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On the generalized Einstein – Yang Mills equations

By VLADIMIR BALAN (Romania)

Abstract. Let ξ = (E, p, M) be a vector bundle, with basis M — a real dif-
ferentiable manifold of dimension n, and fiber F of dimension m. Considering the
automorphisms of ξ as gauge transformations, and the set of gauge fields {Na

i (x, y),

Li
jk(x, y), La

bk(x, y), Ci
ja(x, y), Ca

bc(x, y), gij(x, y), hab(x, y)} given by a nonlinear con-

nection, a gauge linear d-connection [9,11], and a pair of metric gauge tensor fields in
local adapted coordinates, the author obtains the form of the generalized Einstein–Yang
Mills equations for the general case and for the quasi-metric h- and v-symmetrical cases.
These results generalise the ones obtained by G.S. Asanov in [2,3], in a natural man-
ner, basically using the formalism, notations and mathematical theory of distinguished
geometrical object fields introduced by R. Miron [10, 11].

Let {Na
i (x, y)} be the coefficients of a nonlinear connection on the

vector bundle ξ = (E, p, M) in local coordinates (xi, ya), i = 1, n, a = 1, m
[8,11].

Definition 1. A local adapted basis in X(E) is the set of vector fields
{δi, ∂̇a}, i = 1, n, a = 1,m, where

(1) δi =
∂

∂xi
−Na

i

∂

∂ya
, ∂̇a =

∂

∂ya
.

Definition 2. A linear d-connection on E is a linear connection ∇ that
preserves the horizontal and the vertical distributions locally generated by
{δi, i = 1, n} and {∂̇a, a = 1, m} respectively; in the local adapted basis
(1) its coefficients are given by

{Li
jk(x, y), La

bk(x, y), Ci
ja(x, y), Ca

bc(x, y)}
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where

(2)

{
∇δj

δi = Lk
ijδk, ∇δj

∂̇a = Lb
aj ∂̇b

∇∂̇a
δj = Ci

jaδi, ∇∂̇b
∂̇a = Cd

ab∂̇d

Definition 3. The h- and v-covariant derivation laws associated to the
linear d-connection (2) are defined by

(3)

{
Diw

ma
nb = δiw

ma
nb + Lm

kiw
ka
nb − Lk

niw
ma
kb + La

diw
md
nb − Ld

biw
ma
nd

Dcw
ma
nb = ∂̇cw

ma
nb + Cm

kcw
ka
nb − Ck

ncw
ma
kb + Ca

dcw
md
nb − Cd

bcw
ma
nd .

Proposition 1. The transformation rules for the coefficients of the
linear d-connection are

(4)

∂̄mBk
j −Bk

i L̄i
jm(x̄, ȳ) + Bi

jB
n
mLk

in(x, y) = 0

∂̄mMa
b −Ma

c L̄c
bm(x̄, ȳ) + M c

b Bn
mLa

cn(x, y) = 0

Bi
nC̄n

ma(x̄, ȳ) = M c
aBj

mCi
jc(x, y)

Ma
d C̄d

bc(x̄, ȳ) = Md
b Mf

c Ca
df (x, y)

where the coordinate transformations on E have the form

(5)
xi = xi(x̄), det(∂xi/∂x̄j) 6= 0

ya = Ma
b (x̄)ȳb, det(Ma

b (x̄)) 6= 0

and we used the notations

Bi
j = ∂̄jx

i, ∂̄j =
∂

∂x̄j

Definition 4. A gauge transformation is a automorphism of E [7,2,3],
locally given by

(6)
xi = Xi(x̃), det(∂̃jX

i) 6= 0

ya = Y a(x̃, ỹ), det(Y a
b ) 6= 0,

˙̃
∂cY

a
b = 0

where we denoted

Y a
b = ˙̃

∂bY
a,

˙̃
∂b =

∂

∂ỹb
, ∂̃j =

∂

∂x̃j

Definition 5. A (generalized [2,3]) gauge tensor field is a field on E,
which obeys tensorial rules of transformation relative to (5) and (6); e.g.{

wia
jb

}
obeys

(7)
Bi

kMa
c w̄kc

jb = B`
jM

d
b wia

`d

Xi
kY a

c w̃kc
jb = X`

jY
d
b wia

`d, where Xi
k = ∂̃kXi.
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Definition 6. A gauge covariant derivation (h-resp. v-) is given by the
h- and v-derivation laws in definition 3, which preserves the gauge tensorial
character relative to (5), (6).

Proposition 2. The coefficients of the h- and v-gauge covariant deri-
vations have with respect to (6) the transformation laws

(8)

∂̃mXk
j −Xk

i L̃i
jm(x̃, ỹ) + Xi

jX
n
mLk

in(x, y) = 0

∂̃mY a
b − Y a

c L̃c
bm(x̃, ỹ) + Y c

b Xn
mLa

cn(x, y) = 0

Xi
nC̃n

ka(x̃, ỹ) = Y c
a Xj

kCi
jc(x, y)

Y a
d C̃d

bc(x̃, ỹ) = Y d
b Y f

c Ca
df (x, y)

Remarks.
1. {Ci

ja} and {Ca
bc} are gauge tensor fields.

2. The coefficients {Li
jk, La

bk, Ci
ja, Ca

bc} of the h- and v-gauge covariant
derivations (3) are in fact the coefficients of a linear d-connection which
satisfies the supplementary rules (8) (gauge linear d-connection).

Proposition 3. The torsion and the curvature gauge tensor fields of
a gauge linear d-connection are given by [11]

(9)
T i

jk = Li
[jk], Ra

jk = −δ[jN
a
k], P i

jc = Ci
jc

P a
jb = ∂̇bN

a
j − La

bj , Sa
bc = Ca

[bc]

and respectively

(9’)

Ri
jk` = δ[`L

i
jk] + Lh

j[kLi
h`] + Ci

jaRa
k`,

Ra
bk` = δ[`L

a
bk] + Lc

b[kLa
c`] + Ca

bcR
c
k`,

P i
jkc = ∂̇cL

i
jk −DkCi

jc + Ci
jbP

b
kc,

P a
bkc = ∂̇cL

a
bk −DkCa

bc + Ca
bdP

d
kc,

Si
jbc = ∂̇[cC

i
jb] + Ch

j[bC
i
hc]

Sa
bcd = ∂̇[cC

a
bd] + Ce

b[cC
a
ed]

where we used the notation for [i . . . j]:

Lh
k[iL

s
hj] = Lh

kiL
s
hj − Lh

kjL
s
hi

Proposition 4. The following mixed Lagrangian is invariant under
(5) and (6) (i.e. it is a scalar gauge field)

(10) L =
∑

i∈I

ni · Li, ni ∈ R, i ∈ I = {1, 5, 11, 16, 21, 22}
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where

(11)

L1 = T i
jkT jk

i , L2 = Ra
jkRjk

a , L3 = P i
jcP

jc
i , L4 = P a

jbP
jb
a

L5 = Sa
bcS

bc
a , L21 = Ri

jklR
jkl
i , L22 = Sa

bcdS
bcd
a ,

L11 = Rij
ij , L12 = Ra

bk`R
bk`
a , L13 = P i

jkcP
jkc
i

L14 = P a
bkcP

bkc
a , L15 = Si

jbcS
jbc
i , L16 = Sab

ab

The proof is computational.

Remark. The Lagrangian L contains, relative to [2], the supplemen-
tary terms n3L3 and n15L15, and the terms n11L11 and n13L13 are altered
(are more general) since the present context doesn’t impose the restrictive
condition Ci

ja = 0.
The raising/lowering of the corresponding indices in (11) were per-

formed via the gauge metric tensor fields {gij(x, y)} and {hab(x, y)} [3,2].
Then, introducing the Lagrangian density

(12) L = LG

where G = | det(gij)|1/2 · |det(hab)|1/2, we notice that it depends on the
gauge fields

(13) φ ∈ {Na
i , Li

jk, La
bk, Ci

ja, Ca
bc, gij , hab}

and their derivatives; considering the variational principle [1,3]

δ

∫
Ldxndym = 0

one can derive the extremum condition of vanishing the Euler–Lagrange
derivatives

δL
δφ

≡ ∂

∂xj

(
∂L

∂(∂jφ)

)
+

∂

∂ya

(
∂L

∂(∂̇aφ)

)
− ∂L

∂φ
= 0.

Theorem 1. The generalized Einstein–Yang Mills equations associ-
ated to the Lagrangian (10) for the set of arguments (13) are

δL

δNa
k

= −4n2(D∗
` R`k

a + P c
a`R

`k
c +

1
2
T k

n`R
n`
a )−(15.1)

−2n4(D∗
bP bk

a + Cc
abP

bk
c + P k

nbP
nb
a )−

−4n21[D∗
` V `k

a + P c
a`V

`k
c +

1
2
T k

n`V
n`
a −Rj`k

i (P i
j`a + D`P

i
ja − P i

jbP
b
`a)]−

−n11[D∗
` U `k

a + P c
a`U

`k
c +

1
2
T k

n`U
n`
a − w

j[lk]
i (P i

j`a + D`P
i
ja − P i

jbP
b
`a)]+



On the generalized Einstein – Yang Mills equations 277

+4n12[P c
b`aRb`k

c + Cc
ba ·

1
4
δL12/δLc

bk]+

+2n13[Si
jacP

jkc
i + (D∗

cP jkc
i − P k

ncP
jnc
i )P i

ja]+

+2n14[Sd
bacP

bkc
d + (D∗

cP bkc
d − P k

ncP
bnc
d )Cd

ba] = 0,

δL

δLi
jk

= −4n1T
jk
i + 4n21(D∗

` Rjk`
i − 1

2
T k

n`R
jn`
i )(15.2)

+n11(D∗
` w

j[k`]
i − 1

2
T k

n`w
j[n`]
i ) + 2n13(D∗

cP jkc
i − P k

ncP
jnc
i ) = 0,

(15.3)

δL

δLa
bk

=− 2n4P
bk
a + 4n12(D∗

` Rbk`
a − 1

2
T k

n`R
bn`
a )

+ 2n14(D∗
cP bkc

a − P k
ncP

bnc
a ) = 0,

(15.4)

δL

δCi
ja

=− 2n3P
ja
i + 2n21R

a
k`R

jk`
i − n11R

ja
i−

− 2n13(D∗
` P j`a

i − P a
b`P

j`b
i )−

− 4n15(D∗
dSjda

i − 1
2
Sa

bdS
jdb
i ) = 0,

(15.5)
δL

δCa
bc

= −4n5S
bc
a + 2n12R

c
k`R

bk`
a + 4n22(D∗

dSbcd
a − 1

2
Sc

edS
bed
a )+

+ n16(D∗
dwb[cd]

a − 1
2
Sc

edw
b[ed]
a )− 2n14(D∗

` P b`c
a − P c

d`P
b`d
a ) = 0,

δL

δgij
= − ∂L

∂gij
− 1

2
gijL = 0,(15.6)

δL

δhab
= − ∂L

∂hab
− 1

2
habL = 0,(15.7 )

where we denoted



D∗
` = D` + V`, V` =

D`G

G
+ Tn

n` + P d
d`

D∗
c = Dc + Vc, Vc =

DcG

G
+ Pn

nc + Sd
dc

V k`
a = Ci

jaRjk`
i , Uk`

a = Ci
jaw

j[k`]
i

wjk`
i = gjkδ`

i , wbcd
a = hbcδd

a;
δL

δφ
≡ 1

G

δL
δφ

.
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Hint. The Euler–Lagrange derivatives for the elementary Lagrangians
(11) computed using the relations

DkG = δkG−G(Ln
nk + La

ak)

DaG = ∂̇aG−G(Cn
na + Cd

da).

give by addition the equations above.
Remark. The underscored terms are new with respect to [2], and the

equations in [1,2] can be viewed as a particular case of (15.1)–(15.7). The
notations of tensor fields and vertical indices are changed from those used
by G.S. Asanov to the corresponding ones used in the papers [8,9,11] in
the theory of Finsler spaces. Also, the fact that in [1,2] the coefficients of
the nonlinear connection considered in (1) are taken with opposite sign,
induce related differences of sign in (15.1)–(15.7).

In the following we consider the quasi-metric case, i.e. the situation
in which the gauge metric tensor fields obey

(16) Dkgij = 0, Dkhab = 0, Dchab = 0,

and impose for the gauge linear d-connection (2) to be h- and v-symmetri-
cal, i.e. T i

jk = 0 and sa
bc = 0. Then we can state the following

Theorem 2. The generalized Einstein–Yang Mills equations in the
quasi-metric h- and v-symmetrical case, for the generalized gauge Lagran-
gian [2]

(17)
L = n1R

a
jkRjk

a + n3P
a
jbP

jb
a + `1R

mn
mn + `2R

abk`Rabk`+

+ `10S
ab

ab + Λ, Λ ∈ F(E)

with respect to the set of arguments

(18) φ ∈ {Na
i , Aabi =

1
2
L[ab]i, C

i
ja, gij , hab}

are the following

(19.1)

δL

δNa
i

=4n1(D∗
mRim

a − P b
kaRik

b ) + 2n3(D∗
bP ib

a − Pnb
a P i

nb)+

+ `1[D∗
j U ij

a + U ij
b P b

aj − wnji
k (−∂̇aLk

nj + Vngkm∂̇agmj)]+

+ 4`2R
bckiPbcka +

1
2
Ccba · δL

δAcbi
= 0,

(19.2)

δL

δgij
=− 1

2
gijL + 2n1R

iakRj
ak + n3P

iabP j
ab + 2`2Rabk

iRabkj+

+ `1(Rinj
n + gijD∗

kV k − 1
2
D∗{iV j} +

1
2
P {inaRj}a

n) = 0,
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(19.3)

δL

δhab
=− 1

2
habL− n1R

ka`Rb
k` + `2D

∗
cR

{b
k`R

ca}k` − 1
2
L
{a
dj

δL

δAdb}j
+

+ n3(P a
jcP

jcb − P a
jcP

jbc − 1
2
D∗

j P j{ab})+

+ `10(Sacb
c + habD∗

cV c − 1
2
D∗{aV b}) = 0,

δL

δAabi
= n3P

i[ba] − 4`2D
∗
nRabni = 0,(19.4)

δL

δCi
ja

= `1Ri
aj = 0,(19.5)

where we denoted




D∗
` = D` + V`, V` = P d

d`

D∗
a = Da + Va, Va = ∂̇a ln

√
| det(gij)|

U jk
a = Cnmawnmjk, wnmjk = gn[jgmk]

δL/δφ =
1
G

δL
δφ

; τ{ij} = τij + τji; τ[ij] = τij − τji .

Hint. The same procedure as in Theorem 1 can be applied, using the
relations [2,11]:

Labi = hbsL
s
ai = Aabi +

1
2
δihab

Ca
bc =

1
2
had(∂̇{bhdc} − ∂̇dhbc).

Remark. As in theorem 1, the vanishing of the underscored terms in
(19.1)–(19.5) give, as a particular case, the corresponding equations in [2].

The attempt of solving the equations in theorem 2 leads to the fol-
lowing results

Theorem 3. The generalized Einstein–Yang Mills equations (19.1)–
(19.5) admit the solution

(20) {Na
i , gij , hab, Aabk, Ci

ja}
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given by

(21)

Na
i = −Ciy

a

2C
, C ∈ F(M), D∗

k

(
Ck

C

)
6= 0

gij = eλ(v) · τij(x), v ∈ F(E)

hab = γab(x) + b(x, y)yayb, with ya ≡ γaby
b, b(x, y) =

1
v2

Aabk = 0

Ci
ja satisfying: DjU

ij
a = ηjU

ij
a , U ij

a ≡ Cnmagn[igmj]

where τij(x) satisfies the Einstein equations of Riemannian type

(22) Eij = m[τij(αp +∇kαk)− qαiαj − 1
2
∇{iαj}]

and (21) are subject to the following conditions

δkγab = 0, v = [C(x)− y2]−1/2(23)

λ(x, y) =
2
n

ln

(
v

√
k

C(x)

)
, with k ∈ R∗+, C(x) > y2, (y2 ≡ yaya)

η ≡ d
[
ln(|C(x)|(1−m)/2)

]
, Λ = −m(m− 1)`10/C(x).

In (21)–(23) %ij , % and ∇k are the Ricci tensor field, the scalar curvature
and the covariant derivative associated to τij , and we used the notations





Ci =
∂C

∂xi
, αi = − Ci

2C
, α = αiαjγ

ij

Eij = %ij − 1
2
%τij (the Einstein tensor field)

p =
m(3− n)
2(n− 2)

, q =
m

n− 2

Proof. The equations (19.1)–(19.5) have a general form; it becomes
possible to search for solutions of the family (22) of the form (23)–(23’)
under additional simplifying assumptions, namely

(A1) δkhab = 0

(A2) b =
1
v2

= b(x, z), with z = y2

(A3) the differential equation of Riccati type obtained from
δL

δhab
= 0, to become one of Bernoulli type

(A4) δkλ = 0, δkγab = 0.
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The cosmologycal constant Λ is obtained from
δL

δgij
= 0, equation which

provides the classical Einstein equations in (24). The conditions (A1)–(A4)
yield to the form of the class of solutions stated in the theorem.

For the case when ξ is the tangent bundle of M , and Ln =(M, gij(x, y))
is a structure of a generalised Lagrange space [11] endowed with the non-
linear connection {Na

i (x, y)}

(24) Na
i =

{
a

ij

}
yj ,

{
i

jk

}
=

1
2
γis

(
∂γsj

∂xk
+

∂γsk

∂xj
− ∂γjk

∂xs

)

and the fundamental tensor field

(25) gij(x, y) = γij(x) +
1
c2

yiyj ; yi = γisy
s, c > 0,

where {γij(x)} is a Riemannian metric on M , we consider the N -lift of gij

to TM ([11])

(26) G = gij(x, y)dxi ⊗ dxj + gab(x, y)δya ⊗ δyb.

Then, for the case of the canonic metrical h- and v-symmetric linear
d-connection, we obtain the coefficients

(27)

Li
jk =

1
2
gin(δ{jgnk} − δngjk)

Ca
bc =

1
2
had(∂̇{bhdc} − ∂̇dhbc)

with hab ≡ gab = gijδ
i
aδj

b , and

La
bk = Li

jkδa
i δj

b , Ci
jc = Ca

bcδ
i
aδb

j

and can formulate the following

Theorem 4. If Ln is locally Minkowskian, then the gauge fields (13)
given by (24), (25), (27) provide solutions for the generalized Einstein–
Yang Mills equations (19.1)–(19.5) iff n = 2 and

Λ = 6`10/(1 + 3y2)

where y2 = γijy
iyj and

{
a
ij

}
are the Christoffel coefficients for γij(x), (see

(24)).

Remark. The vanishing of the cosmological constant Λ would infer
that (19.1)–(19.5) have no solution of the given form, unless `10 = 0.

Acknowledgement. The author is grateful to the referee for his re-
marks which improve the previous version of the paper.
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