3.8. The square class of $V_{5}=82$ is trivial.

Proof. By considering the sequence $\frac{1}{2} V$ modulo 41, we observe that $41 \mid V_{k}$ if and only if $k \equiv 5(\bmod 10)$. Thus if n is the smallest integer $n>5$, such that $V_{n}=82 \square$ we have $n=5 m$. Thus $V_{n}=V_{m} g_{5}^{ \pm}\left(V_{m}^{2}\right)$, where $g_{5}^{ \pm} \in \mathbb{Z}[x]$ with constant term ± 5. Thus $d=\operatorname{gcd}\left(V_{m}, g_{5}^{ \pm}\left(V_{m}^{2}\right)\right)$ is 1 or 5 . However, by considering the sequence $\frac{1}{2} V$ modulo 5 , we note that $5 \nmid V_{k}$ for all k. So $d=1$, hence $V_{m}=82 \square$, which implies that $m=5$ so $n=25$; or $V_{m}=41 \square$ (impossible since $4 \nmid V_{m}$), $V_{m}=2 \square$ (so $m=1$ and $n=5$, which is contrary to the assumption), or $V_{m}=\square$ (impossible). Finally, by direct numerical computation, we verify that $V_{25} \neq 82 \square$, concluding the proof that the square class of V_{5} is trivial.

We shall require the explicit determination of the square class of V_{7}.
3.9. The square class of $V_{7}=2 \times 239$ is trivial.

Proof. We assume that there exists the smallest $n>7$ such that

$$
V_{n} \in\{2 \times 239 \square, 2 \times 239 \times 7 \square\}
$$

If $V_{n}=478 \square$ then by $3.6 n \equiv 7(\bmod 8)$, so n is odd. Similarly, if $V_{n}=7 \times 478 \square$ since $7 \mid V_{n}$ then $n \equiv 3$ or $9(\bmod 12)$, so n is odd also in this case.

Since $239 \mid V_{n}$ then $7 \mid n$. Let $n=7 m$ hence m is odd and by 2.2 $V_{n}=V_{m} g_{7}^{ \pm}\left(V_{m}^{2}\right)$ where $g_{7}^{ \pm} \in \mathbb{Z}[x]$ with constant term ± 7. Let $d=$ $\operatorname{gcd}\left(V_{m}, g_{7}^{ \pm}\left(V_{n}^{2}\right)\right)$, so $d=1$ or 7 .

If $d=1$ then $V_{m} \in\{\square, 2 \square, 7 \square, 239 \square, 2 \times 7 \square, 2 \times 239 \square, 7 \times 239 \square, 2 \times$ $7 \times 239 \square\}$. First we note that $V_{m} \notin\{\square, 7 \square, 239 \square, 7 \times 239 \square\}$ because $4 \nmid V_{m}$. Also by minimality of $n, V_{m} \notin\{2 \times 239 \square, 2 \times 7 \times 239 \square\}$. If $V_{m}=14 \square$ by $3.7 m=3$ hence $n=21$, however $V_{21} \notin\{2 \times 239 \square, 2 \times 7 \times 239 \square\}$, as seen by direct calculation. Finally, if $V_{m}=2 \square$ then $m=1$ so $n=7$.

Now let $d=7$ so $7 \mid V_{m}$ and $V_{m} / 7$ is a factor of $2 \times 239 \square$ or $2 \times 7 \times 239 \square$, that is $V_{m} \in\{\square, 2 \square, 7 \square, 239 \square, 14 \square, 2 \times 239 \square, 7 \times 239 \square, 2 \times 7 \times 239 \square\}$, hence we are in the preceding situation, leading to $n=7$.

We shall also require the following result:
3.10. Let $1 \leq m<n$ and assume that $U_{m} U_{n}=2 \square$. Then $(m, n)=$ $(1,2)$ or $(2,7)$.

Proof. It is clear that $U_{1} U_{2}=2 \square, U_{2} U_{7}=2 \square$. Now let $0 \leq e \leq$ f, g, h odd and $U_{2^{e} g} U_{2^{f} h}=2 \square$. We have $\operatorname{val}_{2}\left(U_{2^{e} g}\right)=e, \operatorname{val}_{2}\left(U_{2^{f} h}\right)=f$ so $e+f$ is odd. So $0 \leq e<f$. If $e=0$ then

$$
U_{g} U_{2^{f} h}=U_{g} U_{h} V_{h} \cdots V_{2^{f-1} h}=2 \square .
$$

We have $\operatorname{gcd}\left(U_{g} U_{h}, V_{h} \cdots V_{2^{f-1} h}\right)=1$. Since f is odd then $V_{h} \cdots V_{2^{f-1} h}=$ $2 \square$. But $\operatorname{gcd}\left(V_{h} \cdots V_{2^{f-2} h}, V_{2^{f-1} h}\right)=2$ so $V_{2^{f-1} h}=2 \square$, thus $2^{f-1} h=1$ and $U_{2^{f} h}=U_{2}=2$. Thus $2 U_{g}=2 \square$ so $g=1$ or 7 .

We show that if $1 \leq e$ then $U_{2^{e} g} U_{2{ }^{f} h} \neq 2 \square$. Assuming the contrary, let $1<e$ be smallest such that $U_{2^{e} g} U_{2^{f} h}=2 \square$ (for g, h odd and $e<f$). Then

$$
U_{2^{e-1} g} V_{2^{e-1} g} U_{2^{f-1} h} V_{2^{f-1} h}=2 \square
$$

with

$$
\operatorname{gcd}\left(U_{2^{e-1} g} U_{2^{f-1} h}, V_{2^{e-1} g} V_{2^{f-1} h}\right)=1,2, \text { or } 4 .
$$

Then

$$
\left\{\begin{array} { l }
{ U _ { 2 ^ { e - 1 } g } U _ { 2 ^ { f - 1 } h } = \square } \\
{ V _ { 2 ^ { e - 1 } g } V _ { 2 ^ { f - 1 } h } = 2 \square , }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
=2 \square \\
=\square .
\end{array}\right.\right.
$$

Since $e+f$ is odd, the first case is impossible. In the second case, by the minimality of e, we have $e=1$ so $U_{g} U_{2^{f-1} h}=2 \square$. By the preceding proof
$2^{f-1} h=2$ so $f=e=1$, and this is a contradiction, proving the statement.

Now we shall determine when a product $U_{m} V_{n}$ is a square.
3.11. If m, n are non-zero integers and $U_{m} V_{n}=\square$ then $(m, n)=(2,1)$ or $(14,7)$.

Proof. Let $U_{m} V_{n}=\square$ and $e=\operatorname{gcd}\left(U_{m}, V_{n}\right)$ so $e=1,2$ or V_{d} where $d=\operatorname{gcd}(m, n)$ and m / d is even.

If $e=1$ then $U_{m}=\square$ and $V_{n}=\square$, which is impossible. If $e=2$ then $U_{m}=2 \square$ and $V_{n}=2 \square$ so $m=2, n=1$.

Let $e=V_{d}$ with m / d even, hence n / d is odd. Then m is even and we write $m=2^{f} g$ with $f \geq 1, g$ odd, hence $d=2^{l} h$ with $0 \leq l<f, h$ odd and h divides g. Now $U_{m} V_{d}=\square$ and we have

$$
U_{g} V_{g} V_{2 g} \cdots V_{2^{f-1} g} V_{2^{l} h}=\square
$$

Since $\operatorname{gcd}\left(U_{g}, V_{2^{i} g}\right)=1, \operatorname{gcd}\left(U_{g}, V_{2^{l} h}\right)=1$ then $U_{g}=\square$, hence $g=1$ or 7 , and $V_{g} \cdots V_{2^{f-1} g} V_{2^{l} h}=\square$. But $\operatorname{gcd}\left(V_{2^{i} g}, V_{2^{j} g}\right)=2($ for $i<j)$, $\operatorname{gcd}\left(V_{2^{i} g}, V_{2^{l} h}\right)=2($ for $i \neq l)$ and $\operatorname{gcd}\left(V_{2^{l} g}, V_{2^{l} h}\right)=V_{2^{l} h}$, then $V_{2^{l} g}, V_{2^{l} h}=$ \square or $2 \square$ and

$$
\frac{V_{g} \cdots V_{2^{f-1} g}}{V_{2^{l} g}}=\square \text { or } 2 \square .
$$

The second case cannot happen.

1) Let $f>1$. If $i \neq l, 0 \leq i \leq f-1$ then $V_{2^{i} g}=\square$ or $2 \square$, so $V_{2^{i} g}=2 \square$ hence $2^{i} g=1$, so $i=0, g=1, f=2, l=1, h=1$. Thus $m=4, d=2$ but $U_{4} V_{2}=12 \times 6 \neq \square$.
2) Let $f=1$ then $l=0$. If $g=h=1$ then $m=2$. If $U_{m} V_{n}=\square$ then $V_{n}=2 \square$ so $n=1$. If $g=7$ and $h=1$ then $V_{7} V_{1}=\square$ so $V_{7}=2 \square$, which is absurd. If $g=h=7$ then $m=14, d=7$ so n is odd. From $U_{14} V_{n}=U_{7} V_{7} V_{n}=\square, U_{7}=\square$ then $V_{7} V_{n}=\square$. By $3.9 n=7, m=14$.

Using the fundamental relation $V_{n}^{2}-8 U_{n}^{2}= \pm 4$ or equivalently $v^{2}-$ $2 U_{n}^{2}= \pm 1$ (where $v=\frac{1}{2} V_{n}$), we may apply the above result to elliptic curves. Thus we obtain: The only solutions in positive integers of the following equations are the ones indicated:

$$
X^{2}-2 Y^{4}=1 \quad \text { No solution }
$$

$$
\begin{aligned}
X^{2}-2 Y^{4} & =-1 & & (x, y)=(1,1),(239,7) \\
X^{2}-4 Y^{4} & =1 & & (x, y)=(3,2) \\
X^{2}-4 Y^{4} & =-1 & & \text { No solution } \\
X^{2}-50 Y^{4} & =1 & & \text { No solution } \\
X^{2}-50 Y^{4} & =-1 & & (x, y)=(7,1) \\
X^{2}-288 Y^{4} & =1 & & (x, y)=(17,1) \\
X^{2}-288 Y^{4} & =-1 & & \text { No solution } \\
X^{2}-1682 Y^{4} & =1 & & \text { No solution } \\
X^{2}-1682 Y^{4} & =-1 & & (x, y)=(41,1) \\
X^{2}-9800 Y^{4} & =1 & & (x, y)=(99,1) \\
X^{2}-9800 Y^{4} & =-1 & & \text { No solution }
\end{aligned}
$$

and also

$$
\begin{aligned}
X^{4}-2 Y^{2} & =1 & & \text { No solution } \\
X^{4}-2 Y^{2} & =-1 & & (x, y)=(1,1) \\
9 X^{4}-2 Y^{2} & =1 & & (x, y)=(1,2) \text { is the only known solution } \\
9 X^{4}-2 Y^{2} & =-1 & & \text { No solution } \\
49 X^{4}-2 Y^{2} & =1 & & \text { No solution } \\
49 X^{4}-2 Y^{2} & =-1 & & (x, y)=(1,5) \\
289 X^{4}-2 Y^{2} & =1 & & (x, y)=(1,12) \text { is the only known solution } \\
289 X^{4}-2 Y^{2} & =-1 & & \text { No solution } \\
1681 X^{4}-2 Y^{2} & =1 & & \text { No solution } \\
1681 X^{4}-2 Y^{2} & =-1 & & (x, y)=(1,29) \\
9801 X^{4}-2 Y^{2} & =1 & & (x, y)=(1,70) \text { is the only known solution } \\
9801 X^{4}-2 Y^{2} & =-1 & & \text { No solution }
\end{aligned}
$$

$$
\begin{array}{ll}
57121 X^{4}-2 Y^{2}=1 & \text { No solution } \\
57121 X^{4}-2 Y^{2}=-1 & (x, y)=(1,169)
\end{array}
$$

4. Sums or differences which are squares

We shall determine, wherever possible, the indices s, k such that the expressions below are squares:

$$
\begin{aligned}
U_{s+2 k} \pm(-1)^{k} U_{s} & = \\
V_{s+2 k} \pm(-1)^{k} V_{s} & =
\end{aligned}
$$

4.1. Let $s \geq 1, k \geq 1$. Then

$$
\begin{equation*}
U_{s+2 k}-(-1)^{k} U_{s} \neq \square . \tag{14}
\end{equation*}
$$

Proof. Let $s \geq 1, k \geq 1$ be such that (14) does not hold. Then

$$
\square=U_{s+2 k}-(-1)^{k} U_{s}=U_{k} V_{s+k}
$$

By $3.11(k, s+k)=(2,1)$ or $(14,7)$ which is impossible.
4.2. Let $s \geq 1, k \geq 1$. Then

$$
\begin{equation*}
U_{s+2 k}+(-1)^{k} U_{s}= \tag{15}
\end{equation*}
$$

if and only if $(s, k)=(1,1)$, or $(7,7)$.
Proof. Let $s \geq 1, k \geq 1$ be such that (15) holds. Then

$$
\square=U_{s+2 k}+(-1)^{k} U_{s}=U_{s+k} V_{k}
$$

It follows from 3.11 that $(s+k, k)=(2,1)$ or $(14,7)$ hence $(s, k)=(1,1)$ or $(7,7)$. Both solutions satisfy (15).

As particular cases of $4.1,4.2$, with $s=1,2,3$, we deduce: If m is odd then $U_{m} \neq \square \pm 1$ (except $\left.U_{3}=\square+1\right)$ and $U_{m} \neq \square \pm 5$. If m is even, then $U_{m} \neq \square \pm 2$.
4.3. Let $s \geq 1, k \geq 1$. Then

$$
\begin{equation*}
V_{s+2 k}-(-1)^{k} V_{s}=\square \tag{16}
\end{equation*}
$$

if and only if $(s, k)=(1,1),(5,2)$.
Proof. It is clear that if $(s, k)=(1,1)$ or $(5,2)$ then (16) holds. Conversely if $\square=V_{s+2 k}-(-1)^{k} V_{s}=8 U_{s+k} U_{k}$, hence $U_{s+k} U_{k}=2 \square$. By 3.10, $(k, s+k)=(1,2)$ or $(2,7)$, hence $(s, k)=(1,1)$ or $(5,2)$.
4.4. Let $s \geq 1, k \geq 1$ be integers such that

$$
\begin{equation*}
V_{s+2 k}+(-1)^{k} V_{s}=\square \tag{17}
\end{equation*}
$$

Then the square classes of V_{k} and V_{s+k} are not trivial and $8 \mid s$. Moreover, if $d=\operatorname{gcd}(s, k)$ then k / d is odd, s / d is even. Also, if p is any prime dividing V_{d} then $\operatorname{val}_{p}\left(\frac{k}{d}\right) \neq 1$ and $\operatorname{val}_{p}\left(\frac{s+k}{d}\right) \neq 1$.

Proof. If (17) holds then $\square=V_{s+2 k}+(-1)^{k} V_{s}=V_{k} V_{s+k}$ so the square classes of V_{k}, V_{s+k} are not trivial and by 3.6 we deduce that $8 \mid s$ and that if $d=\operatorname{gcd}(s, k)=\operatorname{gcd}(s+k, k)$ then $k / d,(s+d) / d$ are odd. So s / d is even. Moreover if $p \mid V_{d}$ then $\operatorname{val}_{p}\left(\frac{k}{d}\right) \neq 1, \operatorname{val}_{p}\left(\frac{s+k}{d}\right) \neq 1$.

Combining 4.3 and 4.4 we deduce as particular cases $(s=1,2,3)$: If m is odd then $V_{m} \neq \square \pm 2$, (except $V_{3}=\square-2$) and also $V_{m} \neq \square \pm 14$. If m is even then $V_{m} \neq \square \pm 6$.

5. Pell sequences and cubes

In this section we treat problems similar to the ones of the preceding sections, but concerned with cubes. Like \square designated an arbitrary square, we shall denote an arbitrary cube by the letter C. In this connection we quote the following fundamental result of Ретнő [6]:
5.1. If U_{n} is a cube, then $n=1$.

The proof involves Baker's bounds for linear forms in logarithms.
As it was indicated in $2.5, V_{m}$ is not a cube, for all n.
We shall need:
5.2. If $U_{n}=2 C$ or $4 C$ then $n=2$.

Proof. Assume that there exists the smallest $n>2$ such that $U_{n} \in\{2 C, 4 C\}$. Then n is even, $n=2 m$, and $U_{m} V_{m} \in\{2 C, 4 C\}$. Let $\operatorname{gcd}\left(U_{m}, V_{m}\right)=d$, so $d=1$ or 2 . If $d=1$ then $U_{m} \in\{2 C, 4 C\}$ with $m<n$, so $m=2$ and $n=4$, but $U_{4}=12 \notin\{2 C, 4 C\}$. If $d=2$ then $\frac{U_{m}}{2} \frac{V_{m}}{2} \in\{2 C, 4 C\}$, so $U_{m} \in\{C, 2 C, 4 C\}$; since $U_{m} \neq C, m<n$. Then $m=2$, but $U_{4} \neq 2 C, 4 C$.
5.3. If $U_{n} \in\{3 C, 6 C, 12 C\}$ then $n=4$.

Proof. Assume that there exists the smallest $n>4$ such that

$$
U_{n} \in\{3 C, 6 C, 12 C\} .
$$

Since $3 \mid U_{n}$ then $4 \mid n$ so $n=4 m$ and

$$
U_{2 m} V_{2 m} \in\{3 C, 6 C, 12 C\} .
$$

We have $\operatorname{gcd}\left(U_{2 m}, V_{2 m}\right)=2$, so

$$
\frac{U_{2 m}}{2} \frac{V_{2 m}}{2} \in\{3 C, 6 C, 12 C\} .
$$

Therefore, $U_{\frac{2 m}{2}} \in\{C, 2 C, 3 C, 4 C, 6 C, 12 C\}$ and $U_{2 m} \in\{C, 2 C, 3 C, 4 C, 6 C$, $12 C\}$. By the minimality of n and 5.2 this implies that $2 m=2$ so $n=4$.
5.4. $U_{n} \notin\{9 C, 18 C, 36 C\}$ for all n.

Proof. Let n be the smallest integer such that $U_{n} \in\{9 C, 18 C, 36 C\}$. Since $3 \mid U_{n}$ then $4 \mid n$. Let $n=4 m$ so $U_{2 m} V_{2 m} \in\{9 C, 18 C, 36 C\}$. Since $\operatorname{gcd}\left(U_{2 m}, V_{2 m}\right)=2$ then $\frac{U_{2 m}}{2} \frac{V_{2 m}}{2} \in\{9 C, 18 C, 36 C\}$. So $U_{2 m} \in$ $\{C, 2 C, 4 C, 9 C, 18 C, 36 C\}$. By the minimality of n and (5.2) $U_{2 m}=2 C$ so $2 m=2, n=4$. However, $U_{4}=12 \neq 9 C, 18 C, 36 C$.

As a further example of the method, we show:
5.5. If $U_{n} \in\{5 C, 10 C, 20 C, 15 C, 30 C, 60 C, 45 C, 90 C, 180 C\}$ then $n=3$.

Proof. Let $n>3$ be the smallest index such that

$$
U_{n} \in\{5 C, 10 C, 20 C, 15 C, 30 C, 60 C, 45 C, 90 C, 180 C\} .
$$

Since $5 \mid U_{n}$ then $3 \mid n$. Let $n=3 m$, so $U_{n}=U_{m}\left(8 U_{m}^{2}+3(-1)^{m}\right)$ with $d=\operatorname{gcd}\left(U_{m}, 8 U_{m}+3(-1)^{m}\right)=1$ or 3 .

If $d=1$ then $U_{m} \in\{C, 5 C, 2 C, 10 C, 4 C, 20 C, 3 C, 15 C, 6 C, 30 C, 12 C$, $60 C, 9 C, 45 C, 18 C, 90 C, 36 C, 180 C\}$. By the previous results and the minimality of n, we have $m=2,3$ or 4 . Hence $n=6,9$ or 12 ; however, U_{6}, U_{9}, U_{12} are not of the form under consideration.

If $d=3$ then

$$
\frac{U_{m}}{3} \cdot \frac{8 U_{m}^{2}+3(-1)^{m}}{3} \in\{15 C, 30 C, 60 C, 45 C, 90 C, 180 C, 5 C, 10 C, 20 C\}
$$

so $\frac{U_{m}}{3} \in\{C, 3 C, 5 C, 15 C, 2 C, 6 C, 10 C, 30 C, 4 C, 12 C, 20 C, 60 C, 9 C, 45 C$, $18 C, 90 C, 36 C, 180 C\}$ and $U_{n} \in\{3 C, 9 C, 15 C, 45 C, 6 C, 18 C, 30 C, 90 C, 12 C$, $36 C, 60 C, 180 C, C, 5 C, 2 C, 10 C, 4 C, 20 C\}$. By the preceding results and the minimality of n, this is only possible when $m=2$, so $n=6$. However, $U_{6}=70$ is not of the required form.

The above results may be translated in terms of elliptic curves, by using the fundamental relation

$$
V_{n}^{2}-8 U_{n}^{2}= \pm 4
$$

hence

$$
v_{n}^{2}-2 U_{n}^{2}= \pm 1
$$

where $v_{n}=\frac{1}{2} V_{n}$.
Thus for example 5.1 and 5.2:
5.1'. The equation $x^{2}-2 y^{6}= \pm 1$ has no solutions in integers.
5.2'. The only solution in positive integers of $x^{2}-8 y^{6}=1$ is $(x, y)=(3,1)$. The equations $x^{2}-8 y^{6}=-1$, and $x^{2}-32 y^{6}= \pm 1$ have no solution in integers.

We shall require the following fact:
5.6. Let $m \geq 1, n \geq 1$ with $\operatorname{gcd}(m, n)=1$ or 2 . Then $U_{m} V_{n} \neq C$.

Proof. Assume that $U_{m} V_{n}=C$ and let $e=\operatorname{gcd}\left(U_{m}, V_{n}\right)$. If $e=1$ then $U_{m}=C, V_{n}=C$ which is impossible. If $e=2$ then $\frac{U_{m}}{2} \frac{V_{n}}{2}=2 C$ so

$$
\left\{\begin{array} { l }
{ U _ { m } / 2 = 2 C } \\
{ V _ { n } / 2 = C }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
=C \\
=2 C
\end{array}\right.\right.
$$

hence

$$
\left\{\begin{array} { l }
{ U _ { m } = 4 C } \\
{ V _ { n } = 2 C }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
=2 C \\
=4 C
\end{array}\right.\right.
$$

By 5.2 the first case is not possible, while the second case is impossible since $4 \nmid V_{n}$. Let $d=\operatorname{gcd}(m, n)$ and assume that m / d is even, so n / d is odd. Then $V_{d}=\operatorname{gcd}\left(U_{m}, V_{n}\right)$. If $d=1$ then $V_{d}=2$ and this case was already considered. If $d=2$ then $V_{2}=6$ hence $\frac{U_{m}}{6} \frac{V_{n}}{6}=6 C$; so

$$
\left\{\begin{array} { l }
{ U _ { m } / 6 = 6 C } \\
{ V _ { n } / 6 = C }
\end{array} \quad \text { or } \left\{\begin{array} { l }
{ = 3 C } \\
{ = 2 C }
\end{array} \quad \text { or } \left\{\begin{array} { l }
{ = 2 C } \\
{ = 3 C }
\end{array} \quad \text { or } \left\{\begin{array}{l}
=C \\
=6 C
\end{array}\right.\right.\right.\right.
$$

hence

$$
\left\{\begin{array} { l }
{ U _ { m } = 3 6 C } \\
{ V _ { n } = 6 C }
\end{array} \quad \text { or } \left\{\begin{array} { l }
{ = 1 8 C } \\
{ = 1 2 C }
\end{array} \text { or } \left\{\begin{array} { l }
{ = 1 2 C } \\
{ = 1 8 C }
\end{array} \text { or } \left\{\begin{array}{l}
=6 C \\
=36 C
\end{array} .\right.\right.\right.\right.
$$

Since $4 \nmid V_{n}$ then cases 2,4 are impossible. By 5.4 the first case is impossible. In case 3 , by $5.3 \mathrm{~m}=4$ so $C=4 V_{n}=4 \times 18 C=9 C$ which is absurd.

6. Sums or differences which are cubes

As in $\S 4$, we shall consider expressions

$$
U_{s+2 k} \pm(-1)^{k} U_{s} \quad \text { and } \quad V_{s+2 k} \pm(-1)^{k} V_{s}
$$

and determine indices s, k for which the above expressions are cubes.
6.1. Let $k \geq 1, s \geq 1$ be integers with $d=\operatorname{gcd}(s, k)=1$ or 2 . Then $U_{s+2 k}-(-1)^{k} U_{s} \neq C$.

Proof. If $C=U_{s+2 k}+(-1)^{k} U_{s}=U_{k} V_{s+k}$ since $\operatorname{gcd}(s+k, k)=1$ or 2, it follows from 5.6 that this is impossible.
6.2. Let $s \geq 1, k \geq 1$ be integers such that $d=\operatorname{gcd}(s, k)=1$ or 2 . Then $U_{s+2 k}+(-1)^{k} U_{s} \neq C$

Proof. If $C=U_{s+2 k}+(-1)^{k} U_{s}=U_{s+k} V_{k}$ since $d=\operatorname{gcd}(s+k, k)=1$ or 2 , thus impossible by 5.6.

Now we prove similar results for the sequence V.
6.3. Let $s \geq 1, k \geq 1$ be integers such that $d=\operatorname{gcd}(s, k)=1$ or 2 . Then $V_{s+2 k}-(-1)^{k} V_{s} \neq C$.

Proof. Let $C=V_{s+2 k}-(-1)^{k} V_{s}=8 U_{s+k} U_{k}$ and let $d=\operatorname{gcd}(s+k, k)$ so $U_{d}=\operatorname{gcd}\left(U_{s+k}, U_{k}\right)$. If $d=1$ then $U_{s+k}=C, U_{k}=C$, which is impossible. If $d=2$, so $U_{2}=2$, hence

$$
\left\{\begin{array} { l }
{ U _ { s + k } / 2 = 2 C } \\
{ U _ { k } / 2 = C . }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
=C \\
=2 C
\end{array} .\right.\right.
$$

Both cases are impossible by 5.2.
6.4. If $s \geq 1, k \geq 1$ then $V_{s+2 k}+(-1)^{k} V_{s} \neq C$.

Proof. Assume that $C=V_{s+2 k}+(-1)^{k} V_{s}=V_{s+k} V_{k}$. Let $e=$ $\operatorname{gcd}\left(V_{s+k}, V_{k}\right)$. If $e=2$ then

$$
\left\{\begin{array} { l }
{ V _ { s + k } / 2 = 2 C } \\
{ V _ { k } / 2 = C }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
=C \\
=2 C
\end{array} .\right.\right.
$$

Both cases are impossible, since $4 \nmid V_{n}$ for every $n \geq 1$. Let $d=\operatorname{gcd}(s+k, k)$ and $\frac{s+k}{d}, \frac{k}{d}$ odd. So $V_{d}=\operatorname{gcd}\left(V_{s+k}, V_{k}\right)$. Then

$$
\left\{\begin{array} { l }
{ V _ { s + k } / V _ { d } = 2 a C } \\
{ V _ { k } / V _ { d } = b C }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
=a C \\
=2 b C
\end{array}\right.\right.
$$

where $a b=\frac{1}{2} V_{d}$. Then again both cases are impossible, because $4 \nmid V_{n}$ for all $n \geq 1$.

As special cases of the above results, we note:

$$
\begin{array}{ll}
U_{n} \neq C \pm 1 & \text { for all odd } n, \\
U_{n} \neq C \pm 2 & \text { for all even } n, \\
V_{n} \neq C \pm 2 & \text { for all odd } n, \\
V_{n} \neq C \pm 6 & \text { for all even } n \geq 1 .
\end{array}
$$

For the next result we require:
6.5. Let $x \neq 0, y>0$ be integers.
a) If $x^{3}=y^{2}-1$ then $(x, y)=(2,3)$.
b) $x^{3} \neq y^{2}+1$.
c) If $x^{3}=y^{2}-3$ then $(x, y)=(1,2)$.
d) $x^{3} \neq y^{2}+3$.
e) $x^{3} \neq y^{2}-4$.
f) If $x^{3}=y^{2}+4$ then $(x, y)=(2,2),(5,11)$.

See [1], [4], and [6].
6.6. If n is even then $V_{n} \neq C \pm 1$, except $n=0, C=1$.

Proof. Let $V_{n}=C+1$ with $n=2 m$. Then $V_{m}^{2}-2(-1)^{m}=C+1$. If m is even $V_{m}^{2}=C+3$. So $V_{m}=2$, which is absurd. If m is odd then $V_{m}^{2}=C-1$ which is impossible.

If $V_{n}=C-1$ then $V_{m}^{2}-2(-1)^{m}=C-1$. If m is even then $V_{m}^{2}=C+1$ so $V_{m}=3$, which is absurd. Finally, if m is odd, then $V_{m}^{2}=C-3$ which is impossible.
6.7. If $V_{2 n}=C \pm 2$ then $n=1$.

Proof. If $V_{n}^{2}-2(-1)^{m}=V_{2 n}=C+2$ and n is even then $V_{n}^{2}=C+4$ which is impossible. If n is odd, $V_{n}^{2}=C$ so $V_{n}=C$ which is again impossible.

If $V_{n}^{2}-2(-1)^{n}=V_{2 n}=C-2$ and n is even, then $V_{n}^{2}=C$ so $V_{n}=C$, which is not true.

If n is odd, then $V_{n}^{2}=C-4$ so $V_{n}=2$, hence $n=1$.

References

[1] M. Lal, M. F. Jones and W. J. Blundon, Numerical solutions of the diophantine equation $y^{2}-x^{3}=k$, Math. Comp. 20 (1966), 322-325.
[2] W. Luunggren, Zur Theorie der Gleichung $x^{2}+1=D y^{4}$, Avh. Norsk. Vid. Akad. Oslo 1 no. 5 (1942), 1-27.
[3] W. Ljungaren, Über die Gleichung $x^{4}-D y^{2}=1$, Arch. Mat. Naturvid. 45 no. 5 (1942), 61-70.
[4] W. L. McDaniel and P. Ribenboim, The square terms in Lucas sequences, J. Number Theory 58 (1996), 104-123.
[5] L. J. Mordell, Diophantine Equations, Academic Press, London, 1969.
[6] A. Ретнő, The Pell sequence contains only trivial powers, Coll. Mat. Soc. János Bolyai 60 (Sets, Graphs, and Numbers), Budapest, 1991, 561-568.
[7] P. Ribenboim, The Fibonacci Numbers and the Arctic Ocean, Proceedings of the 2nd Gauss Symposium, Conference A: Mathematics and Theoretical Physics (Munich, 1993), 41-83.
[8] P. Ribenboim and W.L. McDaniel, Square classes of Lucas sequences, Port. Math. 48 (1991), 469-473.
[9] N. Robbins, On Pell numbers of the form $p x^{2}$, where p is prime, Fibonacci $Q .22$ no. 4 (1984), 340-348.
[10] W. Sierpiński, Elementary Theory of Numbers (A. Schinzel, ed.), North-Holland, Amsterdam, 1987.

PAULO RIBENBOIM
DEPARTMENT OF MATHEMATICS AND STATISTICS
QUEEN'S UNIVERSITY
Kingston, ONTARIO K7L 3N6
CANADA
(Received September 8, 1997; revised March 12, 1998)

