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Diameter preserving linear bijections of C0(X)

By MÁTÉ GYŐRY (Debrecen)

Abstract. The purpose of this paper is to solve a linear preserver problem on
the function algebra C0(X). In [GyM], we determined all diameter preserving linear
bijections of C(X) in the case when X is a first countable compact Hausdorff space.
In this paper we generalize this result to the case of first countable locally compact
Hausdorff spaces.

Linear bijections of C(X) preserving some given norm have been stud-
ied in several papers; for references see e.g. [GyM]. Recently, we deter-
mined with L. Molnár [GyM] all linear bijections of C(X) on a first
countable compact Hausdorff space X which preserve the seminorm f 7→
diam(f(X)) = sup{|f(x)− f(y)| | x, y ∈ X}. These linear maps are called
diameter preserving. The aim of the present article is to generalize this
theorem of [GyM] to C0(X) where X is a first countable locally compact
Hausdorff space and C0(X) denotes the algebra of all continuous complex
valued functions on X which vanish at ∞.

In our Theorem below we distinguish three cases, according as X is
compact, σ-compact but not compact and not σ-compact, respectively. If
in particular X is compact, our Theorem gives the above mentioned result
of [GyM].

For a first countable locally compact Hausdorff space X with topology
Λ, let X0 denote X ∪ {∞} if X is not compact, and X if X is compact.
Then X0 endowed with the topology

Λ0 = Λ ∪ {X0 \K | K ⊆ Xcompact}
is a compact Hausdorff space, and X is a subspace of X0.
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Theorem. Let X be a first countable locally compact Hausdorff space.

1) If X is compact, then a bijective linear map φ : C0(X) → C0(X)
is diameter preserving if and only if there exists a complex number τ

of modulus 1, a homeomorphism ϕ : X → X and a linear functional

t : C0(X) → C with t(1) 6= −τ such that φ is of the form

(1) φ(f) = τ · f ◦ ϕ + t(f)1 (f ∈ C0(X)).

2) If X is not σ-compact then a bijective linear map φ : C0(X) →
C0(X) is diameter preserving if and only if there exists a complex number

τ of modulus 1 and a homeomorphism ϕ : X → X such that φ is of the

form

(2) φ(f) = τ · f ◦ ϕ (f ∈ C0(X)).

3) If the space X is σ-compact but not compact, then a bijective linear

map φ : C0(X) → C0(X) is diameter preserving if and only if there exists

a complex number τ of modulus 1 and a homeomorphism ϕ : X0 → X0

such that φ is of the form

(3) φ(f) = τ · f ◦ ϕ− τf(ϕ(∞)) (f ∈ C0(X)),

where f(∞) = 0 for every f ∈ C0(X).

Remark1. If in (3) ϕ(∞) = ∞, then φ is of the same form as in (2).

Remark 2. If φ is of the form (2), then it is obviously a surjective
isometry.

Remark 3. Our Theorem also holds for the algebra of all continuous
real valued functions on X. In this situation we have τ = ±1 and in (1)
t : C0(X) → R. In this case the proof is more simple.

Our proof consists of several steps. Some of them are similar to those
of [GyM]. We shall detail only those steps which differ essentially from the
corresponding arguments of [GyM].

Proof of Theorem. It is easy to verify that under the assumptions
of the Theorem, the linear map φ of the form (1), (2) or (3), respectively,
is a diameter preserving linear bijection of C0(X).

Now suppose that φ : C0(X) → C0(X) is a linear bijection which
preserves the diameter of the ranges of functions in C0(X).
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Because of the natural isomorphism, we shall not make difference
between C(X0) and C0(X), defining every function f ∈ C0(X) at the
point ∞ as f(∞) = 0. We note that diam(f(X)) = diam(f(X0)) for any
f ∈ C0(X).

We introduce the following notation. Let X̃ stand for the collection
of all subsets of X having exactly two elements, and X̃0 stand for the
collection of all subsets of X0 having exactly two elements. Let X denote
X0 if X is σ-compact and X if X is not σ-compact. Similarly, let X̃ denote
X̃0 if X is σ-compact and X̃ if X is not σ-compact. For convenience of
the reader, we follow the notation of [GyM] where it is possible. For any
f ∈ C0(X) let

S(f) = {{x, y} ∈ X̃0 : |f(x)− f(y)| = diam(f(X))},
P (f) = {(x, y) ∈ X0 ×X0 : |f(x)− f(y)| = diam(f(X))},
T (f) = {(x, y, u) ∈ X0 ×X0 × C : |f(x)− f(y)| = diam(f(X)),

u = f(x)− f(y)}.

Further, for every {x, y} ∈ X̃0 and u ∈ C let

S({x, y}) = {f ∈ C(X0) : {x, y} ∈ S(f)},
Ss({x, y}) = {f ∈ C(X0) : {{x, y}} = S(f)},
T(x, y, u) = {f ∈ C(X0) : (x, y, u) ∈ T (f)},

Ts(x, y, u) = {f ∈ C(X0) : {(x, y, u), (y, x,−u)} = T (f)}.

Finally, we define

G({x, y}) = ∩{S(φ(f)) : f ∈ C0(X), {x, y} ∈ S(f)},
H(x, y, u) = ∩{T (φ(f)) : f ∈ C0(X), (x, y, u) ∈ T (f)}.

Let
D = {f ∈ C(X0) : ∃{x, y} ∈ X̃ : {{x, y}} = S(f)}.

It is clear that for every nonconstant function f ∈ C(X0), the sets
S(f), P (f) and T (f) are nonempty. Since X is first countable, using
Uryson’s lemma it is easy to see that for every distinct x, y ∈ X there exists
a continuous real valued function f ∈ C(X0) from X0 into [−1, 1] such that
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f(x) = 1, f(y) = −1 and −1 < f(z) < 1 (z ∈ X, z 6= x, z 6= y). If X

is σ-compact, then X0 is first countable and similarly, for every distinct
x, y ∈ X0 there exists a real valued function f ∈ C(X0) from X0 into
[0, 1] such that f(x) = 1, f(y) = 0 (we may assume that x 6= ∞) and
0 < f(z) < 1 (z ∈ X, z 6= x, z 6= y). This shows that for any element
{x, y} ∈ X̃ and any non-zero u ∈ C, the sets Ss({x, y}), Ts(x, y, u) are also
nonempty. It is obvious that the sets S({x, y}), T(x, y, u) are nonempty
for any {x, y} ∈ X̃0 and any non-zero u ∈ C.

We begin now the proof of the necessity of our statements which will
be carried out through a series of steps. The following lemma will be used
repeatedly in our proof. Its proof as well as the proofs of Steps 1 and 2
below are the same as the proofs of the Lemma and Steps 1 and 2 in [GyM],
it suffices only to replace X and X̃ by X0 and X̃0, respectively.

Lemma. Let f1, . . . , fn ∈ C0(X) be arbitrary functions. Then

diam((f1 + . . . + fn)(X)) = diam(f1(X)) + . . . + diam(fn(X))

holds if and only if there exists an {x, y} ∈ X̃0 and a complex number v of

modulus 1 such that fi ∈ T(x, y, λiv) holds for every i = 1, . . . , n, where

λi = diam(fi(X)) (i = 1, . . . , n).

Step 1. For arbitrary {x, y} ∈ X̃0 and 06=u ∈ C, we have G({x, y})6=∅
and H(x, y, u) 6= ∅.

Step 2. If {x1, y1}, {x2, y2} ∈ X̃0 and {x1, y1} 6= {x2, y2}, then we

have G({x1, y1}) ∩G({x2, y2}) = ∅.
Step 3. We have f ∈ D if and only if φ(f) ∈ D.

Let f ∈ D. Then there exists {x, y} ∈ X̃ such that f ∈ Ss({x, y}).
Let f0 = φ−1(f) and let {x0, y0} ∈ S(f0) be arbitrary. Then

∅ 6= G({x0, y0}) ⊆ S(f) = {{x, y}},

and so
G({x0, y0}) = {{x, y}}.

Since {x0, y0} ∈ S(f0) is arbitrary, S(f0) has exactly one element by Step 2,
thus φ−1(f) ∈ D. Applying this result to the diameter preserving bijection
φ−1 instead of φ, the proof of Step 3 is complete.
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Step 4. For every {x, y} ∈ X̃, the set G({x, y}) has exactly one el-

ement which is contained in X̃. The function G′ : X̃ → X̃ defined by

{G′({x, y})} = G({x, y}) is a bijection.

Let {x, y} ∈ X̃ and f ∈ Ss({x, y}). Since f ∈ D, by Step 3 we have
φ(f) ∈ D, thus S(φ(f)) has exactly one element which is in X̃. Hence from

∅ 6= G({x, y}) ⊆ S(φ(f))

we deduce that G({x, y}) has also exactly one element which is contained
in X̃.

We now prove that the function G′ is bijective. In view of Step 2
the injectivity is obvious. To prove the surjectivity, let {x, y} ∈ X̃ and
pick f ∈ C0(X) for which φ(f) ∈ Ss({x, y}). Then φ(f) ∈ D, so by
Step 3 we infer that f ∈ D. Thus there exists {x0, y0} ∈ X̃ for which
S(f) = {{x0, y0}}. Hence we have G′({x0, y0}) ∈ S(φ(f)) = {{x, y}},
thus G′({x0, y0}) = {x, y} verifying our claim.

Step 5. Let {x, y} ∈ X̃ and f ∈ C(X0) be arbitrary. If φ(f) ∈
Ss(G′({x, y})), then f ∈ Ss({x, y}).

If {x0, y0} ∈ S(f) is arbitrary, then G′({x0, y0}) ∈ S(φ(f)) =
{G′({x, y})}. Thus by Step 4 {x0, y0} = {x, y}, hence S(f) = {{x, y}}.

Step 6. Defining the function G′−1 corresponding to φ−1 in the same

way as G′ corresponding to φ was defined in Step 4, we have G′−1 = (G′)−1.

The proof is similar to the proof of Step 6 in [GyM], but with X̃

instead of X̃.

Step 7. If {x1, y1}, {x2, y2} ∈ X̃ and {x1, y1} ∩ {x2, y2} 6= ∅, then we

have

G′({x1, y1}) ∩G′({x2, y2}) 6= ∅.
Further, if {x1, y1}, {x2, y2} ∈ X̃ have exactly one element in common,

then the same holds for G′({x1, y1}) and G′({x2, y2}).
Let {x, y1}, {x, y2} ∈ X̃ with y1 6= y2, and suppose that

G′({x, y1}) ∩G′({x, y2}) = ∅.

Then we may assume that ∞ /∈ G′({x, y2}). Let K ⊆ X \ G′({x, y1}) be
compact such that G′({x, y2}) ⊆ K◦. Then it follows from the surjectivity



212 Máté Győry

of φ that there exist functions f1, f2 ∈ C0(X) with the following properties.
The support of φ(f2) is a subset of K, the range of φ(f1) is included in
[0, 1], the range of φ(f2) is included in [−1/2, 1/2], φ(f1) is 1/2 on the
set K,

φ(f1) ∈ Ss(G′({x, y1})), φ(f2) ∈ Ss(G′({x, y2}))
and, finally,

diam(φ(f1)(X)) = diam(φ(f2)(X)) = 1.

Now f1, f2 ∈ C0(X) are functions with diameter 1 and by Step 5
we infer that f1 ∈ Ss({x, y1}), f2 ∈ Ss({x, y2}). Now we arrive at a
contradiction as in the proof of Step 5 in [GyM].

The second statement of Step 7 follows now from Step 2.

Step 8. Let {x1, y1}, {x2, y2} ∈ X̃. Then {x1, y1} ∩ {x2, y2} = ∅ if

and only if G′({x1, y1}) ∩G′({x2, y2}) = ∅.
The sufficiency follows from Step 7. By Steps 6 and 7 the necessity is

obvious.

Step 9. Let x ∈ X. There exists a unique element g(x) ∈ X such that

g(x) ∈ G′({x, y}) for every x, y ∈ X, x 6= y. The function g : X → X is

bijective and {g(x), g(y)} = G′({x, y}) ({x, y} ∈ X̃).

The proof is similar to the proof of Step 7 in [GyM], it suffices to take
X and X̃ instead of X and X̃, respectively.

Step 10. There exists a complex number τ of modulus 1 such that,

for every {x, y} ∈ X̃, 0 6= u ∈ C and f ∈ T(x, y, u), we have φ(f) ∈
T(g(x), g(y), τu).

Similarly as in the proof of Step 8 in [GyM], but using X̃ instead of
X̃, we obtain that for every {x, y} ∈ X̃ there exists a complex number
τ({x, y}) of modulus 1 such that the implication

(4) f ∈ T(x, y, u) =⇒ φ(f) ∈ T(g(x), g(y), τ({x, y})u)

holds for every u ∈ C. It remains to show that τ does not depend on its
variable {x, y}.

Now, we obtain as in the proof of Step 8 in [GyM] that τ is a constant
function on X̃. Let this constant be denoted by the same symbol τ .
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Let us suppose that X is σ-compact but not compact, x ∈ X and
f ∈ Ts(x,∞, 1). Let zn ∈ X with zn → ∞ and zn 6= x. Since X0

is compact and g : X0 → X0 is a bijection, we may assume that there
exists y ∈ X0 for which g(zn) → g(y). It is easy to see that there exist
fn ∈ T(x, zn, 1) such that fn → f . Hence φ(fn) ∈ T(g(x), g(zn), τ)).
Since X is not compact and φ is continuous, thus from f, φ(f) ∈ C0(X),
φ(fn)(g(x))− φ(fn)(g(zn)) = τ , g(zn) → g(y) and fn → f we deduce that

φ(f)(g(x))− φ(f)(g(y)) = τ.

Thus from |τ | = 1 = |τ({x,∞})| and φ(f) ∈ Ts(g(x), g(∞), τ({x,∞})) we
infer that g(y) = g(∞), so

τ(x,∞) = φ(f)(g(x))− φ(f)(g(∞)) = φ(f)(g(x))− φ(g(y)) = τ.

Hence τ : X̃ → X̃ is the constant τ , and the assertion follows from (4).

Step 11. For every f ∈ C0(X), the function φ(f)◦g−τ ·f is constant

on X.

Let {x, y} ∈ X̃ and f ∈ T(x, y, 1). Now, similarly as in the proof of
Step 9 in [GyM], we can prove that

(5) φ(f)(g(z))− τf(z) = φ(f)(g(x))− τf(x)

holds for every z ∈ X.
If X = X, then we are ready. Let us suppose that X is σ-compact

but not compact. In the proof of Step 10 we showed that then there exist
zn ∈ X, zn →∞ such that g(zn) → g(∞). Thus from (5) we infer that

φ(f)(g(∞))− τf(∞) = lim
n→∞

(φ(f)(g(zn))− τf(zn)) = φ(f)(g(x))− τf(x),

which proves the statement of Step 11.

Now we can complete the proof of the Theorem as follows. By the
linearity of φ, there exists a linear functional t : C0(X) → C such that

φ(f) ◦ g − τ · f = t(f)1 (f ∈ C0(X)).

Since g : X → X is a bijection, with the notation ϕ = g−1 we have

(6) φ(f)− τ · f ◦ ϕ = t(f)1 (f ∈ C0(X)).
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It follows from (6) that f ◦ ϕ is continuous for every f ∈ C0(X). Using
Uryson’s lemma, we deduce that ϕ is continuous. If X is σ-compact, then
X is compact, so ϕ is a continuous bijection between compact Hausdorff
spaces, thus ϕ is a homeomorphism. Let us consider the case when X

is not σ-compact. Let us suppose that xn ∈ X such that xn → ∞ and
suppose on the contrary that xn → y ∈ X. Then there exists y0 ∈ X such
that ϕ(y0) = y. Now by (6) we have

φ(f)(y0)− τ · f(ϕ(y0)) = φ(f)(xn)− τ · f(ϕ(xn)) →
φ(f)(∞)− τ · f(ϕ(y0)) = −τ · f(ϕ(y0)),

thus φ(f)(y0) = 0 for every f ∈ C0(X), which is a contradiction. Now,
defining ϕ at the point ∞ as ϕ(∞) = ∞, ϕ : X0 → X0 is a continu-
ous bijection between compact Hausdorff spaces, thus ϕ : X → X is a
homeomorphism.

If X is compact, then we are ready, since the relation t(1) 6= −τ is
obvious and X = X.

If X is not σ-compact, then for any zn ∈ X with zn → ∞ we have
ϕ(zn) →∞, since ϕ : X → X is a homeomorphism. Thus, by (6), we have

t(f) = φ(f)(zn)− τ · f(ϕ(zn)) → φ(f)(∞)− τ · f(∞) = 0

for every f ∈ C0(X), which completes the proof.
Finally, suppose that X is σ-compact but not compact. Then ϕ :

X0 → X0 is a homeomorphism and by (6) we deduce that

t(f) = φ(f)(∞)− τ · f(ϕ(∞)) = −τf(ϕ(∞))

for every f ∈ C0(X). The proof of the Theorem is now complete. ¤
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