Title: On the resolution of equations $A x^{n}-B y^{n}=C$ in integers x, y and $n \geq 3$, I

Author(s): Kálmán Győry and Ákos Pintér

In our paper we initiate a systematic treatment for solving the title equation for bounded positive integer coefficients A, B and C. To illustrate our approach we explicitly solve the equation in integers x, y and n with $|x y|>1, n \geq 3$ for a collection of coefficients A, B, C. We first derive, for concrete values of $A, B, C \leq 100$, a relatively small upper bound for n, provided that the equation under consideration has no solution with $|x y| \leq 1$ (cf. Theorem 1). Then we give among others all the solutions (x, y, n) for $C=1, A, B \leq 20$ (cf. Theorem 3), and for $A=C=1, B \leq 70$ (cf. Theorem 4). Our method, which may, with some effort, be extended to larger values of A, B and C, combines a wide variety of techniques, classical and modern, in Diophantine analysis.

Address:

Kálmán Győry
Mathematical Institute
Number Theory Research Group of the Hungarian Academy of Sciences
University of Debrecen
4010 Debrecen
Hungary
E-mail: gyory@math.klte.hu

Address:

Ákos Pintér
Mathematical Institute
Number Theory Research Group of the Hungarian Academy of Sciences
University of Debrecen
4010 Debrecen
Hungary

