Diameter preserving linear bijections of $C_{0}(X)$

By MÁTÉ GYŐRY (Debrecen)

Abstract

The purpose of this paper is to solve a linear preserver problem on the function algebra $C_{0}(X)$. In $[G y M]$, we determined all diameter preserving linear bijections of $C(X)$ in the case when X is a first countable compact Hausdorff space. In this paper we generalize this result to the case of first countable locally compact Hausdorff spaces.

Linear bijections of $C(X)$ preserving some given norm have been studied in several papers; for references see e.g. $[\mathrm{GyM}]$. Recently, we determined with L. Molnár [GyM] all linear bijections of $C(X)$ on a first countable compact Hausdorff space X which preserve the seminorm $f \mapsto$ $\operatorname{diam}(f(X))=\sup \{|f(x)-f(y)| \mid x, y \in X\}$. These linear maps are called diameter preserving. The aim of the present article is to generalize this theorem of [GyM] to $C_{0}(X)$ where X is a first countable locally compact Hausdorff space and $C_{0}(X)$ denotes the algebra of all continuous complex valued functions on X which vanish at ∞.

In our Theorem below we distinguish three cases, according as X is compact, σ-compact but not compact and not σ-compact, respectively. If in particular X is compact, our Theorem gives the above mentioned result of [GyM].

For a first countable locally compact Hausdorff space X with topology Λ, let X_{0} denote $X \cup\{\infty\}$ if X is not compact, and X if X is compact. Then X_{0} endowed with the topology

$$
\Lambda_{0}=\Lambda \cup\left\{X_{0} \backslash K \mid K \subseteq X \text { compact }\right\}
$$

is a compact Hausdorff space, and X is a subspace of X_{0}.

Theorem. Let X be a first countable locally compact Hausdorff space.

1) If X is compact, then a bijective linear map $\phi: C_{0}(X) \rightarrow C_{0}(X)$ is diameter preserving if and only if there exists a complex number τ of modulus 1, a homeomorphism $\varphi: X \rightarrow X$ and a linear functional $t: C_{0}(X) \rightarrow \mathbb{C}$ with $t(1) \neq-\tau$ such that ϕ is of the form

$$
\begin{equation*}
\phi(f)=\tau \cdot f \circ \varphi+t(f) 1 \quad\left(f \in C_{0}(X)\right) \tag{1}
\end{equation*}
$$

2) If X is not σ-compact then a bijective linear map $\phi: C_{0}(X) \rightarrow$ $C_{0}(X)$ is diameter preserving if and only if there exists a complex number τ of modulus 1 and a homeomorphism $\varphi: X \rightarrow X$ such that ϕ is of the form

$$
\begin{equation*}
\phi(f)=\tau \cdot f \circ \varphi \quad\left(f \in C_{0}(X)\right) \tag{2}
\end{equation*}
$$

3) If the space X is σ-compact but not compact, then a bijective linear map $\phi: C_{0}(X) \rightarrow C_{0}(X)$ is diameter preserving if and only if there exists a complex number τ of modulus 1 and a homeomorphism $\varphi: X_{0} \rightarrow X_{0}$ such that ϕ is of the form

$$
\begin{equation*}
\phi(f)=\tau \cdot f \circ \varphi-\tau f(\varphi(\infty)) \quad\left(f \in C_{0}(X)\right) \tag{3}
\end{equation*}
$$

where $f(\infty)=0$ for every $f \in C_{0}(X)$.
Remark1. If in (3) $\varphi(\infty)=\infty$, then ϕ is of the same form as in (2).
Remark 2. If ϕ is of the form (2), then it is obviously a surjective isometry.

Remark 3. Our Theorem also holds for the algebra of all continuous real valued functions on X. In this situation we have $\tau= \pm 1$ and in (1) $t: C_{0}(X) \rightarrow \mathbb{R}$. In this case the proof is more simple.

Our proof consists of several steps. Some of them are similar to those of $[\mathrm{GyM}]$. We shall detail only those steps which differ essentially from the corresponding arguments of $[\mathrm{GyM}]$.

Proof of Theorem. It is easy to verify that under the assumptions of the Theorem, the linear map ϕ of the form (1), (2) or (3), respectively, is a diameter preserving linear bijection of $C_{0}(X)$.

Now suppose that $\phi: C_{0}(X) \rightarrow C_{0}(X)$ is a linear bijection which preserves the diameter of the ranges of functions in $C_{0}(X)$.

Because of the natural isomorphism, we shall not make difference between $C\left(X_{0}\right)$ and $C_{0}(X)$, defining every function $f \in C_{0}(X)$ at the point ∞ as $f(\infty)=0$. We note that $\operatorname{diam}(f(X))=\operatorname{diam}\left(f\left(X_{0}\right)\right)$ for any $f \in C_{0}(X)$.

We introduce the following notation. Let \tilde{X} stand for the collection of all subsets of X having exactly two elements, and \tilde{X}_{0} stand for the collection of all subsets of X_{0} having exactly two elements. Let X denote X_{0} if X is σ-compact and X if X is not σ-compact. Similarly, let \tilde{X} denote \tilde{X}_{0} if X is σ-compact and \tilde{X} if X is not σ-compact. For convenience of the reader, we follow the notation of $[\mathrm{GyM}]$ where it is possible. For any $f \in C_{0}(X)$ let

$$
\begin{aligned}
S(f)= & \left\{\{x, y\} \in \tilde{X}_{0}:|f(x)-f(y)|=\operatorname{diam}(f(X))\right\}, \\
P(f)= & \left\{(x, y) \in X_{0} \times X_{0}:|f(x)-f(y)|=\operatorname{diam}(f(X))\right\}, \\
T(f)= & \left\{(x, y, u) \in X_{0} \times X_{0} \times \mathbb{C}:|f(x)-f(y)|=\operatorname{diam}(f(X)),\right. \\
& u=f(x)-f(y)\} .
\end{aligned}
$$

Further, for every $\{x, y\} \in \tilde{X}_{0}$ and $u \in \mathbb{C}$ let

$$
\begin{aligned}
\mathcal{S}(\{x, y\}) & =\left\{f \in C\left(X_{0}\right):\{x, y\} \in S(f)\right\} \\
\mathcal{S}_{s}(\{x, y\}) & =\left\{f \in C\left(X_{0}\right):\{\{x, y\}\}=S(f)\right\} \\
\mathcal{T}(x, y, u) & =\left\{f \in C\left(X_{0}\right):(x, y, u) \in T(f)\right\}, \\
\mathcal{T}_{s}(x, y, u) & =\left\{f \in C\left(X_{0}\right):\{(x, y, u),(y, x,-u)\}=T(f)\right\} .
\end{aligned}
$$

Finally, we define

$$
\begin{aligned}
& G(\{x, y\})=\cap\left\{S(\phi(f)): f \in C_{0}(X),\{x, y\} \in S(f)\right\}, \\
& H(x, y, u)=\cap\left\{T(\phi(f)): f \in C_{0}(X),(x, y, u) \in T(f)\right\} .
\end{aligned}
$$

Let

$$
\mathcal{D}=\left\{f \in C\left(X_{0}\right): \exists\{x, y\} \in \tilde{X}:\{\{x, y\}\}=S(f)\right\} .
$$

It is clear that for every nonconstant function $f \in C\left(X_{0}\right)$, the sets $S(f), P(f)$ and $T(f)$ are nonempty. Since X is first countable, using Uryson's lemma it is easy to see that for every distinct $x, y \in X$ there exists a continuous real valued function $f \in C\left(X_{0}\right)$ from X_{0} into $[-1,1]$ such that
$f(x)=1, f(y)=-1$ and $-1<f(z)<1(z \in X, z \neq x, z \neq y)$. If X is σ-compact, then X_{0} is first countable and similarly, for every distinct $x, y \in X_{0}$ there exists a real valued function $f \in C\left(X_{0}\right)$ from X_{0} into $[0,1]$ such that $f(x)=1, f(y)=0$ (we may assume that $x \neq \infty$) and $0<f(z)<1(z \in X, z \neq x, z \neq y)$. This shows that for any element $\{x, y\} \in \tilde{X}$ and any non-zero $u \in \mathbb{C}$, the sets $\mathcal{S}_{s}(\{x, y\}), \mathcal{T}_{s}(x, y, u)$ are also nonempty. It is obvious that the sets $\mathcal{S}(\{x, y\}), \mathcal{T}(x, y, u)$ are nonempty for any $\{x, y\} \in \tilde{X}_{0}$ and any non-zero $u \in \mathbb{C}$.

We begin now the proof of the necessity of our statements which will be carried out through a series of steps. The following lemma will be used repeatedly in our proof. Its proof as well as the proofs of Steps 1 and 2 below are the same as the proofs of the Lemma and Steps 1 and 2 in $[\mathrm{GyM}]$, it suffices only to replace X and \tilde{X} by X_{0} and \tilde{X}_{0}, respectively.

Lemma. Let $f_{1}, \ldots, f_{n} \in C_{0}(X)$ be arbitrary functions. Then

$$
\operatorname{diam}\left(\left(f_{1}+\ldots+f_{n}\right)(X)\right)=\operatorname{diam}\left(f_{1}(X)\right)+\ldots+\operatorname{diam}\left(f_{n}(X)\right)
$$

holds if and only if there exists an $\{x, y\} \in \tilde{X}_{0}$ and a complex number v of modulus 1 such that $f_{i} \in \mathcal{T}\left(x, y, \lambda_{i} v\right)$ holds for every $i=1, \ldots, n$, where $\lambda_{i}=\operatorname{diam}\left(f_{i}(X)\right)(i=1, \ldots, n)$.

Step 1. For arbitrary $\{x, y\} \in \tilde{X}_{0}$ and $0 \neq u \in \mathbb{C}$, we have $G(\{x, y\}) \neq \emptyset$ and $H(x, y, u) \neq \emptyset$.

Step 2. If $\left\{x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}\right\} \in \tilde{X}_{0}$ and $\left\{x_{1}, y_{1}\right\} \neq\left\{x_{2}, y_{2}\right\}$, then we have $G\left(\left\{x_{1}, y_{1}\right\}\right) \cap G\left(\left\{x_{2}, y_{2}\right\}\right)=\emptyset$.

Step 3. We have $f \in \mathcal{D}$ if and only if $\phi(f) \in \mathcal{D}$.
Let $f \in \mathcal{D}$. Then there exists $\{x, y\} \in \tilde{X}$ such that $f \in \mathcal{S}_{s}(\{x, y\})$. Let $f_{0}=\phi^{-1}(f)$ and let $\left\{x_{0}, y_{0}\right\} \in S\left(f_{0}\right)$ be arbitrary. Then

$$
\emptyset \neq G\left(\left\{x_{0}, y_{0}\right\}\right) \subseteq S(f)=\{\{x, y\}\}
$$

and so

$$
G\left(\left\{x_{0}, y_{0}\right\}\right)=\{\{x, y\}\}
$$

Since $\left\{x_{0}, y_{0}\right\} \in S\left(f_{0}\right)$ is arbitrary, $S\left(f_{0}\right)$ has exactly one element by Step 2 , thus $\phi^{-1}(f) \in \mathcal{D}$. Applying this result to the diameter preserving bijection ϕ^{-1} instead of ϕ, the proof of Step 3 is complete.

Step 4. For every $\{x, y\} \in \tilde{X}$, the set $G(\{x, y\})$ has exactly one element which is contained in \tilde{X}. The function $G^{\prime}: \tilde{X} \rightarrow \tilde{X}$ defined by $\left\{G^{\prime}(\{x, y\})\right\}=G(\{x, y\})$ is a bijection.

Let $\{x, y\} \in \tilde{X}$ and $f \in \mathcal{S}_{s}(\{x, y\})$. Since $f \in \mathcal{D}$, by Step 3 we have $\phi(f) \in \mathcal{D}$, thus $S(\phi(f))$ has exactly one element which is in \tilde{X}. Hence from

$$
\emptyset \neq G(\{x, y\}) \subseteq S(\phi(f))
$$

we deduce that $G(\{x, y\})$ has also exactly one element which is contained in \tilde{X}.

We now prove that the function G^{\prime} is bijective. In view of Step 2 the injectivity is obvious. To prove the surjectivity, let $\{x, y\} \in \tilde{X}$ and pick $f \in C_{0}(X)$ for which $\phi(f) \in \mathcal{S}_{s}(\{x, y\})$. Then $\phi(f) \in \mathcal{D}$, so by Step 3 we infer that $f \in \mathcal{D}$. Thus there exists $\left\{x_{0}, y_{0}\right\} \in \tilde{X}$ for which $S(f)=\left\{\left\{x_{0}, y_{0}\right\}\right\}$. Hence we have $G^{\prime}\left(\left\{x_{0}, y_{0}\right\}\right) \in S(\phi(f))=\{\{x, y\}\}$, thus $G^{\prime}\left(\left\{x_{0}, y_{0}\right\}\right)=\{x, y\}$ verifying our claim.

Step 5. Let $\{x, y\} \in \tilde{X}$ and $f \in C\left(X_{0}\right)$ be arbitrary. If $\phi(f) \in$ $\mathcal{S}_{s}\left(G^{\prime}(\{x, y\})\right)$, then $f \in \mathcal{S}_{s}(\{x, y\})$.

If $\left\{x_{0}, y_{0}\right\} \in S(f)$ is arbitrary, then $G^{\prime}\left(\left\{x_{0}, y_{0}\right\}\right) \in S(\phi(f))=$ $\left\{G^{\prime}(\{x, y\})\right\}$. Thus by Step $4\left\{x_{0}, y_{0}\right\}=\{x, y\}$, hence $S(f)=\{\{x, y\}\}$.

Step 6. Defining the function G_{-1}^{\prime} corresponding to ϕ^{-1} in the same way as G^{\prime} corresponding to ϕ was defined in Step 4, we have $G_{-1}^{\prime}=\left(G^{\prime}\right)^{-1}$.

The proof is similar to the proof of Step 6 in $[\mathrm{GyM}]$, but with \tilde{X} instead of \tilde{X}.

Step 7. If $\left\{x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}\right\} \in \tilde{X}$ and $\left\{x_{1}, y_{1}\right\} \cap\left\{x_{2}, y_{2}\right\} \neq \emptyset$, then we have

$$
G^{\prime}\left(\left\{x_{1}, y_{1}\right\}\right) \cap G^{\prime}\left(\left\{x_{2}, y_{2}\right\}\right) \neq \emptyset
$$

Further, if $\left\{x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}\right\} \in \tilde{X}$ have exactly one element in common, then the same holds for $G^{\prime}\left(\left\{x_{1}, y_{1}\right\}\right)$ and $G^{\prime}\left(\left\{x_{2}, y_{2}\right\}\right)$.

Let $\left\{x, y_{1}\right\},\left\{x, y_{2}\right\} \in \tilde{X}$ with $y_{1} \neq y_{2}$, and suppose that

$$
G^{\prime}\left(\left\{x, y_{1}\right\}\right) \cap G^{\prime}\left(\left\{x, y_{2}\right\}\right)=\emptyset .
$$

Then we may assume that $\infty \notin G^{\prime}\left(\left\{x, y_{2}\right\}\right)$. Let $K \subseteq X \backslash G^{\prime}\left(\left\{x, y_{1}\right\}\right)$ be compact such that $G^{\prime}\left(\left\{x, y_{2}\right\}\right) \subseteq K^{\circ}$. Then it follows from the surjectivity
of ϕ that there exist functions $f_{1}, f_{2} \in C_{0}(X)$ with the following properties. The support of $\phi\left(f_{2}\right)$ is a subset of K, the range of $\phi\left(f_{1}\right)$ is included in $[0,1]$, the range of $\phi\left(f_{2}\right)$ is included in [$\left.-1 / 2,1 / 2\right], \phi\left(f_{1}\right)$ is $1 / 2$ on the set K,

$$
\phi\left(f_{1}\right) \in \mathcal{S}_{s}\left(G^{\prime}\left(\left\{x, y_{1}\right\}\right)\right), \quad \phi\left(f_{2}\right) \in \mathcal{S}_{s}\left(G^{\prime}\left(\left\{x, y_{2}\right\}\right)\right)
$$

and, finally,

$$
\operatorname{diam}\left(\phi\left(f_{1}\right)(X)\right)=\operatorname{diam}\left(\phi\left(f_{2}\right)(X)\right)=1
$$

Now $f_{1}, f_{2} \in C_{0}(X)$ are functions with diameter 1 and by Step 5 we infer that $f_{1} \in \mathcal{S}_{s}\left(\left\{x, y_{1}\right\}\right), f_{2} \in \mathcal{S}_{s}\left(\left\{x, y_{2}\right\}\right)$. Now we arrive at a contradiction as in the proof of Step 5 in [GyM].

The second statement of Step 7 follows now from Step 2.
Step 8. Let $\left\{x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}\right\} \in \tilde{X}$. Then $\left\{x_{1}, y_{1}\right\} \cap\left\{x_{2}, y_{2}\right\}=\emptyset$ if and only if $G^{\prime}\left(\left\{x_{1}, y_{1}\right\}\right) \cap G^{\prime}\left(\left\{x_{2}, y_{2}\right\}\right)=\emptyset$.

The sufficiency follows from Step 7. By Steps 6 and 7 the necessity is obvious.

Step 9. Let $x \in \mathcal{X}$. There exists a unique element $g(x) \in \mathcal{X}$ such that $g(x) \in G^{\prime}(\{x, y\})$ for every $x, y \in \mathcal{X}, x \neq y$. The function $g: X \rightarrow X$ is bijective and $\{g(x), g(y)\}=G^{\prime}(\{x, y\})(\{x, y\} \in \tilde{X})$.

The proof is similar to the proof of Step 7 in [GyM], it suffices to take X and \tilde{X} instead of X and \tilde{X}, respectively.

Step 10. There exists a complex number τ of modulus 1 such that, for every $\{x, y\} \in \tilde{X}, 0 \neq u \in \mathbb{C}$ and $f \in \mathcal{T}(x, y, u)$, we have $\phi(f) \in$ $\mathcal{T}(g(x), g(y), \tau u)$.

Similarly as in the proof of Step 8 in $[\mathrm{GyM}]$, but using \tilde{X} instead of \tilde{X}, we obtain that for every $\{x, y\} \in \tilde{X}$ there exists a complex number $\tau(\{x, y\})$ of modulus 1 such that the implication

$$
\begin{equation*}
f \in \mathcal{T}(x, y, u) \Longrightarrow \phi(f) \in \mathcal{T}(g(x), g(y), \tau(\{x, y\}) u) \tag{4}
\end{equation*}
$$

holds for every $u \in \mathbb{C}$. It remains to show that τ does not depend on its variable $\{x, y\}$.

Now, we obtain as in the proof of Step 8 in $[\mathrm{GyM}]$ that τ is a constant function on \tilde{X}. Let this constant be denoted by the same symbol τ.

Let us suppose that X is σ-compact but not compact, $x \in X$ and $f \in \mathcal{T}_{s}(x, \infty, 1)$. Let $z_{n} \in X$ with $z_{n} \rightarrow \infty$ and $z_{n} \neq x$. Since X_{0} is compact and $g: X_{0} \rightarrow X_{0}$ is a bijection, we may assume that there exists $y \in X_{0}$ for which $g\left(z_{n}\right) \rightarrow g(y)$. It is easy to see that there exist $f_{n} \in \mathcal{T}\left(x, z_{n}, 1\right)$ such that $f_{n} \rightarrow f$. Hence $\left.\phi\left(f_{n}\right) \in \mathcal{T}\left(g(x), g\left(z_{n}\right), \tau\right)\right)$. Since X is not compact and ϕ is continuous, thus from $f, \phi(f) \in C_{0}(X)$, $\phi\left(f_{n}\right)(g(x))-\phi\left(f_{n}\right)\left(g\left(z_{n}\right)\right)=\tau, g\left(z_{n}\right) \rightarrow g(y)$ and $f_{n} \rightarrow f$ we deduce that

$$
\phi(f)(g(x))-\phi(f)(g(y))=\tau
$$

Thus from $|\tau|=1=|\tau(\{x, \infty\})|$ and $\phi(f) \in \mathcal{T}_{s}(g(x), g(\infty), \tau(\{x, \infty\}))$ we infer that $g(y)=g(\infty)$, so

$$
\tau(x, \infty)=\phi(f)(g(x))-\phi(f)(g(\infty))=\phi(f)(g(x))-\phi(g(y))=\tau
$$

Hence $\tau: \tilde{X} \rightarrow \tilde{X}$ is the constant τ, and the assertion follows from (4).
Step 11. For every $f \in C_{0}(X)$, the function $\phi(f) \circ g-\tau \cdot f$ is constant on X.

Let $\{x, y\} \in \tilde{X}$ and $f \in \mathcal{T}(x, y, 1)$. Now, similarly as in the proof of Step 9 in $[\mathrm{GyM}]$, we can prove that

$$
\begin{equation*}
\phi(f)(g(z))-\tau f(z)=\phi(f)(g(x))-\tau f(x) \tag{5}
\end{equation*}
$$

holds for every $z \in X$.
If $X=X$, then we are ready. Let us suppose that X is σ-compact but not compact. In the proof of Step 10 we showed that then there exist $z_{n} \in X, z_{n} \rightarrow \infty$ such that $g\left(z_{n}\right) \rightarrow g(\infty)$. Thus from (5) we infer that
$\phi(f)(g(\infty))-\tau f(\infty)=\lim _{n \rightarrow \infty}\left(\phi(f)\left(g\left(z_{n}\right)\right)-\tau f\left(z_{n}\right)\right)=\phi(f)(g(x))-\tau f(x)$,
which proves the statement of Step 11.
Now we can complete the proof of the Theorem as follows. By the linearity of ϕ, there exists a linear functional $t: C_{0}(X) \rightarrow \mathbb{C}$ such that

$$
\phi(f) \circ g-\tau \cdot f=t(f) 1 \quad\left(f \in C_{0}(X)\right)
$$

Since $g: X \rightarrow X$ is a bijection, with the notation $\varphi=g^{-1}$ we have

$$
\begin{equation*}
\phi(f)-\tau \cdot f \circ \varphi=t(f) 1 \quad\left(f \in C_{0}(X)\right) . \tag{6}
\end{equation*}
$$

It follows from (6) that $f \circ \varphi$ is continuous for every $f \in C_{0}(X)$. Using Uryson's lemma, we deduce that φ is continuous. If X is σ-compact, then X is compact, so φ is a continuous bijection between compact Hausdorff spaces, thus φ is a homeomorphism. Let us consider the case when X is not σ-compact. Let us suppose that $x_{n} \in X$ such that $x_{n} \rightarrow \infty$ and suppose on the contrary that $x_{n} \rightarrow y \in X$. Then there exists $y_{0} \in X$ such that $\varphi\left(y_{0}\right)=y$. Now by (6) we have

$$
\begin{aligned}
& \phi(f)\left(y_{0}\right)-\tau \cdot f\left(\varphi\left(y_{0}\right)\right)=\phi(f)\left(x_{n}\right)-\tau \cdot f\left(\varphi\left(x_{n}\right)\right) \rightarrow \\
& \phi(f)(\infty)-\tau \cdot f\left(\varphi\left(y_{0}\right)\right)=-\tau \cdot f\left(\varphi\left(y_{0}\right)\right),
\end{aligned}
$$

thus $\phi(f)\left(y_{0}\right)=0$ for every $f \in C_{0}(X)$, which is a contradiction. Now, defining φ at the point ∞ as $\varphi(\infty)=\infty, \varphi: X_{0} \rightarrow X_{0}$ is a continuous bijection between compact Hausdorff spaces, thus $\varphi: X \rightarrow X$ is a homeomorphism.

If X is compact, then we are ready, since the relation $t(1) \neq-\tau$ is obvious and $X=X$.

If X is not σ-compact, then for any $z_{n} \in X$ with $z_{n} \rightarrow \infty$ we have $\varphi\left(z_{n}\right) \rightarrow \infty$, since $\varphi: X \rightarrow X$ is a homeomorphism. Thus, by (6), we have

$$
t(f)=\phi(f)\left(z_{n}\right)-\tau \cdot f\left(\varphi\left(z_{n}\right)\right) \rightarrow \phi(f)(\infty)-\tau \cdot f(\infty)=0
$$

for every $f \in C_{0}(X)$, which completes the proof.
Finally, suppose that X is σ-compact but not compact. Then φ : $X_{0} \rightarrow X_{0}$ is a homeomorphism and by (6) we deduce that

$$
t(f)=\phi(f)(\infty)-\tau \cdot f(\varphi(\infty))=-\tau f(\varphi(\infty))
$$

for every $f \in C_{0}(X)$. The proof of the Theorem is now complete.
Acknowledgements. I would like to thank my supervisor, Professor L. Molnár, for introducing me to the subject of this paper and for his helpful advices.

References

[GyM] M. Győry and L. Molnár, Diameter preserving bijections of $C(X)$, Arch. Math. 71 (1998), 301-310.

MÁTÉ GYŐRY
INSTITUTE OF MATHEMATICS
LAJOS KOSSUTH UNIVERSITY
H-4010 DEBRECEN, P.O. BOX 12 HUNGARY
E-mail: gyorym@math.klte.hu
(Received August 7, 1998)

