Prime ideals and complex ring homomorphisms on a commutative algebra

By TAKESHI MIURA (Yonezawa), SIN-EI TAKAHASI (Yonezawa) and NORIO NIWA (Neyagawa)

Abstract

We give a characterization of prime ideals \mathcal{P} of a commutative complex algebra \mathcal{A} in order that \mathcal{P} be the kernel of some complex ring homomorphism on \mathcal{A}. If, in addition, \mathcal{A} is a uniform algebra on an infinite compact metric space, then we show that there are exactly 2^{c} complex ring homomorphisms on \mathcal{A}, whose kernels are non-maximal prime ideals. Moreover, it turns out that ring homomorphisms on a commutative Banach algebra are deeply connected with the existence of discontinuous homomorphisms.

1. Introduction and the statement of results

Let \mathcal{A} and \mathcal{B} be algebras over the complex number field \mathbb{C}. We say that a mapping $\rho: \mathcal{A} \rightarrow \mathcal{B}$ is a ring homomorphism, provided that

$$
\begin{aligned}
\rho(f+g) & =\rho(f)+\rho(g) \\
\rho(f g) & =\rho(f) \rho(g)
\end{aligned}
$$

for every $f, g \in \mathcal{A}$. Moreover if ρ is homogeneous, that is $\rho(\lambda f)=\lambda \rho(f)$ for every $f \in \mathcal{A}$ and $\lambda \in \mathbb{C}$, then ρ is an ordinary homomorphism. It is obvious that if $\rho: \mathcal{A} \rightarrow \mathcal{B}$ is a ring homomorphism, then $\rho(r f)=r \rho(f)$ for every rational number r and $f \in \mathcal{A}$. If, in addition, ρ is assumed to be continuous, then we see that ρ is real linear, that is, $\rho(t f)=t \rho(f)$ for every real number t and $f \in \mathcal{A}$. So, we consider ring homomorphisms which need not be continuous. The study of ring homomorphisms between two Banach algebras has a long history. In 1944,

[^0]Arnold [1] proved that a ring isomorphism between the two Banach algebras of all bounded linear operators on two infinite dimensional Banach spaces is linear or conjugate linear. Kaplansky [6] generalized this result as follows: If ρ is a ring isomorphism from one semisimple Banach algebra A onto another, then A is the direct sum of closed ideals A_{1}, A_{2} and A_{3} such that $\left.\rho\right|_{A_{1}}$ is linear, $\left.\rho\right|_{A_{2}}$ is conjugate linear and that A_{3} is finite dimensional: The finite dimensional part is not trivial in general. In fact, Kestelman [7] proved that there exists a ring homomorphism $\rho: \mathbb{C} \rightarrow \mathbb{C}$ such that ρ is neither linear nor conjugate linear. Moreover, Charnow [2, Theorem 3] proved that there exist $2^{\sharp k}$ ring automorphisms for every algebraically closed field k. Here and after, $\sharp S$ denotes the cardinal number of a set S. In particular, there are $2^{\sharp \mathbb{C}}$ ring automorphisms on \mathbb{C}. MolnÁr $[10$, Theorem 1] essentially gave a representation of a ring homomorphism between two commutative C^{*}-algebras.

Suppose $\rho: A \rightarrow B$ is a ring homomorphism between two commutative Ba nach algebras A and B with the maximal ideal spaces M_{A} and M_{B}, respectively. When studying such mappings, a natural approach would be to consider ring homomorphisms $\varphi \circ \rho: A \rightarrow \mathbb{C}$ for every $\varphi \in M_{B}$, and patch them by a continuous mapping from a suitable subset of M_{B} into M_{A}. Indeed, some representations of ring homomorphisms, with additional conditions, are proved in this way (cf. [5, Theorem 2.3], [9, Theorem 2.6], [11, Theorem 5.1, 5.2]). Unfortunately this approach does not work in general because the $\operatorname{kernel} \operatorname{ker}(\varphi \circ \rho)$ need not be a maximal ideal of A. On the other hand, Molnár [10, Theorem 2] essentially gave a representation of ring homomorphisms between two commutative C^{*}-algebras by another approach. Although we are concerned with ring homomorphism, the term ideal will mean an algebra ideal. Let $C(X)$ denote the commutative Banach algebra of all complex valued continuous functions on a compact Hausdorff space X. Suppose $\tau: \mathbb{C} \rightarrow \mathbb{C}$ is a ring homomorphism, and suppose $x_{0} \in X$. Šemrl [11, Example 5.4] considered a complex ring homomorphism $\rho: C(X) \rightarrow \mathbb{C}$ of the form

$$
\begin{equation*}
\rho(f)=\tau\left(f\left(x_{0}\right)\right) \quad(f \in C(X)) \tag{*}
\end{equation*}
$$

and gave the following example: If \mathbb{N} is the set of all natural numbers and if K is the closure of $\{1 / n: n \in \mathbb{N}\}$ with its usual topology, then there is a non-zero ring homomorphism $\phi: C(K) \rightarrow \mathbb{C}$ such that ϕ is not of the form $(*)$. In particular, $\operatorname{ker} \phi$ is a non-maximal prime ideal of $C(K)$. The first author [9, Lemma 2.1] gave a characterization of a ring homomorphism ρ between two commutative Banach algebras in order that ker ρ be a maximal ideal (cf. [5, Lemma 2.2]).

In this note, we are concerned with complex ring homomorphisms ρ on a commutative complex algebra \mathcal{A}. If ρ is non-zero, then it is easy to see that
$\operatorname{ker} \rho$ is a prime ideal of \mathcal{A}. Recall that if \mathcal{A} is a unital commutative Banach algebra, then there is a one-to-one correspondence between non-zero complex homomorphisms on \mathcal{A} and maximal ideals of \mathcal{A}. With this in mind, one might expect that there is also a correspondence between complex ring homomorphisms and prime ideals of a complex commutative algebra \mathcal{A}. In this note, we give a characterization of prime ideals that can be represented as the kernels of some complex ring homomorphisms. Before we state our main result, we need some terminology. If \mathcal{A} is unital, then we define $\mathcal{A} \stackrel{\text { def }}{=} \mathcal{A}$; otherwise, \mathcal{A}_{e} denotes the commutative complex algebra obtained by adjunction of a unit element e to \mathcal{A}. As usual, we may identify $f \in \mathcal{A}$ with $(f, 0) \in \mathcal{A}_{e}$. Now, we are ready to state our main result.

Theorem 1.1. Suppose \mathcal{A} is a commutative complex algebra and \mathcal{P} is a prime ideal of \mathcal{A}. Put $\mathfrak{c}=\sharp \mathbb{C}$. Then each of the following four properties implies the other three:
(a) There exists a non-zero ring homomorphism $\rho: \mathcal{A} \rightarrow \mathbb{C}$ such that ker $\rho=\mathcal{P}$.
(b) The quotient algebra $\mathcal{A} / \mathcal{P}$ has the cardinal number \mathfrak{c}.
(c) There exists a prime ideal $\tilde{\mathcal{P}}$ of \mathcal{A}_{e} such that $\mathcal{P}=\tilde{\mathcal{P}} \cap \mathcal{A}$ and that $\mathcal{A}_{e} / \tilde{\mathcal{P}}$ has the cardinal number c .
(d) There exists a non-zero ring homomorphism $\tilde{\rho}: \mathcal{A}_{e} \rightarrow \mathbb{C}$ such that $\mathcal{A} \cap \operatorname{ker} \tilde{\rho}=\mathcal{P}$.

Let K be the closure of $\{1 / n: n \in \mathbb{N}\}$ with its usual topology. As stated above, Šemrl gave a complex ring homomorphism on $C(K)$, whose kernel is a non-maximal prime ideal. In the following corollary we see that there exist $2^{\text {c }}$ such mappings. Moreover, the following is true.

Corollary 1.2. If A is a uniform algebra on an infinite compact metric space, then there are exactly $2^{\text {c }}$ complex ring homomorphisms on A, whose kernels are non-maximal prime ideals.

2. A proof of results

Recall that an ideal \mathcal{P} of a commutative algebra is prime if \mathcal{P} is proper and $f g \notin \mathcal{P}$ whenever $f \notin \mathcal{P}$ and $g \notin \mathcal{P}$.

It is advisable to note that the quotient field of an integral domain R is well defined even if R has no unit: If $a \in R \backslash\{0\}$, then the "fraction" a / a is a unit, and we may identify $b \in R$ with $a b / a$.

Lemma 2.1. Suppose \mathcal{A} is a commutative complex algebra and $\rho: \mathcal{A} \rightarrow \mathbb{C}$ is a non-zero ring homomorphism. Then
(a) the kernel $\operatorname{ker} \rho$ is a prime ideal of \mathcal{A}, and
(b) ρ is of the form $\rho=\tau \circ \pi$, where τ is a non-zero field homomorphism on the quotient field \mathcal{F} of $\mathcal{A} / \operatorname{ker} \rho$ into \mathbb{C}, and $\pi: \mathcal{A} \rightarrow \mathcal{A} / \operatorname{ker} \rho$ is the quotient mapping.

Proof. Choose $a \in \mathcal{A}$ such that $\rho(a) \neq 0$: This is possible since ρ is assumed to be non-zero. (a) Pick $f \in \operatorname{ker} \rho$ and $\lambda \in \mathbb{C}$ arbitrarily. It follows that

$$
\rho(\lambda f) \rho(a)=\rho(f) \rho(\lambda a)=0,
$$

and hence $\lambda f \in \operatorname{ker} \rho$. We thus obtain that ker ρ is an (algebra) ideal. Now it is obvious that $\operatorname{ker} \rho$ is a prime ideal.
(b) Let \mathcal{F} be the quotient field of $\mathcal{A} / \operatorname{ker} \rho . \mathcal{F}$ is well defined since $\mathcal{A} / \operatorname{ker} \rho$ is an integral domain by (a). We define the mapping $\tau: \mathcal{F} \rightarrow \mathbb{C}$ by

$$
\tau(\pi(f) / \pi(g))=\frac{\rho(f)}{\rho(g)} \quad(\pi(f) / \pi(g) \in \mathcal{F})
$$

A simple calculation shows that τ is a well defined non-zero field homomorphism. As usual we may identify $\pi(f) \in \mathcal{A} / \operatorname{ker} \rho$ with $\pi(f a) / \pi(a) \in \mathcal{F}$. We get

$$
\tau(\pi(f))=\tau(\pi(f a) / \pi(a))=\frac{\rho(f a)}{\rho(a)}=\rho(f) \quad(f \in \mathcal{A})
$$

and hence $\rho=\tau \circ \pi$.
Lemma 2.2. Suppose \mathcal{A} is a commutative complex algebra and \mathcal{P} is a prime ideal of \mathcal{A}. Then
(a) $\mathfrak{c}=\sharp \mathbb{C} \leq \sharp(\mathcal{A} / \mathcal{P})$, and
(b) if $a \in \mathcal{A} \backslash \mathcal{P}$, the set $\mathcal{P}_{e} \stackrel{\text { def }}{=}\left\{(f, \lambda) \in \mathcal{A}_{e}: f a+\lambda a \in \mathcal{P}\right\}$ is a prime ideal of \mathcal{A}_{e} such that $\mathcal{P}=\mathcal{P}_{e} \cap \mathcal{A}$.

Proof. Pick $a \in \mathcal{A} \backslash \mathcal{P}$ arbitrarily.
(a) Let $\pi: \mathcal{A} \rightarrow \mathcal{A} / \mathcal{P}$ be the quotient mapping. Since $a \notin \mathcal{P}$ and since \mathcal{P} is an ideal, $\pi(\lambda a)=\pi(\mu a)$ implies $\lambda=\mu$ for $\lambda, \mu \in \mathbb{C}$. This shows that the mapping $\lambda \mapsto \pi(\lambda a)$ is an injection, so that

$$
\mathfrak{c}=\sharp \mathbb{C}=\sharp\{\pi(\lambda a): \lambda \in \mathbb{C}\} \leq \sharp(\mathcal{A} / \mathcal{P}) .
$$

(b) It is easy to see that \mathcal{P}_{e} is a proper ideal of \mathcal{A}_{e} such that $\mathcal{P}=\mathcal{P}_{e} \cap \mathcal{A}$. To show that \mathcal{P}_{e} is prime, suppose $\left(f_{1}, \lambda_{1}\right)\left(f_{2}, \lambda_{2}\right) \in \mathcal{P}_{e}$. By definition, this implies that $\left(f_{1} f_{2}+\lambda_{2} f_{1}+\lambda_{1} f_{2}\right) a+\left(\lambda_{1} \lambda_{2}\right) a \in \mathcal{P}$, and so we obtain $\left(f_{1} a+\lambda_{1} a\right)\left(f_{2} a+\lambda_{2} a\right) \in$ \mathcal{P}. Since \mathcal{P} is a prime ideal, $\left(f_{1} a+\lambda_{1} a\right)$ or $\left(f_{2} a+\lambda_{2} a\right)$ belongs to \mathcal{P}. This implies $\left(f_{1}, \lambda_{1}\right) \in \mathcal{P}_{e}$ or $\left(f_{2}, \lambda_{2}\right) \in \mathcal{P}_{e}$, and hence \mathcal{P}_{e} is prime.

Let \mathcal{K} be a transcendental extension field of a commutative field k, and S a subset of \mathcal{K}. We recall that S is said to be algebraically independent over k, if the set of all finite products of elements of S is linearly independent over k. A subset T of \mathcal{K} is called a transcendence base of \mathcal{K} over k, if T is algebraically independent over k which is maximal with respect to the inclusion ordering. The existence of a transcendence base of \mathcal{K} over k is well known (cf. [8, Theorem 1.1 of Chapter X]). The maximality of T shows that \mathcal{K} is algebraic over $k(T)$, the field generated by T over k.

Lemma 2.3. Let \mathbb{Q} be the rational number field and k a transcendental extension field of \mathbb{Q} such that $\sharp k=\boldsymbol{c}$. If T is a transcendence base of k over \mathbb{Q}, then $\sharp T=\mathbf{c}$.

Proof. Suppose T is a transcendence base of k over \mathbb{Q}. Let $\mathbb{Q}(T)$ be the field generated by T over \mathbb{Q}. Since $T \subset \mathbb{Q}(T) \subset k$, we obtain $\sharp T \leq \sharp\{\mathbb{Q}(T)\} \leq \mathfrak{c}$. So, we show that $\mathfrak{c} \leq \sharp T$. Since k is algebraic over $\mathbb{Q}(T)$, each element of k is a zero point of some function in \wp, the set of all monic polynomials over $\mathbb{Q}(T)$. Note that for each monic polynomial, its zero points in k is at most finite. Put $\mathfrak{a}=\sharp \mathbb{Q}$, then we have

$$
\mathfrak{c}=\sharp k \leq(\sharp \wp) \times \mathfrak{a} \leq(\sharp\{\mathbb{Q}(T)\} \times \mathfrak{a}) \times \mathfrak{a}=\sharp\{\mathbb{Q}(T)\},
$$

and hence $\mathfrak{c} \leq \sharp\{\mathbb{Q}(T)\}$. We thus obtain

$$
\begin{equation*}
\mathfrak{c}=\sharp\{\mathbb{Q}(T)\} \leq \mathfrak{a} \times \sharp T . \tag{**}
\end{equation*}
$$

If T were finite, then we would have $\sharp\{\mathbb{Q}(T)\}=\mathfrak{a}$, in contradiction to $\sharp\{\mathbb{Q}(T)\}=\mathfrak{c}$. It follows that $\sharp T \geq \mathfrak{a}$, and so $\mathfrak{a} \times \sharp T=\sharp T$. By $(* *)$ we get $\mathfrak{c} \leq \sharp T$, proving $\sharp T=\mathbf{c}$.

Proof of Theorem 1.1. Let $\pi: \mathcal{A} \rightarrow \mathcal{A} / \mathcal{P}$ be the quotient mapping and fix $a \in \mathcal{A} \backslash \mathcal{P}$.
(a) \Rightarrow (b) By (a) of Lemma 2.2, we obtain $\mathfrak{c} \leq \sharp(\mathcal{A} / \mathcal{P})$. To prove the opposite inequality, let \mathcal{F} be the quotient field of $\mathcal{A} / \mathcal{P}$. By (b) of Lemma 2.1, we can write $\rho=\tau \circ \pi$, where $\tau: \mathcal{F} \rightarrow \mathbb{C}$ is a field homomorphism, and hence injective. It
follows that $\sharp \mathcal{F} \leq \sharp \mathbb{C}=\mathfrak{c}$. If we regard $\mathcal{A} / \mathcal{P}$ as a subset of \mathcal{F}, it follows that $\sharp(\mathcal{A} / \mathcal{P}) \leq \sharp \mathcal{F} \leq \mathfrak{c}$, proving $\sharp(\mathcal{A} / \mathcal{P})=\mathfrak{c}$.
(b) \Rightarrow (c) Let \mathcal{P}_{e} be the prime ideal of \mathcal{A}_{e} as in (b) of Lemma 2.2. Let $\tilde{\pi}: \mathcal{A}_{e} \rightarrow \mathcal{A}_{e} / \mathcal{P}_{e}$ be the quotient mapping. Identification of f and $(f, 0)$ shows that $\pi(f)=\pi(g)$ if and only if $\tilde{\pi}(f, 0)=\tilde{\pi}(g, 0)$ for $f, g \in \mathcal{A}$, and so $\mathfrak{c}=\sharp(\mathcal{A} / \mathcal{P}) \leq$ $\sharp\left(\mathcal{A}_{e} / \mathcal{P}_{e}\right)$. To show the opposite inequality, we define the mapping $\psi: \mathcal{A}_{e} / \mathcal{P}_{e} \rightarrow$ $\mathcal{A} / \mathcal{P}$ by

$$
\psi(\tilde{\pi}(f, \lambda))=\pi(f a+\lambda a) \quad\left(\tilde{\pi}(f, \lambda) \in \mathcal{A}_{e} / \mathcal{P}_{e}\right)
$$

A simple calculation shows that ψ is a well defined injection. Hence $\sharp\left(\mathcal{A}_{e} / \mathcal{P}_{e}\right) \leq$ $\sharp(\mathcal{A} / \mathcal{P})=\mathfrak{c}$, proving $\sharp\left(\mathcal{A}_{e} / \mathcal{P}_{e}\right)=\mathfrak{c}$.
$(\mathrm{c}) \Rightarrow(\mathrm{d})$ Let $\tilde{\mathcal{F}}$ be the quotient field of $\mathcal{A}_{e} / \tilde{\mathcal{P}}$. Then

$$
\mathfrak{c}=\sharp\left(\mathcal{A}_{e} / \tilde{\mathcal{P}}\right) \leq \sharp \tilde{\mathcal{F}} \leq \sharp\left(\mathcal{A}_{e} / \tilde{\mathcal{P}}\right) \times \sharp\left(\mathcal{A}_{e} / \tilde{\mathcal{P}}\right)=\mathfrak{c},
$$

so that $\tilde{\mathcal{F}}$ also has the cardinal number \mathfrak{c}. Note that $\tilde{\mathcal{F}}$ is a transcendental extension of \mathbb{Q} since $\tilde{\mathcal{F}}$ contains a unital algebra $\mathcal{A}_{e} / \tilde{\mathcal{P}} \supset \mathbb{C}$.

Let T and \tilde{T} be transcendence bases of \mathbb{C} and $\tilde{\mathcal{F}}$ over \mathbb{Q}, respectively. By Lemma 2.3, we see that $\sharp T=\mathfrak{c}=\sharp \tilde{T}$. Thus we can find a bijection $\theta: \tilde{T} \rightarrow T$. Since T is algebraically independent over \mathbb{Q}, the mapping θ is naturally extended to a field homomorphism $\tilde{\theta}: \mathbb{Q}(\tilde{T}) \rightarrow \mathbb{Q}(T)$ so that $\tilde{\theta}(r)=r$ for every $r \in \mathbb{Q}$. Since $\tilde{\mathcal{F}}$ is an algebraic extension of $\mathbb{Q}(\tilde{T})$ and since \mathbb{C} is algebraically closed, $\tilde{\theta}$ can be extended to a field homomorphism on $\tilde{\mathcal{F}}$ into \mathbb{C} (cf. [8, Theorem 2.8 of Chapter VII]), which is also denoted by $\tilde{\theta}$. Define $\tilde{\rho}=\tilde{\theta} \circ \tilde{\pi}$, where $\tilde{\pi}: \mathcal{A}_{e} \rightarrow \mathcal{A}_{e} / \tilde{\mathcal{P}}$ is the quotient mapping. Then $\tilde{\rho}: \mathcal{A}_{e} \rightarrow \mathbb{C}$ is a ring homomorphism whose kernel is equal to $\tilde{\mathcal{P}}$, proving $\mathcal{A} \cap \operatorname{ker} \tilde{\rho}=\mathcal{A} \cap \tilde{\mathcal{P}}=\mathcal{P}$.
(d) \Rightarrow (a) Put $\rho=\left.\tilde{\rho}\right|_{\mathcal{A}}$. Then $\rho: \mathcal{A} \rightarrow \mathbb{C}$ is a non-zero ring homomorphism such that ker $\rho=\mathcal{P}$.

Proof of Corollary 1.2. Suppose A is a uniform algebra on an infinite compact metric space X. Let Δ be the set of all non-maximal prime ideals of A. It is well known [4, Corollary 1] that there exist exactly 2^{c} non-maximal prime ideals of A, and hence $\sharp \Delta=2^{\mathfrak{c}}$. Since X is separable, $\sharp A=\mathfrak{c}$: For if X_{0} is a countable dense subset of X, then the restriction map $\left.f \mapsto f\right|_{X_{0}}(f \in A)$ is injective since each element of A is continuous, and hence $\mathfrak{c} \leq \sharp A \leq \mathfrak{a} \times \mathfrak{c}=\mathfrak{c}$. So, there exist exactly $2^{\mathfrak{c}}$ functions on A into \mathbb{C}, which need not be continuous nor ring homomorphic. This implies that there are at most 2^{c} complex ring homomorphisms on A.

Conversely pick $P \in \Delta$ arbitrarily. By (a) of Lemma 2.2, we have

$$
\mathfrak{c} \leq \sharp(A / P) \leq \sharp A=\mathfrak{c},
$$

and hence $\sharp(A / P)=\mathfrak{c}$. So, by Theorem 1.1, to each $P \in \Delta$ there corresponds a complex ring homomorphism $\rho_{P}: A \rightarrow \mathbb{C}$ such that ker $\rho_{P}=P$. Suppose $\rho_{P_{1}}=\rho_{P_{2}}$ for $P_{1}, P_{2} \in \Delta$. It follows from ker $\rho_{P_{j}}=P_{j}$ for $j=1,2$ that $P_{1}=P_{2}$, and hence the mapping $P \mapsto \rho_{P}$ is an injection. We conclude that

$$
2^{\mathfrak{c}}=\sharp \Delta \leq \sharp\left\{\rho_{P}: P \in \Delta\right\},
$$

and the proof is complete.
Remark. Let A be a commutative Banach algebra. It is well-known (cf. [3, Theorem 5.7.32]) that under the continuum hypothesis there is a discontinuous homomorphism on A into some Banach algebra whenever there is a non-maximal prime ideal P of A with $\sharp(A / P)=\mathfrak{c}$. It follows from Theorem 1.1 that under the continuum hypothesis a discontinuous homomorphisms on A exists whenever there is a non-zero ring homomorphism $\rho: A \rightarrow \mathbb{C}$ such that ker ρ is non-maximal.

Example 2.1. Let $\overline{\mathbb{D}}$ denote the closure of the open unit disk \mathbb{D} in \mathbb{C}. The disk algebra $A(\overline{\mathbb{D}})$ is a typical example of uniform algebras. Hatori, Ishil with the first and second author $([5$, Corollary 5.3$])$ proved that if $\rho: A(\overline{\mathbb{D}}) \rightarrow A(\overline{\mathbb{D}})$ is a ring homomorphism whose range contains a non-constant function, then ρ is linear or conjugate linear.

Here, let us consider complex ring homomorphisms on $A(\overline{\mathbb{D}})$, that is, the range contains only constant functions. It is well known that the set of all nonzero complex homomorphisms on $A(\overline{\mathbb{D}})$ can be identified with $\overline{\mathbb{D}}$. So, there are \mathfrak{c} complex homomorphisms on $A(\overline{\mathbb{D}})$. On the other hand, by Corollary 1.2, we see that there are $2^{\mathfrak{c}}$ ring homomorphisms whose kernels are non-maximal prime ideals.

Finally, we give a pathological feature of complex ring homomorphisms (cf. [5, Corollary 5.2]).

Example 2.2. If $H(\Omega)$ is the algebra of all analytic functions on a region $\Omega \subset \mathbb{C}$, then, as we shall show, $H(\Omega)$ is a subring of \mathbb{C}. In particular, it will follow that every subalgebra \mathcal{A} of $H(\Omega)$, which is with or without unit, is a subring of \mathbb{C}. In fact, the ideal (0) containing only zero is a prime ideal of $H(\Omega)$. Moreover $\sharp H(\Omega)=\mathfrak{c}$ since $\mathfrak{c}=\sharp \mathbb{C} \leq \sharp H(\Omega) \leq \sharp C(\Omega)=\mathfrak{c}$, and so by Theorem 1.1 there exists a non-zero complex ring homomorphism ρ on $H(\Omega)$ such that $\operatorname{ker} \rho=(0)$. Therefore, ρ is an injective complex ring homomorphism on $H(\Omega)$.

References

[1] B. H. Arnold, Rings of operators on vector spaces, Ann. of Math. 45 (1944), 24-49.
[2] A. Charnow, The automorphisms of an algebraically closed field, Canad. Math. Bull. 18 (1970), 95-97.
[3] H. G. Dales, Banach Algebras and Automatic Continuity, London Mathematical Society Monographs 24, Clarendon Press, Oxford, 2000.
[4] W. E. Dietrich, Jr., Prime ideals in uniform algebras, Proc. Amer. Math. Soc. 42 (1974), 171-174.
[5] O. Hatori, T. Ishir, T. Miura and S.-E. Takahasi, Characterizations and automatic linearity for ring homomorphisms on algebras of functions, Contemp. Math. 328 (2003), 201-215.
[6] I. Kaplansky, Ring isomorphisms of Banach algebras, Canad. J. Math. 6 (1954), 374-381.
[7] H. Kestelman, Automorphisms of the field of complex numbers, Proc. London Math. Soc. (2)53 (1951), 1-12.
[8] S. Lang, Algebra (2nd edn), Addison-Wesley, California, 1984.
[9] T. Miura, A representation of ring homomorphisms on commutative Banach algebras, Sci. Math. Jpn. 53 (2001), 515-523.
[10] L. Molnár, The range of a ring homomorphism from a commutative C^{*}-algebra, Proc. Amer. Math. Soc. 124 (1996), 1789-1794.
[11] P. Šemrl, Non linear perturbations of homomorphisms on $C(X)$, Quart. J. Math. Oxford Ser. (2)50 (1999), 87-109.

TAKESHI MIURA
DEPARTMENT OF BASIC TECHNOLOGY
APPLIED MATHEMATICS AND PHYSICS
YAMAGATA UNIVERSITY
YONEZAWA 992-8510
JAPAN
E-mail: miura@yz.yamagata-u.ac.jp
SIN-EI TAKAHASI
DEPARTMENT OF BASIC TECHNOLOGY
APPLIED MATHEMATICS AND PHYSICS
YAMAGATA UNIVERSITY
YONEZAWA 992-8510
JAPAN
E-mail: sin-ei@emperor.yz.yamagata-u.ac.jp
NORIO NIWA
FACULTY OF ENGINEERING
OSAKA ELECTRO-COMMUNICATION UNIVERSITY
NEYAGAWA 572-8530
JAPAN
(Received September 16, 2005; revised January 12, 2006)

[^0]: Mathematics Subject Classification: 46J10.
 Key words and phrases: prime ideals, ring homomorphisms.

