On the generalized Einstein - Yang Mills equations

By VLADIMIR BALAN (Romania)

Abstract

Let $\xi=(E, p, M)$ be a vector bundle, with basis M - a real differentiable manifold of dimension n, and fiber F of dimension m. Considering the automorphisms of ξ as gauge transformations, and the set of gauge fields $\left\{N_{i}^{a}(x, y)\right.$, $\left.L_{j k}^{i}(x, y), L_{b k}^{a}(x, y), C_{j a}^{i}(x, y), C_{b c}^{a}(x, y), g_{i j}(x, y), h_{a b}(x, y)\right\}$ given by a nonlinear connection, a gauge linear d-connection [9,11], and a pair of metric gauge tensor fields in local adapted coordinates, the author obtains the form of the generalized Einstein-Yang Mills equations for the general case and for the quasi-metric h - and v-symmetrical cases. These results generalise the ones obtained by G.S. Asanov in [2,3], in a natural manner, basically using the formalism, notations and mathematical theory of distinguished geometrical object fields introduced by R. Miron [10, 11].

Let $\left\{N_{i}^{a}(x, y)\right\}$ be the coefficients of a nonlinear connection on the vector bundle $\xi=(E, p, M)$ in local coordinates $\left(x^{i}, y^{a}\right), i=\overline{1, n}, a=\overline{1, m}$ [8,11].

Definition 1. A local adapted basis in $\mathfrak{X}(E)$ is the set of vector fields $\left\{\delta_{i}, \dot{\partial}_{a}\right\}, i=\overline{1, n}, a=\overline{1, m}$, where

$$
\begin{equation*}
\delta_{i}=\frac{\partial}{\partial x^{i}}-N_{i}^{a} \frac{\partial}{\partial y^{a}}, \quad \dot{\partial}_{a}=\frac{\partial}{\partial y^{a}} . \tag{1}
\end{equation*}
$$

Definition 2. A linear d-connection on E is a linear connection ∇ that preserves the horizontal and the vertical distributions locally generated by $\left\{\delta_{i}, i=\overline{1, n}\right\}$ and $\left\{\dot{\partial}_{a}, a=\overline{1, m}\right\}$ respectively; in the local adapted basis (1) its coefficients are given by

$$
\left\{L_{j k}^{i}(x, y), L_{b k}^{a}(x, y), C_{j a}^{i}(x, y), C_{b c}^{a}(x, y)\right\}
$$

[^0]where
\[

\left\{$$
\begin{array}{cc}
\nabla_{\delta_{j}} \delta_{i}=L_{i j}^{k} \delta_{k}, & \nabla_{\delta_{j}} \dot{\partial}_{a}=L_{a j}^{b} \dot{\partial}_{b} \tag{2}\\
\nabla_{\dot{\partial}_{a}} \delta_{j}=C_{j a}^{i} \delta_{i}, & \nabla_{\dot{\partial}_{b}} \dot{\partial}_{a}=C_{a b}^{d} \dot{\partial}_{d}
\end{array}
$$\right.
\]

Definition 3. The h - and v-covariant derivation laws associated to the linear d-connection (2) are defined by

$$
\left\{\begin{array}{l}
D_{i} w_{n b}^{m a}=\delta_{i} w_{n b}^{m a}+L_{k i}^{m} w_{n b}^{k a}-L_{n i}^{k} w_{k b}^{m a}+L_{d i}^{a} w_{n b}^{m d}-L_{b i}^{d} w_{n d}^{m a} \tag{3}\\
D_{c} w_{n b}^{m a}=\dot{\partial}_{c} w_{n b}^{m a}+C_{k c}^{m} w_{n b}^{k a}-C_{n c}^{k} w_{k b}^{m a}+C_{d c}^{a} w_{n b}^{m d}-C_{b c}^{d} w_{n d}^{m a}
\end{array}\right.
$$

Proposition 1. The transformation rules for the coefficients of the linear d-connection are

$$
\begin{align*}
& \bar{\partial}_{m} B_{j}^{k}-B_{i}^{k} \bar{L}_{j m}^{i}(\bar{x}, \bar{y})+B_{j}^{i} B_{m}^{n} L_{i n}^{k}(x, y)=0 \\
& \bar{\partial}_{m} M_{b}^{a}-M_{c}^{a} \bar{L}_{b m}^{c}(\bar{x}, \bar{y})+M_{b}^{c} B_{m}^{n} L_{c n}^{a}(x, y)=0 \tag{4}\\
& B_{n}^{i} \bar{C}_{m a}^{n}(\bar{x}, \bar{y})=M_{a}^{c} B_{m}^{j} C_{j c}^{i}(x, y) \\
& M_{d}^{a} \bar{C}_{b c}^{d}(\bar{x}, \bar{y})=M_{b}^{d} M_{c}^{f} C_{d f}^{a}(x, y)
\end{align*}
$$

where the coordinate transformations on E have the form

$$
\begin{align*}
& x^{i}=x^{i}(\bar{x}), \operatorname{det}\left(\partial x^{i} / \partial \bar{x}^{j}\right) \neq 0 \\
& y^{a}=M_{b}^{a}(\bar{x}) \bar{y}^{b}, \operatorname{det}\left(M_{b}^{a}(\bar{x})\right) \neq 0 \tag{5}
\end{align*}
$$

and we used the notations

$$
B_{j}^{i}=\bar{\partial}_{j} x^{i}, \quad \bar{\partial}_{j}=\frac{\partial}{\partial \bar{x}^{j}}
$$

Definition 4. A gauge transformation is a automorphism of $E[7,2,3]$, locally given by

$$
\begin{align*}
x^{i} & =X^{i}(\tilde{x}), \operatorname{det}\left(\tilde{\partial}_{j} X^{i}\right) \neq 0 \\
y^{a} & =Y^{a}(\tilde{x}, \tilde{y}), \operatorname{det}\left(Y_{b}^{a}\right) \neq 0, \quad \dot{\tilde{\partial}}_{c} Y_{b}^{a}=0 \tag{6}
\end{align*}
$$

where we denoted

$$
Y_{b}^{a}=\dot{\tilde{\partial}}_{b} Y^{a}, \quad \dot{\tilde{\partial}}_{b}=\frac{\partial}{\partial \tilde{y}^{b}}, \quad \tilde{\partial}_{j}=\frac{\partial}{\partial \tilde{x}^{j}}
$$

Definition 5. A (generalized $[2,3]$) gauge tensor field is a field on E, which obeys tensorial rules of transformation relative to (5) and (6); e.g. $\left\{w_{j b}^{i a}\right\}$ obeys

$$
\begin{align*}
B_{k}^{i} M_{c}^{a} \bar{w}_{j b}^{k c} & =B_{j}^{\ell} M_{b}^{d} w_{\ell d}^{i a} \tag{7}\\
X_{k}^{i} Y_{c}^{a} \tilde{w}_{j b}^{k c} & =X_{j}^{\ell} Y_{b}^{d} w_{\ell d}^{i a}, \quad \text { where } \quad X_{k}^{i}=\tilde{\partial}_{k} X^{i}
\end{align*}
$$

Definition 6. A gauge covariant derivation (h-resp. v-) is given by the h - and v-derivation laws in definition 3 , which preserves the gauge tensorial character relative to (5), (6).

Proposition 2. The coefficients of the h - and v-gauge covariant derivations have with respect to (6) the transformation laws

$$
\begin{align*}
& \tilde{\partial}_{m} X_{j}^{k}-X_{i}^{k} \tilde{L}_{j m}^{i}(\tilde{x}, \tilde{y})+X_{j}^{i} X_{m}^{n} L_{i n}^{k}(x, y)=0 \\
& \tilde{\partial}_{m} Y_{b}^{a}-Y_{c}^{a} \tilde{L}_{b m}^{c}(\tilde{x}, \tilde{y})+Y_{b}^{c} X_{m}^{n} L_{c n}^{a}(x, y)=0 \\
& X_{n}^{i} \tilde{C}_{k a}^{n}(\tilde{x}, \tilde{y})=Y_{a}^{c} X_{k}^{j} C_{j c}^{i}(x, y) \tag{8}\\
& Y_{d}^{a} \tilde{C}_{b c}^{d}(\tilde{x}, \tilde{y})=Y_{b}^{d} Y_{c}^{f} C_{d f}^{a}(x, y)
\end{align*}
$$

Remarks.

1. $\left\{C_{j a}^{i}\right\}$ and $\left\{C_{b c}^{a}\right\}$ are gauge tensor fields.
2. The coefficients $\left\{L_{j k}^{i}, L_{b k}^{a}, C_{j a}^{i}, C_{b c}^{a}\right\}$ of the h - and v-gauge covariant derivations (3) are in fact the coefficients of a linear d-connection which satisfies the supplementary rules (8) (gauge linear d-connection).

Proposition 3. The torsion and the curvature gauge tensor fields of a gauge linear d-connection are given by [11]

$$
\begin{gather*}
T_{j k}^{i}=L_{[j k]}^{i}, \quad R_{j k}^{a}=-\delta_{[j} N_{k]}^{a}, \quad P_{j c}^{i}=C_{j c}^{i} \tag{9}\\
P_{j b}^{a}=\dot{\partial}_{b} N_{j}^{a}-L_{b j}^{a}, \quad S_{b c}^{a}=C_{[b c]}^{a}
\end{gather*}
$$

and respectively

$$
\begin{align*}
R_{j k \ell}^{i} & =\delta_{[\ell} L_{j k]}^{i}+L_{j[k}^{h} L_{h \ell]}^{i}+C_{j a}^{i} R_{k \ell}^{a}, \\
R_{b k \ell}^{a} & =\delta_{[\ell} L_{b k]}^{a}+L_{b[k}^{c} L_{c \ell]}^{a}+C_{b c}^{a} R_{k \ell}^{c}, \\
P_{j k c}^{i} & =\dot{\partial}_{c} L_{j k}^{i}-D_{k} C_{j c}^{i}+C_{j b}^{i} P_{k c}^{b}, \\
P_{b k c}^{a} & =\dot{\partial}_{c} L_{b k}^{a}-D_{k} C_{b c}^{a}+C_{b d}^{a} P_{k c}^{d}, \tag{9'}\\
S_{j b c}^{i} & =\dot{\partial}_{[c} C_{j b]}^{i}+C_{j[b}^{h} C_{h c]}^{i} \\
S_{b c d}^{a} & =\dot{\partial}_{[c} C_{b d]}^{a}+C_{b[c}^{e} C_{e d]}^{a}
\end{align*}
$$

where we used the notation for $[i \ldots j]$:

$$
L_{k[i}^{h} L_{h j]}^{s}=L_{k i}^{h} L_{h j}^{s}-L_{k j}^{h} L_{h i}^{s}
$$

Proposition 4. The following mixed Lagrangian is invariant under (5) and (6) (i.e. it is a scalar gauge field)

$$
\begin{equation*}
L=\sum_{i \in I} n_{i} \cdot L_{i}, \quad n_{i} \in \mathbb{R}, \quad i \in I=\{\overline{1,5}, \overline{11,16}, \overline{21,22}\} \tag{10}
\end{equation*}
$$

where

$$
\begin{array}{rlrl}
L_{1} & =T_{j k}^{i} T_{i}^{j k}, & L_{2} & =R_{j k}^{a} R_{a}^{j k}, \quad L_{3}=P_{j c}^{i} P_{i}^{j c}, \quad L_{4}=P_{j b}^{a} P_{a}^{j b} \\
L_{5} & =S_{b c}^{a} S_{a}^{b c}, & L_{21} & =R_{j k l}^{i} R_{i}^{j k l}, \tag{11}\\
L_{22} & =S_{b c d}^{a} S_{a}^{S c d} \\
L_{11} & =R^{i j}{ }_{i j}, & L_{12} & =R_{b k \ell}^{a} R_{a}^{b k \ell}, \\
L_{13} & =P_{j k c}^{i} P_{i}^{j k c} \\
L_{14} & =P_{b k c}^{a} P_{a}^{b k c}, & L_{15} & =S_{j b c}^{i} S_{i}^{j b c},
\end{array} L_{16}=S^{a b}{ }_{a b}
$$

The proof is computational.
Remark. The Lagrangian L contains, relative to [2], the supplementary terms $n_{3} L_{3}$ and $n_{15} L_{15}$, and the terms $n_{11} L_{11}$ and $n_{13} L_{13}$ are altered (are more general) since the present context doesn't impose the restrictive condition $C_{j a}^{i}=0$.

The raising/lowering of the corresponding indices in (11) were performed via the gauge metric tensor fields $\left\{g_{i j}(x, y)\right\}$ and $\left\{h_{a b}(x, y)\right\}[3,2]$. Then, introducing the Lagrangian density

$$
\begin{equation*}
\mathcal{L}=L G \tag{12}
\end{equation*}
$$

where $G=\left|\operatorname{det}\left(g_{i j}\right)\right|^{1 / 2} \cdot\left|\operatorname{det}\left(h_{a b}\right)\right|^{1 / 2}$, we notice that it depends on the gauge fields

$$
\begin{equation*}
\phi \in\left\{N_{i}^{a}, L_{j k}^{i}, L_{b k}^{a}, C_{j a}^{i}, C_{b c}^{a}, g_{i j}, h_{a b}\right\} \tag{13}
\end{equation*}
$$

and their derivatives; considering the variational principle $[1,3]$

$$
\delta \int \mathcal{L} d x^{n} d y^{m}=0
$$

one can derive the extremum condition of vanishing the Euler-Lagrange derivatives

$$
\frac{\delta \mathcal{L}}{\delta \phi} \equiv \frac{\partial}{\partial x^{j}}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{j} \phi\right)}\right)+\frac{\partial}{\partial y^{a}}\left(\frac{\partial \mathcal{L}}{\partial\left(\dot{\partial}_{a} \phi\right)}\right)-\frac{\partial \mathcal{L}}{\partial \phi}=0 .
$$

Theorem 1. The generalized Einstein-Yang Mills equations associated to the Lagrangian (10) for the set of arguments (13) are

$$
\begin{gather*}
\frac{\delta L}{\delta N_{k}^{a}}=-4 n_{2}\left(D_{\ell}^{*} R_{a}^{\ell k}+P_{a \ell}^{c} R_{c}^{\ell k}+\frac{1}{2} T_{n \ell}^{k} R_{a}^{n \ell}\right)- \tag{15.1}\\
-2 n_{4}\left(D_{b}^{*} P_{a}^{b k}+C_{a b}^{c} P_{c}^{b k}+\underline{P_{n b}^{k} P_{a}^{n b}}\right)- \\
-\underline{4 n_{21}}\left[D_{\ell}^{*} V_{a}^{\ell k}+P_{a \ell}^{c} V_{c}^{\ell k}+\frac{1}{2} T_{n \ell}^{k} V_{a}^{n \ell}-R_{i}^{j \ell k}\left(P_{j \ell a}^{i}+D_{\ell} P_{j a}^{i}-P_{j b}^{i} P_{\ell a}^{b}\right)\right]- \\
-n_{11}\left[D_{\ell}^{*} U_{a}^{\ell k}+P_{a \ell}^{c} U_{c}^{\ell k}+\frac{1}{2} T_{n \ell}^{k} U_{a}^{n \ell}-w_{i}^{j[l k]}\left(P_{j \ell a}^{i}+\underline{D_{\ell} P_{j a}^{i}-P_{j b}^{i} P_{\ell a}^{b}}\right)\right]+
\end{gather*}
$$

$$
\begin{gather*}
\frac{\delta L}{\delta C_{b c}^{a}}=-4 n_{5} S_{a}^{b c}+2 n_{12} R_{k \ell}^{c} R_{a}^{b k \ell}+\underline{4 n_{22}}\left(D_{d}^{*} S_{a}^{b c d}-\frac{1}{2} S_{e d}^{c} S_{a}^{b e d}\right)+ \tag{15.5}\\
+n_{16}\left(D_{d}^{*} w_{a}^{b[c d]}-\frac{1}{2} S_{e d}^{c} w_{a}^{b[e d]}\right)-2 n_{14}\left(D_{\ell}^{*} P_{a}^{b \ell c}-P_{d \ell}^{c} P_{a}^{b \ell d}\right)=0 \\
\frac{\delta L}{\delta g_{i j}}=-\frac{\partial L}{\partial g_{i j}}-\frac{1}{2} g^{i j} L=0 \tag{15.6}\\
\frac{\delta L}{\delta h_{a b}}=-\frac{\partial L}{\partial h_{a b}}-\frac{1}{2} h^{a b} L=0 \tag{15.7}
\end{gather*}
$$

where we denoted

$$
\begin{gathered}
\left\{\begin{array}{c}
D_{\ell}^{*}=D_{\ell}+V_{\ell}, \quad V_{\ell}=\frac{D_{\ell} G}{G}+T_{n \ell}^{n}+P_{d \ell}^{d} \\
D_{c}^{*}=D_{c}+V_{c}, \quad V_{c}=\frac{D_{c} G}{G}+P_{n c}^{n}+S_{d c}^{d}
\end{array}\right. \\
V_{a}^{k \ell}=C_{j a}^{i} R_{i}^{j k \ell}, U_{a}^{k \ell}=C_{j a}^{i} w_{i}^{j[k \ell]} \\
w_{i}^{j k \ell}=g^{j k} \delta_{i}^{\ell}, w_{a}^{b c d}=h^{b c} \delta_{a}^{d} ; \quad \frac{\delta L}{\delta \phi} \equiv \frac{1}{G} \frac{\delta \mathcal{L}}{\delta \phi} .
\end{gathered}
$$

Hint. The Euler-Lagrange derivatives for the elementary Lagrangians (11) computed using the relations

$$
\begin{aligned}
& D_{k} G=\delta_{k} G-G\left(L_{n k}^{n}+L_{a k}^{a}\right) \\
& D_{a} G=\dot{\partial}_{a} G-G\left(C_{n a}^{n}+C_{d a}^{d}\right) .
\end{aligned}
$$

give by addition the equations above.
Remark. The underscored terms are new with respect to [2], and the equations in $[1,2]$ can be viewed as a particular case of (15.1)-(15.7). The notations of tensor fields and vertical indices are changed from those used by G.S. Asanov to the corresponding ones used in the papers [8,9,11] in the theory of Finsler spaces. Also, the fact that in [1,2] the coefficients of the nonlinear connection considered in (1) are taken with opposite sign, induce related differences of sign in (15.1)-(15.7).

In the following we consider the quasi-metric case, i.e. the situation in which the gauge metric tensor fields obey

$$
\begin{equation*}
D_{k} g_{i j}=0, \quad D_{k} h_{a b}=0, \quad D_{c} h_{a b}=0 \tag{16}
\end{equation*}
$$

and impose for the gauge linear d-connection (2) to be h - and v-symmetrical, i.e. $T_{j k}^{i}=0$ and $s_{b c}^{a}=0$. Then we can state the following

Theorem 2. The generalized Einstein-Yang Mills equations in the quasi-metric h - and v-symmetrical case, for the generalized gauge Lagrangian [2]

$$
\begin{align*}
L= & n_{1} R_{j k}^{a} R_{a}^{j k}+n_{3} P_{j b}^{a} P_{a}^{j b}+\ell_{1} R^{m n}{ }_{m n}+\ell_{2} R^{a b k \ell} R_{a b k \ell}+ \\
& +\ell_{10} S_{a b}^{a b}+\Lambda, \quad \Lambda \in \mathcal{F}(E) \tag{17}
\end{align*}
$$

with respect to the set of arguments

$$
\begin{equation*}
\phi \in\left\{N_{i}^{a}, A_{a b i}=\frac{1}{2} L_{[a b] i}, C_{j a}^{i}, g_{i j}, h_{a b}\right\} \tag{18}
\end{equation*}
$$

are the following

$$
\begin{align*}
\frac{\delta L}{\delta N_{i}^{a}}= & 4 n_{1}\left(D_{m}^{*} R_{a}^{i m}-P_{k a}^{b} R_{b}^{i k}\right)+2 n_{3}\left(D_{b}^{*} P_{a}^{i b}-\underline{\left.P_{a}^{n b} P_{n b}^{i}\right)}+\right. \\
& +\ell_{1}\left[\underline{\left.D_{j}^{*} U_{a}^{i j}+U_{b}^{i j} P_{a j}^{b}-w_{k}^{n j i}\left(-\dot{\partial}_{a} L_{n j}^{k}+V_{n} g^{k m} \dot{\partial}_{a} g_{m j}\right)\right]+}\right. \tag{19.1}\\
& +4 \ell_{2} R^{b c k i} P_{b c k a}+\frac{1}{2} C_{c b a} \cdot \frac{\delta L}{\delta A_{c b i}}=0 \\
\frac{\delta L}{\delta g_{i j}}= & -\frac{1}{2} g^{i j} L+2 n_{1} R^{i a k} R_{a k}^{j}+n_{3} P^{i a b} P_{a b}^{j}+2 \ell_{2} R_{a b k}{ }^{i} R^{a b k j}+ \tag{19.2}\\
& +\ell_{1}\left(R^{i n j}+g^{i j} D_{k}^{*} V^{k}-\frac{1}{2} D^{*\{i} V^{j\}}+\frac{1}{2} \underline{P^{\{i n}{ }_{a} R^{j\} a}{ }_{n}}\right)=0
\end{align*}
$$

$$
\begin{gather*}
\frac{\delta L}{\delta h_{a b}}=-\frac{1}{2} h^{a b} L-n_{1} R^{k a \ell} R_{k \ell}^{b}+\ell_{2} D_{c}^{*} R_{k \ell}^{\{b} R^{c a\} k \ell}-\frac{1}{2} L_{d j}^{\{a} \frac{\delta L}{\delta A_{d b\} j}}+ \\
+n_{3}\left(P_{j c}^{a} P^{j c b}-P_{j c}^{a} P^{j b c}-\frac{1}{2} D_{j}^{*} P^{j\{a b\}}\right)+ \tag{19.3}\\
+\ell_{10}\left(S^{a c b}{ }_{c}+h^{a b} D_{c}^{*} V^{c}-\frac{1}{2} D^{*\{a} V^{b\}}\right)=0 \\
\quad \frac{\delta L}{\delta A_{a b i}}=n_{3} P^{i[b a]}-4 \ell_{2} D_{n}^{*} R^{a b n i}=0 \tag{19.4}\\
\frac{\delta L}{\delta C_{j a}^{i}}=\ell_{1} R_{i}^{a j}=0 \tag{19.5}
\end{gather*}
$$

where we denoted

$$
\begin{gathered}
\left\{\begin{array}{l}
D_{\ell}^{*}=D_{\ell}+V_{\ell}, \quad V_{\ell}=P_{d \ell}^{d} \\
D_{a}^{*}=D_{a}+V_{a},
\end{array} \quad V_{a}=\dot{\partial}_{a} \ln \sqrt{\left|\operatorname{det}\left(g_{i j}\right)\right|}\right.
\end{gathered} \quad \begin{gathered}
U_{a}^{j k}=C_{n m a} w^{n m j k}, \quad w^{n m j k}=g^{n[j} g^{m k]} \\
\delta L / \delta \phi=\frac{1}{G} \frac{\delta \mathcal{L}}{\delta \phi} ; \quad \tau_{\{i j\}}=\tau_{i j}+\tau_{j i} ; \quad \tau_{[i j]}=\tau_{i j}-\tau_{j i} .
\end{gathered}
$$

Hint. The same procedure as in Theorem 1 can be applied, using the relations [2,11]:

$$
\begin{aligned}
L_{a b i} & =h_{b s} L_{a i}^{s}=A_{a b i}+\frac{1}{2} \delta_{i} h_{a b} \\
C_{b c}^{a} & =\frac{1}{2} h^{a d}\left(\dot{\partial}_{\{b} h_{d c\}}-\dot{\partial}_{d} h_{b c}\right)
\end{aligned}
$$

Remark. As in theorem 1, the vanishing of the underscored terms in (19.1)-(19.5) give, as a particular case, the corresponding equations in [2].

The attempt of solving the equations in theorem 2 leads to the following results

Theorem 3. The generalized Einstein-Yang Mills equations (19.1)(19.5) admit the solution

$$
\begin{equation*}
\left\{N_{i}^{a}, g_{i j}, h_{a b}, A_{a b k}, C_{j a}^{i}\right\} \tag{20}
\end{equation*}
$$

given by

$$
\begin{aligned}
& N_{i}^{a}=-\frac{C_{i} y^{a}}{2 C}, C \in \mathcal{F}(M), \quad D_{k}^{*}\left(\frac{C_{k}}{C}\right) \neq 0 \\
& g_{i j}=e^{\lambda(v)} \cdot \tau_{i j}(x), \quad v \in \mathcal{F}(E) \\
& h_{a b}=\gamma_{a b}(x)+b(x, y) y_{a} y_{b}, \quad \text { with } y_{a} \equiv \gamma_{a b} y^{b}, b(x, y)=\frac{1}{v^{2}} \\
& A_{a b k}=0 \\
& C_{j a}^{i} \quad \text { satisfying: } D_{j} U_{a}^{i j}=\eta_{j} U_{a}^{i j}, U_{a}^{i j} \equiv C_{n m a} g^{n[i} g^{m j]}
\end{aligned}
$$

where $\tau_{i j}(x)$ satisfies the Einstein equations of Riemannian type

$$
\begin{equation*}
E_{i j}=m\left[\tau_{i j}\left(\alpha p+\nabla_{k} \alpha^{k}\right)-q^{\alpha_{i} \alpha_{j}}-\frac{1}{2} \nabla_{\{i} \alpha_{j\}}\right] \tag{22}
\end{equation*}
$$

and (21) are subject to the following conditions

$$
\begin{equation*}
\delta_{k} \gamma_{a b}=0, \quad v=\left[C(x)-y^{2}\right]^{-1 / 2} \tag{23}
\end{equation*}
$$

$$
\begin{aligned}
\lambda(x, y) & =\frac{2}{n} \ln \left(v \sqrt{\frac{k}{C(x)}}\right), \text { with } k \in \mathbb{R}_{+}^{*}, C(x)>y^{2},\left(y^{2} \equiv y_{a} y^{a}\right) \\
& \eta \equiv d\left[\ln \left(|C(x)|^{(1-m) / 2}\right)\right], \Lambda=-m(m-1) \ell_{10} / C(x)
\end{aligned}
$$

In (21)-(23) $\varrho_{i j}, \varrho$ and ∇_{k} are the Ricci tensor field, the scalar curvature and the covariant derivative associated to $\tau_{i j}$, and we used the notations

$$
\left\{\begin{aligned}
C_{i} & =\frac{\partial C}{\partial x^{i}}, \quad \alpha_{i}=-\frac{C_{i}}{2 C}, \quad \alpha=\alpha_{i} \alpha_{j} \gamma^{i j} \\
E_{i j} & =\varrho_{i j}-\frac{1}{2} \varrho \tau_{i j} \quad \text { (the Einstein tensor field) } \\
p & =\frac{m(3-n)}{2(n-2)}, \quad q=\frac{m}{n-2}
\end{aligned}\right.
$$

Proof. The equations (19.1)-(19.5) have a general form; it becomes possible to search for solutions of the family (22) of the form (23)-(23') under additional simplifying assumptions, namely
(A1) $\quad \delta_{k} h_{a b}=0$
(A2) $b=\frac{1}{v^{2}}=b(x, z)$, with $z=y^{2}$
(A3) the differential equation of Riccati type obtained from

$$
\frac{\delta L}{\delta h_{a b}}=0, \text { to become one of Bernoulli type }
$$

(A4) $\quad \delta_{k} \lambda=0, \delta_{k} \gamma_{a b}=0$.

The cosmologycal constant Λ is obtained from $\frac{\delta L}{\delta g_{i j}}=0$, equation which provides the classical Einstein equations in (24). The conditions (A1)-(A4) yield to the form of the class of solutions stated in the theorem.

For the case when ξ is the tangent bundle of M, and $L^{n}=\left(M, g_{i j}(x, y)\right)$ is a structure of a generalised Lagrange space [11] endowed with the nonlinear connection $\left\{N_{i}^{a}(x, y)\right\}$

$$
N_{i}^{a}=\left\{\begin{array}{l}
a \tag{24}\\
i j
\end{array}\right\} y^{j},\left\{\begin{array}{c}
i \\
j k
\end{array}\right\}=\frac{1}{2} \gamma^{i s}\left(\frac{\partial \gamma_{s j}}{\partial x^{k}}+\frac{\partial \gamma_{s k}}{\partial x^{j}}-\frac{\partial \gamma_{j k}}{\partial x^{s}}\right)
$$

and the fundamental tensor field

$$
\begin{equation*}
g_{i j}(x, y)=\gamma_{i j}(x)+\frac{1}{c^{2}} y_{i} y_{j} ; \quad y_{i}=\gamma_{i s} y^{s}, \quad c>0 \tag{25}
\end{equation*}
$$

where $\left\{\gamma_{i j}(x)\right\}$ is a Riemannian metric on M, we consider the N-lift of $g_{i j}$ to $T M$ ([11])

$$
\begin{equation*}
G=g_{i j}(x, y) d x^{i} \otimes d x^{j}+g_{a b}(x, y) \delta y^{a} \otimes \delta y^{b} \tag{26}
\end{equation*}
$$

Then, for the case of the canonic metrical h - and v-symmetric linear d-connection, we obtain the coefficients

$$
\begin{align*}
L_{j k}^{i} & =\frac{1}{2} g^{i n}\left(\delta_{\{j} g_{n k\}}-\delta_{n} g_{j k}\right) \\
C_{b c}^{a} & =\frac{1}{2} h^{a d}\left(\dot{\partial}_{\{b} h_{d c\}}-\dot{\partial}_{d} h_{b c}\right) \tag{27}\\
\text { with } h_{a b} & \equiv g_{a b}=g_{i j} \delta_{a}^{i} \delta_{b}^{j}, \quad \text { and } \\
L_{b k}^{a} & =L_{j k}^{i} \delta_{i}^{a} \delta_{b}^{j}, C_{j c}^{i}=C_{b c}^{a} \delta_{a}^{i} \delta_{j}^{b}
\end{align*}
$$

and can formulate the following
Theorem 4. If L^{n} is locally Minkowskian, then the gauge fields (13) given by (24), (25), (27) provide solutions for the generalized EinsteinYang Mills equations (19.1)-(19.5) iff $n=2$ and

$$
\Lambda=6 \ell_{10} /\left(1+3 y^{2}\right)
$$

where $y^{2}=\gamma_{i j} y^{i} y^{j}$ and $\left\{\begin{array}{c}a \\ i j\end{array}\right\}$ are the Christoffel coefficients for $\gamma_{i j}(x)$, (see (24)).

Remark. The vanishing of the cosmological constant Λ would infer that (19.1)-(19.5) have no solution of the given form, unless $\ell_{10}=0$.

Acknowledgement. The author is grateful to the referee for his remarks which improve the previous version of the paper.

References

[1] A.K. Aringazin and G.S. Asanov, Problems of Finslerian Theory of Gauge Fields and Gravitation, Rep. on Math. Phys. 25 (1988), 35-93.
[2] G.S. Asanov, Fibered Generalization of the Gauge Field Theory, Finslerian and Jet Gauge Fields, Univ. Moskow, 1989.
[3] G.S. Asanov and S.F. Ponomarenko, Finsler Bundles over Space-Time, Associated Gauge Fields and Connections, Nauka Ed., Chishinew, 1989.
[4] V. Balan, Generalized Einstein - Yang Mills Equations in Vector Bundles, Bull. Soc. Sci. Mat. Rom. 36 (1992), 17-22.
[5] V. Balan, Palatini Methods for Vector Bundles, Proc. of the XXII-nd Nat. Conf. of Geometry and Topology, Bull. of the Polytechnic Inst. of Bucharest 53 (1991).
[6] H.J. Duff, B.E.W. Nilson and C.N. Pope, Kaluza-Klein Supergravity, Physical Reports 130 (1986), 1-130.
[7] K.S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Interscience Publishers, New York-London, I, 1963, II, 1969.
[8] M. Matsumoto, Foundations of Finsler Geometry and Special Finsler Spaces, Kaisheisha Press, Tokyo, 1986.
[9] R. Miron, Introduction to the Theory of Finsler Spaces, Proc. of the Nat. Sem. of Finsler Spaces, Brasov feb. (1980), Timosoara (1981), pp. 131-183.
[10] R. Miron, Vector Bundles. Finsler Geometry, Proc. of the Nat. Sem. of Finsler Spaces, Brasov feb. (1982), pp. 147-188.
[11] R. Miron and M. Anastasiei, Vector Bundles. Lagrange Spaces, Applications to the Theory of Relativity, Academy Ed., Bucharest, 1987.
[12] A. Morimoto, Prolongation of Connections to Bundles of Infinitely Near Points, Jour. of Diff. Geom. 11 (1976), 479-498.
[13] H. Rund, The Differential Geometry of Finsler Spaces, Nauka Ed., Moskow, 1981.

```
BALAN VLADIMIR
POLYTECHNIC INSTITUTE OF BUCHAREST
DEPARTMENT OF MATHEMATICS I
SPLAIUL INDEPENDENTEI 313
BUCHAREST, ROMANIA
```

(Received January 22, 1992; revised August 10, 1992)

[^0]: 1980 Mathematics Subject Classification (1985 Revision): 53C60.
 Keywords: gauge fields, gauge covariant derivations, generalized Einstein-Yang Mills equations.
 This paper was presented at the Conference on Finsler Geometry and its Applications to Physics and Control Theory, August 26-31, 1991, Debrecen, Hungary.

