Publ. Math. Debrecen **71/1-2** (2007), 11–20

Derivations with annihilator conditions in prime rings

By BASUDEB DHARA (Kharagpur) and R. K. SHARMA (New Delhi)

Abstract. Let R be a prime ring of char $R \neq 2$ with a derivation d and U a noncentral Lie ideal. If $a \in R$, such that $au^s(d(u))^n u^t \in Z(R)$ for all $u \in U$ and $s(\geq 0)$, $t(\geq 0), n(\geq 1)$ fixed positive integers, then either a = 0 or R satisfies S_4 , the standard identity in four variables.

1. Introduction

Throughout this paper R always denotes a prime ring with center Z = Z(R), extended centroid C and Q its two-sided Martindale quotient ring. The Lie commutator of x, y is denoted by [x, y] and defined by [x, y] = xy - yx for $x, y \in R$.

In [9], HERSTEIN proved that if $d \neq 0$ is a derivation of a prime ring R such that $(d(x))^n \in Z$ for all $x \in R$, then R satisfies S_4 , the standard identity in 4 variables. In [1], BERGEN and CARINI studied the case for a noncentral Lie ideal. They proved that if R is a prime ring of characteristic not 2 and if d is a nonzero derivation of R satisfying $(d(u))^n \in Z$ for all u in some noncentral Lie ideal of R, then also the same conclusion holds.

Other papers have studied derivations with annihilator conditions. POSNER [16] proved that if R is a prime ring and $a \in R$ such that ad(x) = 0 for all $x \in R$ or d(x)a = 0 for all $x \in R$ then either a = 0 or d = 0. In [3], BREŠAR proved that if R is a semiprime (n-1)! torsion free ring and if $ad(x)^n = 0$ for all $x \in R$, and $a \in R$, n a fixed positive integer then ad(R) = 0. In particular, if R is prime then a = 0 or d = 0. This result was generalized by LEE and LIN [14] for the Lie ideal

Mathematics Subject Classification: 16W25, 16R50, 16N60.

Key words and phrases: prime ring, derivation, extended centroid, Martindale quotient ring.

case without considering R to be (n-1)! torsion free. LEE and LIN's result for prime ring case is as follows:

Let R be a prime ring with a derivation d and let U be a Lie ideal of R, $a \in R$. Suppose that $ad(u)^n = 0$ for all $u \in U$, where n is a fixed integer. Then ad(U) = 0 unless char R = 2 and $\dim_C RC = 4$. In addition if $[U, U] \neq 0$, then ad(R) = 0.

For one-sided ideals, CHANG and LIN [4] proved the following:

Let R be a prime ring, ρ a nonzero right ideal of R, d a derivation of R and n a fixed positive integer. If $d(u)u^n = 0$ for all $u \in \rho$, then $d(\rho)\rho = 0$ and if $u^n d(u) = 0$ for all $u \in \rho$, then d = 0 unless $R \cong M_2(F)$, the 2 × 2 matrices over a field F of two elements.

Recently we obtained results [17] for a prime ring R with a derivation d and U a nonzero Lie ideal that if $a \in R$ such that $a(d(u))^n u^m = 0$ for all $u \in U$ or $au^m(d(u))^n = 0$ for all $u \in U$, m, n are fixed positive integers, then (i) a = 0 or d(U) = 0 if char $R \neq 2$ and (ii) a = 0 or d(R) = 0 if $[U, U] \neq 0$ and $R \not\cong M_2(F)$.

Here we generalize most of the above results by considering the cases $au^s(d(u))^n u^t = 0$ for all $u \in U$ and $au^s(d(u))^n u^t \in Z(R)$ for all $u \in U$, a nonzero Lie ideal of R.

One can find a nonzero derivation d, a nonzero Lie ideal U of R, and a nonzero $a \in R$ such that $au^s(d(u))^n u^t \in Z(R)$ for all $u \in U$ and for suitable nonnegative integers s, n, t.

Example. Let $R = M_2(F)$, the ring of all 2×2 matrices over the field F. Take U = R as a non-central Lie ideal of R and d(x) = [q, x] as a nonzero inner derivation induced by some $q \in R$. Then, since $[x, y]^2 \in Z(R)$ for all $x, y \in R$, we have for any $0 \neq a \in Z(R)$ and s = t = 0, n = 2 that $au^s(d(u))^n u^t \in Z(R)$ for all $u \in U$.

2. Main results

First we prove a lemma

Lemma 2.1. Let $R = M_2(F)$, the ring of 2×2 matrices over a field F of characteristic $\neq 2$. If for some $a, b \in R$, $a[x, y]^s[b, [x, y]]^n[x, y]^t = 0$ for all $x, y \in R$, where $s(\geq 0), t(\geq 0), n(\geq 1)$ are fixed integers, then either a = 0 or $b \in F \cdot I_2$.

PROOF. Let $a = (a_{ij})_{2\times 2}$ and $b = (b_{ij})_{2\times 2}$. We choose $x = e_{12}$, $y = e_{21}$. Then the identity $a[x, y]^s [b, [x, y]]^n [x, y]^t = 0$ gives

$$0 = \begin{cases} (-1)^{n/2} 2^n (b_{12} b_{21})^{n/2} \begin{pmatrix} a_{11} & (-1)^{s+t} a_{12} \\ a_{21} & (-1)^{s+t} a_{22} \end{pmatrix}, & \text{if } n \text{ is even} \\ \\ \begin{pmatrix} (-1)^s a_{12} b_{21} & (-1)^{t+1} a_{12} b_{12} \end{pmatrix} \end{cases}$$

$$\left((-1)^{(n-1)/2} 2^n (b_{12}b_{21})^{(n-1)/2} \begin{pmatrix} (-1)^s a_{12}b_{21} & (-1)^{t+1}a_{11}b_{12} \\ (-1)^s a_{22}b_{21} & (-1)^{t+1}a_{21}b_{12} \end{pmatrix}, \text{ if } n \text{ is odd.}$$

This implies that if $b_{12} \neq 0$, $b_{21} \neq 0$ then a = 0.

Let $a \neq 0$. Then at least one of b_{12} and b_{21} must be zero. So without loss of generality we assume that $b_{12} = 0$. Then assuming $x = e_{11}$, $y = e_{12} - e_{21}$ we get

$$[b, [x, y]]^n = \begin{cases} \lambda^{n/2} I, & \text{if } n \text{ is even} \\ \lambda^{(n-1)/2} \begin{pmatrix} -b_{21} & b_{11} - b_{22} \\ -(b_{11} - b_{22}) & b_{21} \end{pmatrix}, & \text{if } n \text{ is odd} \end{cases}$$

where $\lambda = b_{21}^2 - (b_{11} - b_{22})^2$.

If n is even then the identity $a[x,y]^s[b,[x,y]]^n[x,y]^t=0$ gives

$$0 = \begin{cases} \lambda^{n/2} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, & \text{if } s+t \text{ is even} \\ \\ \lambda^{n/2} \begin{pmatrix} a_{12} & a_{11} \\ a_{22} & a_{21} \end{pmatrix}, & \text{if } s+t \text{ is odd.} \end{cases}$$

which implies that $\lambda = 0$, since $a \neq 0$. If n is odd then we have

$$[x,y]^{s}[b,[x,y]]^{n}[x,y]^{t} = \begin{cases} (-1)^{s}\lambda^{(n-1)/2} \begin{pmatrix} -b_{21} & b_{11} - b_{22} \\ -(b_{11} - b_{22}) & b_{21} \end{pmatrix}, & \text{if } s+t \text{ is even} \\ \\ (-1)^{s}\lambda^{(n-1)/2} \begin{pmatrix} b_{11} - b_{22} & -b_{21} \\ b_{21} & -(b_{11} - b_{22}) \end{pmatrix}, & \text{if } s+t \text{ is odd.} \end{cases}$$

If n is odd and s + t is even then the identity $a[x, y]^s[b, [x, y]]^n[x, y]^t = 0$ becomes

$$(-1)^{s} \lambda^{(n-1)/2} \begin{pmatrix} -a_{11}b_{21} - a_{12}(b_{11} - b_{22}) & a_{11}(b_{11} - b_{22}) + a_{12}b_{21} \\ -a_{21}b_{21} - a_{22}(b_{11} - b_{22}) & a_{21}(b_{11} - b_{22}) + a_{22}b_{21} \end{pmatrix} = 0.$$

If $\lambda \neq 0$, then this implies that

$$-a_{11}b_{21} - a_{12}(b_{11} - b_{22}) = 0,$$

$$a_{11}(b_{11} - b_{22}) + a_{12}b_{21} = 0,$$

$$-a_{21}b_{21} - a_{22}(b_{11} - b_{22}) = 0,$$

$$a_{21}(b_{11} - b_{22}) + a_{22}b_{21} = 0.$$

From these equations we get

$$a_{11}\lambda = 0,$$
 $a_{22}\lambda = 0,$
 $a_{12}\lambda = 0,$ $a_{21}\lambda = 0.$

Since $\lambda \neq 0$, a = 0, a contradiction.

Thus $\lambda = 0$. Similarly, if n is odd and s + t is also odd then it can be proved that $\lambda = 0$.

On the other hand, by choosing $x = e_{11}$, $y = e_{12} + e_{21}$ we obtain in a similar manner that

$$\mu = b_{21}^2 + (b_{11} - b_{22})^2 = 0.$$

Hence $0 = \lambda \pm \mu$ leads $b_{21} = 0$ and $b_{11} = b_{22}$. So b is scalar. Thus we have proved that either a = 0 or $b \in F \cdot I_2$.

Before proving the main theorem, we introduce some remarks.

Remark 1. Denote by $T = Q *_C C\{X\}$, the free product over C of the Calgebra Q and the free C-algebra $C\{X\}$, with X the countable set consisting of the noncommuting indeterminates x_1, x_2, \ldots

Elements of T are called generalized polynomials. Nontrivial generalized polynomial means a nonzero element of T. Any element $m \in T$ of the form $m = q_0y_1q_1y_2q_2\ldots y_nq_n$, where $\{q_0, q_1, \ldots, q_n\} \subseteq Q$ and $\{y_1, y_2, \ldots, y_n\} \subseteq X$, is called a monomial and q_0, q_1, \ldots, q_n are called the coefficients of m. Each $f \in T$ can be represented as a finite sum of monomials, and such representation is not unique. Let B be a set of C-independent vectors of Q. A B-monomial is a monomial of the form $q_0y_1q_1y_2q_2\ldots y_nq_n$, where $\{q_0, q_1, \ldots, q_n\} \subseteq B$ and $\{y_1, y_2, \ldots, y_n\} \subseteq X$. Let V = BC, the C-subspace spanned by B. Then f is called a V-generalized polynomial if and only if f has a presentation with all of its coefficients in V. Thus any V-generalized polynomial f can be written in the

form $f = \sum \alpha_i m_i$, where $\alpha_i \in C$ and m_i are *B*-monomials and this representation is unique. This *V*-generalized polynomial $f = \sum \alpha_i m_i$ is trivial i.e., zero element in *T* if and only if $\alpha_i = 0$ for each *i*. For detail study we refer to [5].

This simple criterion will be used in the proof of the theorem to assure that R satisfies a nontrivial generalized polynomial identity.

Remark 2. It is well known that if U is a noncommutative Lie ideal of a prime ring R and I is the ideal of R generated by [U, U], then $I \subseteq U + U^2$ and $[I, I] \subseteq U$ (see [12, Lemma 2 (i),(ii)]).

Briefly we give its proof. For $a, b \in U$ and $r \in R$, we have $[a, b]r = [ar, b] - a[r, b] \in U + U^2$. For $s \in R$, we get commuting both sides by s that $s[a, b]r = [a, b]rs + [[ar, b], s] - [a[r, b], s] \in U + U^2$, since $[a[r, b], s] = a[[r, b], s] + [a, s][r, b] \in U^2$. Thus $I \subseteq U + U^2$. Now since $[U^2, I] \subseteq U$ holds true by using the identity [xy, z] = [x, yz] + [y, zx] for $x, y \in U$ and $z \in I$, we have $[I, I] \subseteq U$.

We are now in a position to prove our theorem

Theorem 2.2. Let R be a prime ring with a derivation d and U be a nonzero Lie ideal. If $a \in R$, such that $au^s(d(u))^n u^t = 0$ for all $u \in U$ and $s(\geq 0)$, $t(\geq 0)$, $n(\geq 1)$ fixed integers, then

(i) a = 0 or d(U) = 0 if U is central,

(ii) a = 0 or d(R) = 0 if char $R \neq 2$ and U is noncentral,

(iii) a = 0 or d(R) = 0 or char R = 2 and R satisfies S_4 if U is noncommutative.

PROOF. (i) If U is central i.e., $U \subseteq Z$ then $d(U) \subseteq Z$, as $d(Z) \subseteq Z$. Since the center of a prime ring R contains no zero divisor of R, $au^s(d(u))^n u^t = 0$ implies that either a = 0 or d(u) = 0.

(ii) Now assume that char $R \neq 2$ and U is noncentral. Since char $R \neq 2$, by [2, Lemma 1] $[U, U] \neq 0$ and $0 \neq [I, R] \subseteq U$, where I is the ideal generated by [U, U]. So $[I, I] \subseteq U$. Hence without loss of generality we can assume U = [I, I]. By our assumption we have,

$$a[x,y]^{s}(d([x,y]))^{n}[x,y]^{t} = 0$$
(1)

for all $x, y \in I$, which implies

$$a[x, y]^{s}([d(x), y] + [x, d(y)])^{n}[x, y]^{t} = 0$$

for all $x, y \in I$. If d is not Q-inner then by KHARCHENKO's theorem [11],

$$a[x,y]^{s}([u,y] + [x,v])^{n}[x,y]^{t} = 0$$

for all $x, y, u, v \in I$.

By CHUANG [5, Theorem 2], this generalized polynomial identity (GPI) is also satisfied by Q and hence by R. In particular for v = 0, u = x, we get

$$a[x, y]^{s+n+t} = 0 (2)$$

for all $x, y \in R$. Let $w = [x, y]^{s+n+t}$. Then aw = 0. From (2) we can write $a[p, wqa]^{s+n+t} = 0$ for all $p, q \in R$. Since aw = 0, it reduces to $a(pwqa)^{s+n+t} = 0$. This can be written as $(wqap)^{s+n+t+1} = 0$ for all $p, q \in R$. By LEVITZKI's lemma [7, Lemma 1.1], wqa = 0 for all $q \in R$. Since R is prime, either a = 0 or w = 0. If $a \neq 0$ then $w = [x, y]^{s+n+t} = 0$ for all $x, y \in R$. Then by HERSTEIN [8, Theorem 2], R is commutative, contradicting the fact that $0 \neq U$ is noncentral. Now if d is Q-inner i.e., d(x) = [b, x] for all $x \in R$ and for some $b \in Q$, then (1) becomes

$$a[x, y]^{s}[b, [x, y]]^{n}[x, y]^{t} = 0$$

for all $x, y \in I$. By CHUANG [5, Theorem 2], this GPI is also satisfied by Q i.e.,

$$f(x,y) = a[x,y]^{s}[b,[x,y]]^{n}[x,y]^{t} = 0$$
(3)

for all $x, y \in Q$.

In case the center C of Q is infinite, we have f(x, y) = 0 for all $x, y \in Q \otimes_C \overline{C}$, where \overline{C} is the algebraic closure of C. Since both Q and $Q \otimes_C \overline{C}$ are prime and centrally closed [6, Theorem 2.5 and 3.5], we may replace R by Q or $Q \otimes_C \overline{C}$ according to C finite or infinite. Thus we may assume that R is centrally closed over C (i.e., RC = R) which is either finite or algebraically closed and f(x, y) = 0for all $x, y \in R$.

Now consider two cases.

Case I. R satisfies a nontrivial GPI

By MARTINDALE's theorem [15], R is then a primitive ring having nonzero socle Hwith C as the associated division ring. Hence by JACOBSON's theorem [10, p.75] R is isomorphic to a dense ring of linear transformations of some vector space Vover C, and H consists of the linear transformations in R of finite rank. If V is a finite dimensional over C then the density of R on V implies that $R \cong M_k(C)$ where $k = \dim_C V$.

Suppose that $\dim_C V \geq 3$.

We show that for any $v \in V$, v and bv are linearly C-dependent. Suppose that v and bv are linearly independent for some $v \in V$. Since $\dim_C V \ge 3$, there

exists $w \in V$ such that v, bv, w are linearly independent over C. By density there exist $x, y \in R$ such that

$$xv = 0,$$
 $xbv = v,$ $xw = v + 2bv$
 $yv = bv,$ $ybv = w,$ $yw = 0.$

Then [x, y]v = (xy - yx)v = v, [x, y]bv = (xy - yx)bv = xw - yv = v + bv and so $[b, [x, y]]^n v = (-1)^n v$. Hence

$$0 = a[x, y]^{s}[b, [x, y]]^{n}[x, y]^{t}v = (-1)^{n}av.$$

This implies that if $av \neq 0$, then v and bv are linearly C-dependent. Now suppose that av = 0. Since a = 0 finishes the proof of the theorem, we assume $a \neq 0$. Since $a \neq 0$, there exists $w \in V$ such that $aw \neq 0$ and then $a(v + w) = aw \neq 0$. By the previous argument we have that w, bw are linearly C-dependent and (v + w), b(v + w) are also. Thus there exist $\alpha, \beta \in C$ such that $bw = w\alpha$ and $b(v + w) = (v + w)\beta$. Moreover, v and w are clearly C-independent and so by density there exist $x, y \in R$ such that

$$\begin{aligned} &xw=0, \qquad &xv=v+w\\ &yw=v+w, \qquad &yv=v. \end{aligned}$$

Then we obtain by using av = 0 that

$$0 = a[x, y]^{s}[b, [x, y]]^{n}[x, y]^{t}w = \pm aw(\beta - \alpha)^{n}.$$

Since $aw \neq 0$, $\alpha = \beta$ and so $bv = v\alpha$ contradicting the independency of v and bv. Hence for each $v \in V$, $bv = v\alpha_v$ for some $\alpha_v \in C$. It is very easy to prove that α_v is independent of the choice of $v \in V$. Thus we can write $bv = v\alpha$ for all $v \in V$ and $\alpha \in C$ fixed.

Now let $r \in R$, $v \in V$. Since $bv = v\alpha$,

$$[b, r]v = (br)v - (rb)v = b(rv) - r(bv) = (rv)\alpha - r(v\alpha) = 0.$$

Thus [b, r]v = 0 for all $v \in V$ i.e., [b, r]V = 0. Since [b, r] acts faithfully as a linear transformation on the vector space V, [b, r] = 0 for all $r \in R$. Therefore $b \in Z(R)$ implies d = 0, ending the proof of this part.

Now suppose $\dim_C V = 2$. Then $R \cong M_2(C)$. Since char $R \neq 2$, by Lemma 2.1 we have that either a = 0 or $b \in C \cdot I_2$. Now $b \in C \cdot I_2$ implies d = 0.

Case II. R does not satisfy any nontrivial GPI

Assume that $a \neq 0$ and $d \neq 0$. Since $d \neq 0$, $b \notin C$. Let $T = Q *_C C\{x, y\}$, the free product of *C*-algebra *Q* and $C\{x, y\}$, the free *C*-algebra in noncommuting indeterminates *x* and *y*. By assumption $a[x, y]^s (b[x, y] - [x, y]b)^n [x, y]^t$ is a GPI for *R* and so

$$f(x,y) = a[x,y]^{s}(b[x,y] - [x,y]b)^{n}[x,y]^{t} = 0$$

in T, since R has no nonzero GPI. Expansion of it yields that if the coefficients $\{1, b, b^2\}$ are C-independent, then all the monomials in the expansion are basis monomials in T and thus $f(x, y) \neq 0$ in T, a contradiction. On the other hand if $b^2 \in span_C\{1, b\}$, it is true that the basis monomial $a[x, y]^s(b[x, y])^n[x, y]^t$ is not canceled in the expansion, so again $f(x, y) \neq 0$ in T, a contradiction.

Thus either a = 0 or d = 0.

(iii) Since U is noncommutative, by [12, Lemma 2], $[M, M] \subseteq U$ where M is the ideal generated by [U, U]. By the similar argument in the proof of part (ii) we have either a = 0 or d = 0 or char R = 2 and $R \subseteq M_2(F)$ for some field F i.e., either a = 0 or d = 0 or char R = 2 and R satisfies S_4 . This completes the proof of this part.

Theorem 2.3. Let R be a prime ring of char $R \neq 2$ with a nonzero derivation d and U be a noncentral Lie ideal. If $a \in R$, such that $au^s(d(u))^n u^t \in Z(R)$ for all $u \in U$ and $s(\geq 0)$, $t(\geq 0)$, $n(\geq 1)$ fixed integers, then either a = 0 or R satisfies S_4 , the standard identity in four variables.

PROOF. Assume that $a \neq 0$. Since char $R \neq 2$ and U is noncentral, by [2, Lemma 1], there exists an ideal I of R such that $0 \neq [I, R] \subseteq U$ and $[U, U] \neq 0$. Let J be any nonzero two-sided ideal of R. Then it is easy to check that $V = [I, J^2] \subseteq U$ is a noncentral Lie ideal of R. If for each $v \in V$, $av^s(d(v))^n v^t = 0$, then by Theorem 2.2, d = 0 which contradicts our assumption. Hence for some $v \in V$, $0 \neq av^s(d(v))^n v^t \in J \cap Z(R)$, since $d(V) \subseteq J$. Thus $J \cap Z(R) \neq 0$. Now let K be a nonzero two-sided ideal of R_Z , the ring of central quotients of R. Since $K \cap R$ is a nonzero two-sided ideal of $R, (K \cap R) \cap Z(R) \neq 0$. Therefore, Kcontains an invertible element in R_Z and so R_Z is a simple ring with identity 1.

Moreover, without loss of generality, we may assume that U = [I, I]. Thus I satisfies the generalized differential identity

$$[a[x_1, x_2]^s (d[x_1, x_2])^n [x_1, x_2]^t, x_3].$$
(4)

If d is not Q-inner then by KHARCHENKO's theorem [11],

$$[a[x_1, x_2]^s ([y_1, x_2] + [x_1, y_2])^n [x_1, x_2]^t, x_3] = 0$$
(5)

19

for all $x_1, x_2, x_3, y_1, y_2 \in I$. By CHUANG [5], this GPI is also satisfied by Qand hence by R. By localizing R at Z(R), it follows that $[a[x_1, x_2]^s([y_1, x_2] + [x_1, y_2])^n[x_1, x_2]^t, x_3]$ is also an identity of R_Z . Since R and R_Z satisfy the same polynomial identities, in order to prove that R satisfies S_4 , we may assume that R is simple ring with 1 and $[R, R] \subseteq U$. Thus R satisfies the identity (5). Now putting $y_1 = [b, x_1] = \delta(x_1)$ and $y_2 = [b, x_2] = \delta(x_2)$ for some $b \notin Z(R)$, where δ is an inner derivation induced by some $b \in R$, we obtain that R satisfies

$$[a[x_1, x_2]^s([y_1, x_2] + [x_1, y_2])^n [x_1, x_2]^t, x_3] = 0.$$

Thus by MARTINDALE's theorem [15], R is a primitive ring with minimal right ideal, whose commuting ring D is a division ring which is finite dimensional over Z(R). However, since R is simple with 1, R must be Artinian. Hence $R = D_{k'}$, the $k' \times k'$ matrices over D, for some $k' \ge 1$. Again by [13, Lemma 2], it follows that there exists a field F such that $R \subseteq M_k(F)$, the ring of $k \times k$ matrices over the field F, and $M_k(F)$ satisfies

$$[a[x_1, x_2]^s (\delta[x_1, x_2])^n [x_1, x_2]^t, x_3] = 0.$$

If $k \geq 3$, then by substituting $x_1 = e_{12}$, $x_2 = e_{22}$ we see that the rank of $[x_1, x_2]$ is equal to 1 and thus the rank of $a[x_1, x_2]^s (\delta[x_1, x_2])^n [x_1, x_2]^t$ is ≤ 2 . Therefore $a[x_1, x_2]^s (\delta[x_1, x_2])^n [x_1, x_2]^t = 0$ for all $x_1, x_2 \in M_k(F)$. Since char $F \neq 2$, by Theorem 2.2, we get either a = 0 or $\delta = 0$ i.e., $b \in Z(R)$. In both cases we have a contradiction. Thus k = 2, that is, R satisfies S_4 .

Similar arguments can be adapted to draw the same conclusion in case d is a Q-inner derivation induced by some $b \in Q$.

ACKNOWLEDGMENT. The authors wish to thank the referees for their valuable comments and suggestions for the improvement of this paper.

References

- J. BERGEN and L. CARINI, A note on derivations with power central values on a Lie ideal, Pac. J. Math. 132(2) (988), 209–213.
- [2] J. BERGEN, I. N. HERSTEIN and J. W. KEER, Lie ideals and derivations of prime rings, J. Algebra 71 (1981), 259–267.
- [3] M. BREŠAR, A note on derivations, Math. J. Okayama Univ. 32 (1990), 83-88.
- [4] CHI-MING CHANG and YU-CHING LIN, Derivations on one-sided ideals of prime rings, Tamsui Oxford J. Math. Sci. 17(2) (2001), 139–145.

- 20 B. Dhara and R. K. Sharma : Derivations with annihilator conditions...
- [5] C. L. CHUANG, GPI's having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103(3) (1988), 723–728.
- [6] T. S. ERICKSON, W. S. MARTINDALE III and J. M. OSBORN, Prime nonassociative algebras, *Pacific J. Math.* 60 (1975), 49–63.
- [7] I. N. HERSTEIN, Topics in ring theory, Univ. of Chicago Press, Chicago, 1969.
- [8] I. N. HESREIN, Center-like elements in prime rings, J. Algebra 60 (1979), 567-574.
- [9] I. N. HERSTEIN, Derivations of prime rings having power central values, Algebraist's Homage, Contemporary Mathematics Vol. 13, A.M.S., Providence, Rhode Island, 1982.
- [10] N. JACOBSON, Structure of rings, Amer. Math. Soc. Colloq. Pub. 37, Amer. Math. Soc., Providence, RI, 1964.
- [11] V. K. KHARCHENKO, Differential identity of prime rings, Algebra and Logic. 17 (1978), 155–168.
- [12] C. LANSKI, Differential identities, Lie ideals, and Posner's theorems, Pacific J. Math. 134(2) (1988), 275–297.
- [13] C. LANSKI, An engel condition with derivation, Proc. Amer. Math. Soc. 118(3) (1993), 731–734.
- [14] T. K. LEE and J. S. LIN, A result on derivations, Proc. Amer. Math. Soc. 124(6) (1996), 1687–1691.
- [15] W. S. MARTINDALE III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576–584.
- [16] E. C. POSNER, Derivation in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
- [17] R. K. SHARMA and B. DHARA, An annihilator condition on prime rings with derivations, *Tamsui Oxf. J. Math. Sci.* 21(1) (2005), 71–80.

BASUDEB DHARA DEPARTMENT OF MATHEMATICS INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR KHARAGPUR-721302 INDIA

E-mail: basu_dhara@yahoo.com

R. K. SHARMA DEPARTMENT OF MATHEMATICS INDIAN INSTITUTE OF TECHNOLOGY, DELHI HAUZ KHAS, NEW DELHI 110016 INDIA

E-mail: rksharma@maths.iitd.ac.in

(Received July 13, 2005; revised May 17, 2006)