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Compatible mappings and a common
fixed point theorem of Chang type

By SALVATORE SESSA (Napoli) and YEOL JE CHO (Jinju)

In this paper, using a condition of “compatibility” between the map-
pings under discussion, due to G. Jungck [5], we generalize a common
fixed point theorem of S. S. Chang [1] in complete metric spaces. This
theorem extends well-known results of Lj.B. Ciric [2], K.M. Das and
K.V. Naik [3], G. Jungck [4] and S. Sessa [8].

1. Two equivalent conditions

Following S. S. Chang [1], let A : [0, +∞) → [0, +∞) be a real-valued
function such that the following conditions (A1), (A2) or (A1), (A3) hold:

(A1) A(t) is nondecreasing and right-continuous,

(A2) for any real number q ≥ 0, there exists a suitable real number t(q)
such that

(a) t(q) is the “upper bound” of the set Aq = {t ≥ 0 : t ≤ q + A(t)},
(b) lim

n→∞
An(t(q)) = 0,

(A3) for any t > 0,
(c) A(t) < t,
(d) lim

t→∞
(t−A(t)) = ∞.

Remark 1. S. S. Chang [1] says that t(q) is the “upper bound” of the
set Aq. Here we assume that t(q) stands for the “least upper bound” of
the set Aq, i.e., t(q) = sup Aq. Presumably, S. S. Chang [1] intended to
assume this and, of course, we have t > q + A(t) for any t > t(q).
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In accordance with J. Matkowski [6], B. A. Meade and S. P. Singh
[7] and Lemma 2 (i) of S. S. Chang [1], we point out the following simple
results:

Lemma 1. If A(t) is nondecreasing, then for any t > 0 we have A(t)<t
if lim

n→∞
An(t) = 0.

Lemma 2. If A is right-continuous and has the property (c), then we
have lim

n→∞
An(t) = 0 for any t > 0.

Remark 2. We note that Aq 6= ∅ since q lies in Aq for any q ≥ 0. If
q > 0, then t(q) > 0 since t(q) ≥ q > 0. If q = 0 and A(t) < t for any
t > 0, then we have A0 = {0}.

Now we give the following result:

Theorem 1. If A satisfies the condition (A1), then the conditions (A2)
and (A3) are equivalent.

Proof. Suppose that (A2) holds. By property (a), then for any q > 0
there exists a real number t(q) > 0 such that t > q +A(t) for any t > t(q),
which means that property (d) of (A3) holds.

Since t(q) ≥ q for any q > 0 and A is nondecreasing and so is An,
using property (b), we have

0 ≤ lim
n→∞

An(q) ≤ lim
n→∞

An(t(q)) = 0 ,

i.e., lim
n→∞

An(q) = 0. This implies A(q) < q for any q > 0 by Lemma 1.

Therefore, the property (c) of (A3) holds.
Conversely, we must show that the properties (c) and (d) of (A3)

imply the properties (a) and (b) of (A2). Indeed, it suffices to assume that
t(q) = 0 if q = 0, and in this case the property (b) is clearly satisfied.
Since the property (d) holds, if q > 0 then there exists certainly a real
number q∗ such that t− A(t) > q for any t > q∗. Assume that t(q) is the
infimum of such q∗’s. If there exists some t̄ ∈ Aq such that t̄ > t(q), let
q∗ be such that t(q) ≤ q∗ < t̄, which implies that t̄ > q + A(t̄). This is a
contradiction since t̄ ∈ Aq. Hence t(q) is an upper bound of Aq. Let q̄ ≥ t
for any t ∈ Aq. We must show that q̄ ≥ t(q). In fact, if there exists some
t̄ > q̄ such that t̄ ≤ q + A(t̄), then t̄ is an Aq and hence t̄ ≤ q̄, which is a
contradiction. This means that t > q +A(t) for any t > q̄, i.e., q̄ ≥ t(q) by
the definition of t(q). Then t(q) is the least upper bound of Aq, i.e., the
property (a) of (A2) holds. The property (b) of (A2) is also satisfied by
Lemma 2 since t(q) ≥ q > 0. This completes the proof.
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2. Basic preliminaries

Let (X, d) be a complete metric space and N be the set of the positive
integers. Adopting the same notations of S. S. Chang [1], let f : X → X
be a mapping such that fm is continuous for some m ∈ N and let {gi}∞i=1

be a sequence of mappings gi : fm−1(X) → X, i = 1, 2, . . . , such that

(1) gi(fm−1(X)) ⊆ fm(X)

for any i ∈ N (if m = 1, assume fm−1 = identity on X). Further, assume
that a sequence {mi}∞i=1 of elements of N exists and is such that the
following inequality holds:

(2) d(gmi
i (x), g

mj

j (y)) ≤ A(M(i, j, x, y, f))

for any i, j ∈ N and x, y ∈ fm−1(X), where

M(i, j, x, y, f) = max
{
d(fx, fy), d(fx, gmi

i (x)), d(fy, g
mj

j (y)),

d(fy, gmi
i (x)), d(fx, g

mj

j (y))
}

and A : [0, +∞) → [0, +∞) is a real-valued function satisfying the condi-
tions (A1) and (A3) (or equivalently (A2)).

As in [1], we observe that the condition (1) implies that

(3) gmi
i : fm−1(X) → fm(X) = f(fm−1(X))

for any i ∈ N. Let x1 be a point of fm−1(X) and, in view of the condition
(3), let x2 ∈ fm−1(X) be such that gm1

1 (x1) = f(x2). Iterating this
process, we can define a sequence {xn} of elements of fm−1(X) such that

(4) yn = gmn
n (xn) = f(xn+1)

for n = 1, 2, . . . .
S. S. Chang [1] proved the following result, which generalizes the

results of Lj.B. Ciric [2], K.M. Das and K.V. Naik [3], G. Jungck [4]:

Theorem 2. Let f : X → X be a mapping such that fm is con-
tinuous for some m ∈ N and let {gi}∞i=1 be a sequence of mappings
gi : fm−1(X) → X, i = 1, 2, . . . , such that the condition (1) holds. Sup-
pose that gi commutes with f for any i ∈ N and further there exists a
sequence {mi}∞i=1 of elements of N such that the inequality (2) holds for
any i, j ∈ N and x, y ∈ fm−1(X), where A : [0, +∞) → [0,+∞) is a real-
valued function satisfying the conditions (A1), (A2) or (A1), (A3). Then f
and gi, i = 1, 2, . . . , have a unique common fixed point fm(z), where z is
the limit of the sequence defined by (4).
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Remark 3. In view of Theorem 1, we can say that the function A in
Theorem 2 satisfies the conditions (A1) and (A3) (or equivalently, (A2)).
On the other hand, the proof of S.S. Chang [1] works only under the
conditions (A1) and (A3).

Remark 4. Lemmas 1 and 3 of S.S. Chang [1] are identical.
We now denote by δ(O(yk, n)) and δ(O(y1,∞)) the diameters of the

sets

O(yk, n) = {yk, yk+1, . . . , yk+n}, k ∈ N ,

and

O(y1,∞) = {y1, y2, . . . , yn, . . . } ,

respectively.
Slightly modifying in some details Lemma 2 of S. Sessa [8] (cf. also

Remark 6 below), it is not hard to prove the following basic lemma:

Lemma 3. Let f : X → X be a mapping and {gi}∞i=1 be a sequence
of mappings gi : fm−1(X) → X, i = 1, 2, . . . , such that the condition
(1) folds for some m ∈ N. Further, there exists a sequence {mi}∞i=1 of
elements of N such that the inequality (2) holds for any i, j ∈ N and
x, y ∈ fm−1(X), where A : [0, +∞) → [0,+∞) is a real-valued function
satisfying the conditions (A1) and (A3). If δ(O(yk, n)) > 0 for any k, n ∈ N,
then we have δ(O(y1,∞)) < ∞ and δ(O(yk, n)) ≤ Ak−1(δ(O(y,∞))).

Remark 5. Note that the continuity of fm in Lemma 3 is not used.
For the same reason the hypothesis that f is continuous can be removed
from Lemma 2 of [8].

In this work, motivated by a recent paper of G. Jungck [5], we gen-
eralize Theorem 2 using the following condition of “compatibility”:

Let {gn}∞n=1 be a sequence of mappings gn : X → X, n = 1, 2, . . . ,
and f : X → X.

We define {gn}∞n=1 and f to be compatible with respect to a sequence
{mn}∞n=1 of elements of N and m ∈ N, if for any sequence {xn}∞n=1 in
X such that if gmn

n (xn), f(xn) → t for some t ∈ X, then d(fhgmn
n (xn),

gmn
n fh(xn)), d(fgn(xn), gnf(xn)) → 0, where h = 1, m.

Note that if gn = g and mn = m = 1, then we obtain Definition 2.1. of
G. Jungck [5], which in turn extends the concept of weak commutativity
introduced in [8]. Of course, if f commutes with gn for any n ∈ N, then
they are compatible with respect to any sequence in N and any m ∈ N. But
the converse is not necessarily true as is shown in the following example:

Example 1. Let X = [0, 1] with the Euclidean metric d and define

gn(x) = g(x) =
x

a + x
and f(x) =

x

a
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for any n ∈ N and x ∈ X, where a > 1. Assuming that mn = 1 for any
n ∈ N, we have for any m ∈ N,

d(gfm(x), fmg(x)) =
x

am+1 + x
− x

am+1 + amx

≤ x2

a + x
=

x

a
− x

a + x
= d(gx, fx)

for all x ∈ X. Then it is easily seen that the mappings f and g are
compatible with respect to the constant sequence {1} and any m ∈ N, but
fgx 6= gfx for all x ∈ X − {0}.

We shall use the following lemma for our main theorem. The proof of
this lemma is identical to that of Proposition 2.2 of G. Jungck [5]:

Lemma 4. Let {gn}∞n=1 and f be compatible with respect to a se-
quence {mn}∞n=1 in N and m ∈ N. Then we have the following:

(a) If gmn
n (t) = f(t) for any n ∈ N, then fgmn

n (t) = gmn
n f(t) and

fgn(t) = gnf(t).
(b) If gmn

n (xn), f(xn) → t for some t ∈ X, then gmn
n fm(xn) →

fm(t) if fm is continuous at t.

3. Main theorem

The proof of Theorem 2 by S. S. Chang [1] must be modified in the
details where compatibility is used in place of commutativity. However,
we will exhibit another technical proof along the same lines of [8] in order
to prove the following theorem:

Theorem 3. Let f : X → X be a mapping such that fm is continuous
for some m ∈ N and {gi}∞i=1 be a sequence of mappings gi : fm−1(X) → X,
i = 1, 2, . . . , such that condition (1) holds. Suppose that there exists a
sequence {mi}∞i=1 of elements of N such that the inequality (2) holds for
any i, j ∈ N and x, y ∈ fm−1(X), where A : [0, +∞) → [0,+∞) is a
real-valued function satisfying the conditions (A1) and (A3).

If {gi}∞i=1 and f are compatible with respect to the above sequence
{mi}∞i=1 and m, then the conclusion of Theorem 2 still holds.

Proof. We suppose two cases. Firstly, assume that δ(O(yk, n)) = 0
for some k, n ∈ N. Then we have

f(xk+1) = yk = yk+1 = g
mk+1
k+1 (xk+1) ,
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where xk+1 is in fm−1(X). Using the inequality (2), we have

d(gmi
i (xk+1), yk) = d(gmi

i (xk+1), g
mk+1
k+1 (xk+1))

≤ A(max{d(yk, yk), d(yk, gmi
i (xk+1))})

= A(d(gmi
i (xk+1), yk))

for any i ∈ N, which implies that

gmi
i (xk+1) = f(xk+1)

for any i ∈ N by the property (c) of (A3).

Secondly, assume that δ(O(yk, n)) > 0 for any k, n ∈ N. By Lemma 3,
δ(O(y1,∞)) is finite. It follows from Lemmas 2 and 3 that, for p, q ∈ N
with 1 < p < q,

lim
p→∞

d(yp, yq) ≤ lim
p→∞

δ(O(yp, q − p)) ≤ lim
p→∞

Ap−1(δ(O(y1,∞))) = 0 .

This means that the sequence, defined by (4), is a Cauchy sequence in
X and hence it converges to some point z ∈ X since X is complete. Since
fm is continuous, we deduce that, by Lemma 4(b),

gmn
n fm−1(yn−1) = gmn

n fm(xn) → fm(z) .

It is easily seen that for any i ∈ N,

lim
n→∞

M(n, i, fm−1(yn−1), fm−1(z), f) = d(fm(z), gmi
i fm−1(z)) .

Using the inequality (2) and the right continuity of A, then we obtain

d(fm(z), gmi
i fm−1(z)) = lim

n→∞
d(gmn

n fm−1(yn−1), gmi
i fm−1(z))

≤ lim
n→∞

A(M(n, i, fm−1(yn−1), fm−1(z), f))

= A(d(fm(z), gmi
i fm−1(z)))

for any i ∈ N and hence, by the property (c) of (A3),

gmi
i fm−1(z) = fm(z) = ffm−1(z)

for any i ∈ N. In both cases, we have proved the existence of a point
w ∈ fm−1(X) such that

gmi
i (w) = fw

for any i ∈ N and so, by Lemma 4(a), we have

gmi
i (fw) = fgmi

i (w) = f2w and gi(fw) = fgi(w)
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for any i ∈ N. Since fw ∈ fm(X) ⊆ fm−1(X), using again the inequality
(2), we have also for any i ∈ N

d(f2w, fw) = d(gmi
i (fw), gmi

i (w))

≤ A(max{d(f2w, fw), d(f2w, f2w), d(fw, fw)})
= A(d(f2w, fw)) ,

which means that f2w = fw by the property (c) of (A3). We also deduce,
from the inequality (2),

d(fw, gi(fw)) = d(gmi
i (w), gig

mi
i (w)) = d(gmi

i (w), gmi
i (gi(w)))

≤ A(max{d(fw, fgi(w), d(fw, fw), d(fgi(w), gi(fw))})
= A(d(fw, gi(fw))) ,

for any i ∈ N, which means that gi(fw) = fw for any i ∈ N. Therefore,
we have proved that fw is a fixed point of f and gi for any i ∈ N. The
uniqueness of the fixed point is easily proved. This completes the proof.

The following example shows that Theorem 3 is a stronger general-
ization of Theorem 2.

Example 2. Let X, f, gi=g and mi=1 for any i ∈ N be as in Example 1
and define A(t) = t/(t + 1) for any t ≥ 0. We have for any m ∈ N,

fm(X) = [0, 1/am] ⊇ [0, 1/(am + 1)] = g(fm−1(X)) .

Of course, A satisfies the conditions (A1) and (A3). Further, we have

d(gx, gy) =
a|x− y|

(a + x)(a + y)
≤ |x− y|

a + |x− y| = A

( |x− y|
a

)

= A(d(fx, fy)) ≤ A(M(i, j, x, y, f))

for any i, j,m ∈ N and x, y ∈ fm−1(X). Since {gi}∞i=1 and f are com-
patible with respect to the constant sequence {1} and any m ∈ N (cf.
Example 1), all the conditions of Theorem 3 are satisfied, but Theorem 2
is not applicable since fgx 6= gfx for all x ∈ X − {0}.

Remark 6. In Lemma 3 of S.S. Chang [1], it is proved that the se-
quence defined by (4) has finite diameter as well as in Lemma 3. This is a
consequence of the fact that the function A has the property (d), but it is
evident that, omitting this condition, Theorem 3 still holds if one assumes
the existence of the sequence, defined by (4), with finite diameter in X.
For instance, see Lemma 2 of S. Sessa [8]. In this case, assuming gi = g
and mi = m = 1 for any i ∈ N, Theorem 3 generalizes Theorem 4 of [8].
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