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Compatible mappings and a common
fixed point theorem of Chang type

By SALVATORE SESSA (Napoli) and YEOL JE CHO (Jinju)

In this paper, using a condition of “compatibility” between the map-
pings under discussion, due to G. JUNGCK [5], we generalize a common
fixed point theorem of S. S. CHANG [1] in complete metric spaces. This
theorem extends well-known results of LJ.B. Ciric [2], K.M. DAs and
K.V. NaIk [3], G. JUNGCK [4] and S. SESsA [8].

1. Two equivalent conditions

Following S. S. CHANG [1], let A : [0, +00) — [0, +00) be a real-valued
function such that the following conditions (A1), (Az) or (A1), (As) hold:

(A7) A(t) is nondecreasing and right-continuous,

(Ag) for any real number ¢ > 0, there exists a suitable real number ¢(q)
such that
(a) t(q) is the “upper bound” of the set A, ={t >0:t < ¢+ A(t)},
(b) Tim_ A" (t(q)) =0,
(As) for any t > 0,
(c) A(t) <t,
(@) Jim (= A() = .

Remark 1. S. S. CHANG [1] says that t(q) is the “upper bound” of the
set A,. Here we assume that ¢(¢) stands for the “least upper bound” of
the set A, i.e., t(¢) = sup A,. Presumably, S. S. CHANG [1] intended to
assume this and, of course, we have t > ¢ + A(t) for any ¢t > t(q).
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In accordance with J. MATKOWSKI [6], B. A. MEADE and S. P. SINGH
[7] and Lemma 2 (i) of S. S. CHANG [1], we point out the following simple
results:

Lemma 1. If A(t) is nondecreasing, then for any t > 0 we have A(t)<t
if lim A"(t) = 0.

Lemma 2. If A is right-continuous and has the property (c), then we
have lim A™(t) =0 for any t > 0.

Remark 2. We note that A, # 0 since ¢ lies in A, for any ¢
g > 0, then t(q) > 0 since t(q) > g > 0. If ¢ = 0 and A(t) < t
t > 0, then we have Ay = {0}.

> 0. If
for any

Now we give the following result:

Theorem 1. If A satisfies the condition (A1), then the conditions (As)
and (As) are equivalent.

PROOF. Suppose that (Az) holds. By property (a), then for any ¢ > 0
there exists a real number t(q) > 0 such that ¢t > ¢+ A(t) for any t > t(q),
which means that property (d) of (A4s) holds.

Since t(q) > ¢ for any ¢ > 0 and A is nondecreasing and so is A",
using property (b), we have

0< lim A"(q) < lim A"(t(q)) =0,

ie., lim A™(q) = 0. This implies A(q) < ¢ for any ¢ > 0 by Lemma 1.

Therefore, the property (c¢) of (As) holds.

Conversely, we must show that the properties (c¢) and (d) of (As)
imply the properties (a) and (b) of (As). Indeed, it suffices to assume that
t(q) = 0 if ¢ = 0, and in this case the property (b) is clearly satisfied.
Since the property (d) holds, if ¢ > 0 then there exists certainly a real
number ¢* such that t — A(t) > ¢ for any t > ¢*. Assume that ¢(q) is the
infimum of such ¢*’s. If there exists some ¢ € A, such that ¢ > t(q), let
q* be such that t(q) < ¢* < t, which implies that ¢ > g + A(f). This is a
contradiction since ¢ € A,. Hence t(g) is an upper bound of A,. Let ¢ >t
for any ¢t € A,. We must show that ¢ > t(¢). In fact, if there exists some
t > @ such that t < ¢+ A(¢), then ¢ is an A, and hence ¢ < g, which is a
contradiction. This means that ¢t > ¢+ A(t) for any ¢t > ¢, i.e., ¢ > t(q) by
the definition of ¢(¢). Then ¢(g) is the least upper bound of A, i.e., the
property (a) of (As) holds. The property (b) of (As) is also satisfied by
Lemma 2 since t(q) > g > 0. This completes the proof.
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2. Basic preliminaries

Let (X, d) be a complete metric space and N be the set of the positive
integers. Adopting the same notations of S. S. CHANG [1], let f: X — X
be a mapping such that f™ is continuous for some m € N and let {g;}5°,
be a sequence of mappings g; : f™ 1(X) — X, i =1,2,..., such that

(1) gi(fmH(X)) € fM(X)

for any i € N (if m = 1, assume f™~! = identity on X). Further, assume
that a sequence {m;};°; of elements of N exists and is such that the
following inequality holds:

(2) d(g;" (x), g7 (y)) < AM(, j,z,y. f))
for any 4,5 € N and z,y € f™ 1(X), where

M (i, j,x,y, f) = max {d(fz, fy),d(fz, gi" (x)),d(fy, 9;" (v)),
d(fy,gi" (x)),d(fx,g;"” (y))}

and A : [0,+00) — [0,400) is a real-valued function satisfying the condi-
tions (A;) and (As) (or equivalently (As)).
As in [1], we observe that the condition (1) implies that

(3) gi" s fTHX) = X)) = FUTHXD)

for any i € N. Let 21 be a point of f™~!(X) and, in view of the condition
(3), let w3 € f™ 1(X) be such that g"'(z1) = f(xa). Iterating this
process, we can define a sequence {x,} of elements of f~1(X) such that

(4) Yn = gn'" (xn) = f(@ni1)

form=1,2,....
S. S. CHANG [1] proved the following result, which generalizes the
results of Ly.B. CIrIC [2], K.M. Das and K.V. NAIK [3], G. JUNGCK [4]:

Theorem 2. Let f : X — X be a mapping such that f™ is con-
tinuous for some m € N and let {g;}2, be a sequence of mappings
gi : f"YX) — X,i=1,2,..., such that the condition (1) holds. Sup-
pose that g; commutes with f for any i € N and further there exists a
sequence {m;}$°, of elements of N such that the inequality (2) holds for
any i,j € N and z,y € fm"1(X), where A : [0,+00) — [0, +00) is a real-
valued function satisfying the conditions (A1), (As) or (A1), (As). Then f
and g;, i =1,2,..., have a unique common fixed point f™(z), where z is
the limit of the sequence defined by (4).
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Remark 3. In view of Theorem 1, we can say that the function A in
Theorem 2 satisfies the conditions (A7) and (As) (or equivalently, (As2)).
On the other hand, the proof of S.S. CHANG [1] works only under the
conditions (A;) and (As).

Remark 4. Lemmas 1 and 3 of S.S. CHANG [1] are identical.

We now denote by §(O(yx,n)) and §(O(y1,00)) the diameters of the
sets

O(ylmn) :{yk7yk+17"'7yk+n}7 kENa
and

O(y1,00) ={y1,Y2, -y Yny--- },

respectively.
Slightly modifying in some details Lemma 2 of S. SESSA [8] (cf. also
Remark 6 below), it is not hard to prove the following basic lemma:

Lemma 3. Let f: X — X be a mapping and {g;};°, be a sequence
of mappings g; : f™1(X) — X, i = 1,2,..., such that the condition
(1) folds for some m € N. Further, there exists a sequence {m;}°, of
elements of N such that the inequality (2) holds for any i,j € N and
z,y € f™1(X), where A : [0,+00) — [0,+00) is a real-valued function
satisfying the conditions (A1) and (A3). If §(O(yx,n)) > 0 for any k,n € N,
then we have §(O(y1,00)) < oo and §(O(yx,n)) < A*=1(§(O(y, 0))).

Remark 5. Note that the continuity of f™ in Lemma 3 is not used.
For the same reason the hypothesis that f is continuous can be removed
from Lemma 2 of [8].

In this work, motivated by a recent paper of G. JUNGCK [5], we gen-
eralize Theorem 2 using the following condition of “compatibility”:

Let {g,}>2, be a sequence of mappings g, : X — X, n =1,2,...,
and f: X — X.

We define {g,,}22; and f to be compatible with respect to a sequence
{m,}>2; of elements of N and m € N, if for any sequence {z,}32; in
X such that if g™ (x,), f(z,) — t for some t € X, then d(f"g™ (z,),

gfnfh(xn)), d(fgn(xn)7gnf(xn)) — 0, where h =1, m.

Note that if g,, = g and m,, = m = 1, then we obtain Definition 2.1. of
G. JUNGCK [5], which in turn extends the concept of weak commutativity
introduced in [8]. Of course, if f commutes with g,, for any n € N, then
they are compatible with respect to any sequence in N and any m € N. But
the converse is not necessarily true as is shown in the following example:

Ezample 1. Let X = [0,1] with the Euclidean metric d and define

T T

gulw) = gla) = —— and f(a) =
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for any n € N and x € X, where a > 1. Assuming that m,, = 1 for any
n € N, we have for any m € N,

m m T T
d(gf (x)vf g(l’)) = amtl 4 ¢ - amtl £ gmy

X T X
< = — — :d
g (gz, fx)

for all x € X. Then it is easily seen that the mappings f and g are
compatible with respect to the constant sequence {1} and any m € N, but
fgx # gfx for all z € X — {0}.

We shall use the following lemma for our main theorem. The proof of
this lemma is identical to that of Proposition 2.2 of G. JUNGCK [5]:

Lemma 4. Let {g,}>2, and f be compatible with respect to a se-
quence {m, }>°, in N and m € N. Then we have the following:
(a) Ifg(t) = f(t) for any n € N, then fg™(t) = g f(t) and
fgn(t) = gnf(t)'
(b) If gl (xn), f(z,) — t for somet € X, then g f™(x,) —
f™(t) if f™ is continuous at t.

3. Main theorem

The proof of Theorem 2 by S. S. CHANG [1] must be modified in the
details where compatibility is used in place of commutativity. However,
we will exhibit another technical proof along the same lines of [8] in order
to prove the following theorem:

Theorem 3. Let f : X — X be a mapping such that f™ is continuous
for somem € N and {g;}32, be a sequence of mappings g; : f™ 1(X) — X,
i = 1,2,..., such that condition (1) holds. Suppose that there exists a
sequence {m;}22, of elements of N such that the inequality (2) holds for
any i,j € N and z,y € fm1(X), where A : [0,4+00) — [0,+00) is a
real-valued function satisfying the conditions (A1) and (As).

If {g;}2, and f are compatible with respect to the above sequence
{m;}32, and m, then the conclusion of Theorem 2 still holds.

PrOOF. We suppose two cases. Firstly, assume that §(O(yx,n)) =0
for some k,n € N. Then we have

f@rt1) = Yk = Y1 = Q?ffl(xml) )
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where z11 is in f™71(X). Using the inequality (2), we have

d(glm"(xk+1),yk) = d(gfi($k+1),g£1f1+l(l‘k+1))
< A(max{d(yk, yr), d(Yx, 9;"* (Tr+1))})
= A(d(g;"" (Tk+1): y))
for any ¢ € N, which implies that
9" (k1) = f(@h41)

for any ¢ € N by the property (c) of (As).

Secondly, assume that 6(O(yg,n)) > 0 for any k,n € N. By Lemma 3,
3(O(y1,00)) is finite. It follows from Lemmas 2 and 3 that, for p,q € N
with 1 < p < g,

Jim d(yp,y,) < lim 6(0(yp,q —p)) < lim A”H(3(O(y1,00))) = 0.

p—00
This means that the sequence, defined by (4), is a Cauchy sequence in

X and hence it converges to some point z € X since X is complete. Since
f™ is continuous, we deduce that, by Lemma 4(b),

g ™ Y1) = gn f (@) — f7(2).

It is easily seen that for any i € N,
Tim M(n.i. £ ). 7). 6) = A ) g )
Using the inequality (2) and the right continuity of A, then we obtain
A (.07 F 7 () = Tim (gl 7 (), g £ ()
< lim AM(ni, S Y1), [ (2), )
= A(d(f™(2), 9" [ (2)))
for any ¢ € N and hence, by the property (c) of (A4s),

g [z = (=) = fFTHR)

for any ¢« € N. In both cases, we have proved the existence of a point
w € fm1(X) such that
g;" (w) = fw

for any ¢ € N and so, by Lemma 4(a), we have

g (fw) = fgl" (w) = fPw and g;(fw) = fgi(w)
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for any i € N. Since fw € f™(X) C f™ }(X), using again the inequality
(2), we have also for any i € N
d(f*w, fw) = d(g;" (fw), g (w))
< A(max{d(f*w, fw),d(f*w, fw),d(fw, fw)})
= A(d(f*w, fw)),

which means that f2w = fw by the property (c) of (43). We also deduce,
from the inequality (2),

d(fw,gi(fw)) = d(g;" (w), gig;"* (w)) = d(g;"* (w), g;"* (gi(w)))
< A(max{d(fw, fgi(w), d(fw, fw),d(fgi(w), gi(fw))})
= A(d(fw, gi(fw))),
for any i € N, which means that ¢;(fw) = fw for any i € N. Therefore,

we have proved that fw is a fixed point of f and g; for any ¢+ € N. The
uniqueness of the fixed point is easily proved. This completes the proof.

The following example shows that Theorem 3 is a stronger general-
ization of Theorem 2.

Ezxample 2. Let X, f, g;=g and m;=1 for any 7+ € N be as in Example 1
and define A(t) =t/(t + 1) for any ¢ > 0. We have for any m € N,

f(X) =10,1/a™] 2[0,1/(a™ +1)] = g(f™ (X))
Of course, A satisfies the conditions (A;) and (As). Further, we have
__ alz—yl -yl (lz—yl
o = et < e = A ()
= A(d(fz, fy)) < A(M(i, j, 2.y, f))

for any i,7,m € N and x,y € f™1(X). Since {g;}32; and f are com-
patible with respect to the constant sequence {1} and any m € N (cf.
Example 1), all the conditions of Theorem 3 are satisfied, but Theorem 2
is not applicable since fgx # gfx for all x € X — {0}.

Remark 6. In Lemma 3 of S.S. CHANG [1], it is proved that the se-
quence defined by (4) has finite diameter as well as in Lemma 3. This is a
consequence of the fact that the function A has the property (d), but it is
evident that, omitting this condition, Theorem 3 still holds if one assumes
the existence of the sequence, defined by (4), with finite diameter in X.
For instance, see Lemma 2 of S. SESSA [8]. In this case, assuming g; = g
and m; = m = 1 for any i € N, Theorem 3 generalizes Theorem 4 of [8].
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