Derivations with annihilator conditions in prime rings

By BASUDEB DHARA (Kharagpur) and R. K. SHARMA (New Delhi)

Abstract

Let R be a prime ring of char $R \neq 2$ with a derivation d and U a noncentral Lie ideal. If $a \in R$, such that $a u^{s}(d(u))^{n} u^{t} \in Z(R)$ for all $u \in U$ and $s(\geq 0)$, $t(\geq 0), n(\geq 1)$ fixed positive integers, then either $a=0$ or R satisfies S_{4}, the standard identity in four variables.

1. Introduction

Throughout this paper R always denotes a prime ring with center $Z=Z(R)$, extended centroid C and Q its two-sided Martindale quotient ring. The Lie commutator of x, y is denoted by $[x, y]$ and defined by $[x, y]=x y-y x$ for $x, y \in R$.

In [9], Herstein proved that if $d \neq 0$ is a derivation of a prime ring R such that $(d(x))^{n} \in Z$ for all $x \in R$, then R satisfies S_{4}, the standard identity in 4 variables. In [1], Bergen and Carini studied the case for a noncentral Lie ideal. They proved that if R is a prime ring of characteristic not 2 and if d is a nonzero derivation of R satisfying $(d(u))^{n} \in Z$ for all u in some noncentral Lie ideal of R, then also the same conclusion holds.

Other papers have studied derivations with annihilator conditions. Posner [16] proved that if R is a prime ring and $a \in R$ such that $a d(x)=0$ for all $x \in R$ or $d(x) a=0$ for all $x \in R$ then either $a=0$ or $d=0$. In [3], BREŠAR proved that if R is a semiprime $(n-1)$! torsion free ring and if $a d(x)^{n}=0$ for all $x \in R$, and $a \in R, n$ a fixed positive integer then $a d(R)=0$. In particular, if R is prime then $a=0$ or $d=0$. This result was generalized by LEE and LIN [14] for the Lie ideal
case without considering R to be ($n-1$)! torsion free. LEE and LiN's result for prime ring case is as follows:

Let R be a prime ring with a derivation d and let U be a Lie ideal of R, $a \in R$. Suppose that $a d(u)^{n}=0$ for all $u \in U$, where n is a fixed integer. Then $\operatorname{ad}(U)=0$ unless char $R=2$ and $\operatorname{dim}_{C} R C=4$. In addition if $[U, U] \neq 0$, then $a d(R)=0$.

For one-sided ideals, Chang and Lin [4] proved the following:
Let R be a prime ring, ρ a nonzero right ideal of R, d a derivation of R and n a fixed positive integer. If $d(u) u^{n}=0$ for all $u \in \rho$, then $d(\rho) \rho=0$ and if $u^{n} d(u)=0$ for all $u \in \rho$, then $d=0$ unless $R \cong M_{2}(F)$, the 2×2 matrices over a field F of two elements.

Recently we obtained results [17] for a prime ring R with a derivation d and U a nonzero Lie ideal that if $a \in R$ such that $a(d(u))^{n} u^{m}=0$ for all $u \in U$ or $a u^{m}(d(u))^{n}=0$ for all $u \in U, m, n$ are fixed positive integers, then (i) $a=0$ or $d(U)=0$ if char $R \neq 2$ and (ii) $a=0$ or $d(R)=0$ if $[U, U] \neq 0$ and $R \neq M_{2}(F)$.

Here we generalize most of the above results by considering the cases $a u^{s}(d(u))^{n} u^{t}=0$ for all $u \in U$ and $a u^{s}(d(u))^{n} u^{t} \in Z(R)$ for all $u \in U$, a nonzero Lie ideal of R.

One can find a nonzero derivation d, a nonzero Lie ideal U of R, and a nonzero $a \in R$ such that $a u^{s}(d(u))^{n} u^{t} \in Z(R)$ for all $u \in U$ and for suitable nonnegative integers s, n, t.

Example. Let $R=M_{2}(F)$, the ring of all 2×2 matrices over the field F. Take $U=R$ as a non-central Lie ideal of R and $d(x)=[q, x]$ as a nonzero inner derivation induced by some $q \in R$. Then, since $[x, y]^{2} \in Z(R)$ for all $x, y \in R$, we have for any $0 \neq a \in Z(R)$ and $s=t=0, n=2$ that $a u^{s}(d(u))^{n} u^{t} \in Z(R)$ for all $u \in U$.

2. Main results

First we prove a lemma
Lemma 2.1. Let $R=M_{2}(F)$, the ring of 2×2 matrices over a field F of characteristic $\neq 2$. If for some $a, b \in R, a[x, y]^{s}[b,[x, y]]^{n}[x, y]^{t}=0$ for all $x, y \in R$, where $s(\geq 0), t(\geq 0), n(\geq 1)$ are fixed integers, then either $a=0$ or $b \in F \cdot I_{2}$.

Proof. Let $a=\left(a_{i j}\right)_{2 \times 2}$ and $b=\left(b_{i j}\right)_{2 \times 2}$. We choose $x=e_{12}, y=e_{21}$. Then the identity $a[x, y]^{s}[b,[x, y]]^{n}[x, y]^{t}=0$ gives
$0= \begin{cases}(-1)^{n / 2} 2^{n}\left(b_{12} b_{21}\right)^{n / 2}\left(\begin{array}{ll}a_{11} & (-1)^{s+t} a_{12} \\ a_{21} & (-1)^{s+t} a_{22}\end{array}\right), & \text { if } n \text { is even } \\ (-1)^{(n-1) / 2} 2^{n}\left(b_{12} b_{21}\right)^{(n-1) / 2}\left(\begin{array}{ll}(-1)^{s} a_{12} b_{21} & (-1)^{t+1} a_{11} b_{12} \\ (-1)^{s} a_{22} b_{21} & (-1)^{t+1} a_{21} b_{12}\end{array}\right), & \text { if } n \text { is odd. }\end{cases}$
This implies that if $b_{12} \neq 0, b_{21} \neq 0$ then $a=0$.
Let $a \neq 0$. Then at least one of b_{12} and b_{21} must be zero. So without loss of generality we assume that $b_{12}=0$. Then assuming $x=e_{11}, y=e_{12}-e_{21}$ we get

$$
[b,[x, y]]^{n}= \begin{cases}\lambda^{n / 2} I, & \text { if } n \text { is even } \\
\lambda^{(n-1) / 2}\left(\begin{array}{cc}
-b_{21} & b_{11}-b_{22} \\
-\left(b_{11}-b_{22}\right) & b_{21}
\end{array}\right), & \text { if } n \text { is odd }\end{cases}
$$

where $\lambda=b_{21}^{2}-\left(b_{11}-b_{22}\right)^{2}$.
If n is even then the identity $a[x, y]^{s}[b,[x, y]]^{n}[x, y]^{t}=0$ gives

$$
0= \begin{cases}\lambda^{n / 2}\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right), & \text { if } s+t \text { is even } \\
\lambda^{n / 2}\left(\begin{array}{ll}
a_{12} & a_{11} \\
a_{22} & a_{21}
\end{array}\right), & \text { if } s+t \text { is odd. }\end{cases}
$$

which implies that $\lambda=0$, since $a \neq 0$.
If n is odd then we have
$[x, y]^{s}[b,[x, y]]^{n}[x, y]^{t}=\left\{\begin{array}{cc}(-1)^{s} \lambda^{(n-1) / 2}\left(\begin{array}{cc}-b_{21} & b_{11}-b_{22} \\ -\left(b_{11}-b_{22}\right) & b_{21}\end{array}\right), & \text { if } s+t \text { is even } \\ (-1)^{s} \lambda^{(n-1) / 2}\left(\begin{array}{cc}b_{11}-b_{22} & -b_{21} \\ b_{21} & -\left(b_{11}-b_{22}\right)\end{array}\right), & \text { if } s+t \text { is odd. }\end{array}\right.$
If n is odd and $s+t$ is even then the identity $a[x, y]^{s}[b,[x, y]]^{n}[x, y]^{t}=0$ becomes

$$
(-1)^{s} \lambda^{(n-1) / 2}\left(\begin{array}{ll}
-a_{11} b_{21}-a_{12}\left(b_{11}-b_{22}\right) & a_{11}\left(b_{11}-b_{22}\right)+a_{12} b_{21} \\
-a_{21} b_{21}-a_{22}\left(b_{11}-b_{22}\right) & a_{21}\left(b_{11}-b_{22}\right)+a_{22} b_{21}
\end{array}\right)=0
$$

If $\lambda \neq 0$, then this implies that

$$
\begin{aligned}
-a_{11} b_{21}-a_{12}\left(b_{11}-b_{22}\right) & =0 \\
a_{11}\left(b_{11}-b_{22}\right)+a_{12} b_{21} & =0 \\
-a_{21} b_{21}-a_{22}\left(b_{11}-b_{22}\right) & =0 \\
a_{21}\left(b_{11}-b_{22}\right)+a_{22} b_{21} & =0
\end{aligned}
$$

From these equations we get

$$
\begin{array}{ll}
a_{11} \lambda=0, & a_{22} \lambda=0 \\
a_{12} \lambda=0, & a_{21} \lambda=0
\end{array}
$$

Since $\lambda \neq 0, a=0$, a contradiction.
Thus $\lambda=0$. Similarly, if n is odd and $s+t$ is also odd then it can be proved that $\lambda=0$.

On the other hand, by choosing $x=e_{11}, y=e_{12}+e_{21}$ we obtain in a similar manner that

$$
\mu=b_{21}^{2}+\left(b_{11}-b_{22}\right)^{2}=0
$$

Hence $0=\lambda \pm \mu$ leads $b_{21}=0$ and $b_{11}=b_{22}$. So b is scalar. Thus we have proved that either $a=0$ or $b \in F \cdot I_{2}$.

Before proving the main theorem, we introduce some remarks.
Remark 1. Denote by $T=Q *_{C} C\{X\}$, the free product over C of the C algebra Q and the free C-algebra $C\{X\}$, with X the countable set consisting of the noncommuting indeterminates x_{1}, x_{2}, \ldots.

Elements of T are called generalized polynomials. Nontrivial generalized polynomial means a nonzero element of T. Any element $m \in T$ of the form $m=q_{0} y_{1} q_{1} y_{2} q_{2} \ldots y_{n} q_{n}$, where $\left\{q_{0}, q_{1}, \ldots, q_{n}\right\} \subseteq Q$ and $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\} \subseteq X$, is called a monomial and $q_{0}, q_{1}, \ldots, q_{n}$ are called the coefficients of m. Each $f \in T$ can be represented as a finite sum of monomials, and such representation is not unique. Let B be a set of C-independent vectors of Q. A B-monomial is a monomial of the form $q_{0} y_{1} q_{1} y_{2} q_{2} \ldots y_{n} q_{n}$, where $\left\{q_{0}, q_{1}, \ldots, q_{n}\right\} \subseteq B$ and $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\} \subseteq X$. Let $V=B C$, the C-subspace spanned by B. Then f is called a V-generalized polynomial if and only if f has a presentation with all of its coefficients in V. Thus any V-generalized polynomial f can be written in the
form $f=\sum \alpha_{i} m_{i}$, where $\alpha_{i} \in C$ and m_{i} are B-monomials and this representation is unique. This V-generalized polynomial $f=\sum \alpha_{i} m_{i}$ is trivial i.e., zero element in T if and only if $\alpha_{i}=0$ for each i. For detail study we refer to [5].

This simple criterion will be used in the proof of the theorem to assure that R satisfies a nontrivial generalized polynomial identity.

Remark 2. It is well known that if U is a noncommutative Lie ideal of a prime ring R and I is the ideal of R generated by $[U, U]$, then $I \subseteq U+U^{2}$ and $[I, I] \subseteq U$ (see [12, Lemma 2 (i),(ii)]).

Briefly we give its proof. For $a, b \in U$ and $r \in R$, we have $[a, b] r=[a r, b]-$ $a[r, b] \in U+U^{2}$. For $s \in R$, we get commuting both sides by s that $s[a, b] r=$ $[a, b] r s+[[a r, b], s]-[a[r, b], s] \in U+U^{2}$, since $[a[r, b], s]=a[[r, b], s]+[a, s][r, b] \in$ U^{2}. Thus $I \subseteq U+U^{2}$. Now since $\left[U^{2}, I\right] \subseteq U$ holds true by using the identity $[x y, z]=[x, y z]+[y, z x]$ for $x, y \in U$ and $z \in I$, we have $[I, I] \subseteq U$.

We are now in a position to prove our theorem
Theorem 2.2. Let R be a prime ring with a derivation d and U be a nonzero Lie ideal. If $a \in R$, such that $a u^{s}(d(u))^{n} u^{t}=0$ for all $u \in U$ and $s(\geq 0), t(\geq 0)$, $n(\geq 1)$ fixed integers, then
(i) $a=0$ or $d(U)=0$ if U is central,
(ii) $a=0$ or $d(R)=0$ if char $R \neq 2$ and U is noncentral,
(iii) $a=0$ or $d(R)=0$ or char $R=2$ and R satisfies S_{4} if U is noncommutative.

Proof. (i) If U is central i.e., $U \subseteq Z$ then $d(U) \subseteq Z$, as $d(Z) \subseteq Z$. Since the center of a prime ring R contains no zero divisor of $\bar{R}, a u^{s}(d(u))^{n} u^{t}=0$ implies that either $a=0$ or $d(u)=0$.
(ii) Now assume that char $R \neq 2$ and U is noncentral. Since char $R \neq 2$, by [2, Lemma 1] $[U, U] \neq 0$ and $0 \neq[I, R] \subseteq U$, where I is the ideal generated by $[U, U]$. So $[I, I] \subseteq U$. Hence without loss of generality we can assume $U=[I, I]$. By our assumption we have,

$$
\begin{equation*}
a[x, y]^{s}(d([x, y]))^{n}[x, y]^{t}=0 \tag{1}
\end{equation*}
$$

for all $x, y \in I$, which implies

$$
a[x, y]^{s}([d(x), y]+[x, d(y)])^{n}[x, y]^{t}=0
$$

for all $x, y \in I$. If d is not Q-inner then by Kharchenko's theorem [11],

$$
a[x, y]^{s}([u, y]+[x, v])^{n}[x, y]^{t}=0
$$

for all $x, y, u, v \in I$.
By Chuang [5, Theorem 2], this generalized polynomial identity (GPI) is also satisfied by Q and hence by R. In particular for $v=0, u=x$, we get

$$
\begin{equation*}
a[x, y]^{s+n+t}=0 \tag{2}
\end{equation*}
$$

for all $x, y \in R$. Let $w=[x, y]^{s+n+t}$. Then $a w=0$. From (2) we can write $a[p, w q a]^{s+n+t}=0$ for all $p, q \in R$. Since $a w=0$, it reduces to $a(p w q a)^{s+n+t}=0$. This can be written as $(w q a p)^{s+n+t+1}=0$ for all $p, q \in R$. By Levitzki's lemma [7, Lemma 1.1], wqa $=0$ for all $q \in R$. Since R is prime, either $a=0$ or $w=0$. If $a \neq 0$ then $w=[x, y]^{s+n+t}=0$ for all $x, y \in R$. Then by Herstein $[8$, Theorem 2], R is commutative, contradicting the fact that $0 \neq U$ is noncentral. Now if d is Q-inner i.e., $d(x)=[b, x]$ for all $x \in R$ and for some $b \in Q$, then (1) becomes

$$
a[x, y]^{s}[b,[x, y]]^{n}[x, y]^{t}=0
$$

for all $x, y \in I$. By Chuang [5, Theorem 2], this GPI is also satisfied by Q i.e.,

$$
\begin{equation*}
f(x, y)=a[x, y]^{s}[b,[x, y]]^{n}[x, y]^{t}=0 \tag{3}
\end{equation*}
$$

for all $x, y \in Q$.
In case the center C of Q is infinite, we have $f(x, y)=0$ for all $x, y \in Q \otimes_{C} \bar{C}$, where \bar{C} is the algebraic closure of C. Since both Q and $Q \otimes_{C} \bar{C}$ are prime and centrally closed [6 , Theorem 2.5 and 3.5], we may replace R by Q or $Q \otimes_{C} \bar{C}$ according to C finite or infinite. Thus we may assume that R is centrally closed over C (i.e., $R C=R$) which is either finite or algebraically closed and $f(x, y)=0$ for all $x, y \in R$.

Now consider two cases.
Case I. R satisfies a nontrivial GPI
By Martindale's theorem [15], R is then a primitive ring having nonzero socle H with C as the associated division ring. Hence by Jacobson's theorem [10, p.75] R is isomorphic to a dense ring of linear transformations of some vector space V over C, and H consists of the linear transformations in R of finite rank. If V is a finite dimensional over C then the density of R on V implies that $R \cong M_{k}(C)$ where $k=\operatorname{dim}_{C} V$.

Suppose that $\operatorname{dim}_{C} V \geq 3$.
We show that for any $v \in V, v$ and $b v$ are linearly C-dependent. Suppose that v and $b v$ are linearly independent for some $v \in V$. Since $\operatorname{dim}_{C} V \geq 3$, there
exists $w \in V$ such that $v, b v, w$ are linearly independent over C. By density there exist $x, y \in R$ such that

$$
\begin{array}{lll}
x v=0, & x b v=v, & x w=v+2 b v \\
y v=b v, & y b v=w, & y w=0
\end{array}
$$

Then $[x, y] v=(x y-y x) v=v,[x, y] b v=(x y-y x) b v=x w-y v=v+b v$ and so $[b,[x, y]]^{n} v=(-1)^{n} v$. Hence

$$
0=a[x, y]^{s}[b,[x, y]]^{n}[x, y]^{t} v=(-1)^{n} a v
$$

This implies that if $a v \neq 0$, then v and $b v$ are linearly C-dependent. Now suppose that $a v=0$. Since $a=0$ finishes the proof of the theorem, we assume $a \neq 0$. Since $a \neq 0$, there exists $w \in V$ such that $a w \neq 0$ and then $a(v+w)=a w \neq 0$. By the previous argument we have that $w, b w$ are linearly C-dependent and $(v+w), b(v+w)$ are also. Thus there exist $\alpha, \beta \in C$ such that $b w=w \alpha$ and $b(v+w)=(v+w) \beta$. Moreover, v and w are clearly C-independent and so by density there exist $x, y \in R$ such that

$$
\begin{array}{ll}
x w=0, & x v=v+w \\
y w=v+w, & y v=v .
\end{array}
$$

Then we obtain by using $a v=0$ that

$$
0=a[x, y]^{s}[b,[x, y]]^{n}[x, y]^{t} w= \pm a w(\beta-\alpha)^{n} .
$$

Since $a w \neq 0, \alpha=\beta$ and so $b v=v \alpha$ contradicting the independency of v and $b v$. Hence for each $v \in V, b v=v \alpha_{v}$ for some $\alpha_{v} \in C$. It is very easy to prove that α_{v} is independent of the choice of $v \in V$. Thus we can write $b v=v \alpha$ for all $v \in V$ and $\alpha \in C$ fixed.

Now let $r \in R, v \in V$. Since $b v=v \alpha$,

$$
[b, r] v=(b r) v-(r b) v=b(r v)-r(b v)=(r v) \alpha-r(v \alpha)=0
$$

Thus $[b, r] v=0$ for all $v \in V$ i.e., $[b, r] V=0$. Since $[b, r]$ acts faithfully as a linear transformation on the vector space $V,[b, r]=0$ for all $r \in R$. Therefore $b \in Z(R)$ implies $d=0$, ending the proof of this part.

Now suppose $\operatorname{dim}_{C} V=2$. Then $R \cong M_{2}(C)$. Since char $R \neq 2$, by Lemma 2.1 we have that either $a=0$ or $b \in C \cdot I_{2}$. Now $b \in C \cdot I_{2}$ implies $d=0$.

Case II. $\quad R$ does not satisfy any nontrivial GPI
Assume that $a \neq 0$ and $d \neq 0$. Since $d \neq 0, b \notin C$. Let $T=Q *_{C} C\{x, y\}$, the free product of C-algebra Q and $C\{x, y\}$, the free C-algebra in noncommuting indeterminates x and y. By assumption $a[x, y]^{s}(b[x, y]-[x, y] b)^{n}[x, y]^{t}$ is a GPI for R and so

$$
f(x, y)=a[x, y]^{s}(b[x, y]-[x, y] b)^{n}[x, y]^{t}=0
$$

in T, since R has no nonzero GPI. Expansion of it yields that if the coefficients $\left\{1, b, b^{2}\right\}$ are C-independent, then all the monomials in the expansion are basis monomials in T and thus $f(x, y) \neq 0$ in T, a contradiction. On the other hand if $b^{2} \in \operatorname{span}_{C}\{1, b\}$, it is true that the basis monomial $a[x, y]^{s}(b[x, y])^{n}[x, y]^{t}$ is not canceled in the expansion, so again $f(x, y) \neq 0$ in T, a contradiction.

Thus either $a=0$ or $d=0$.
(iii) Since U is noncommutative, by $[12$, Lemma 2$],[M, M] \subseteq U$ where M is the ideal generated by $[U, U]$. By the similar argument in the proof of part (ii) we have either $a=0$ or $d=0$ or char $R=2$ and $R \subseteq M_{2}(F)$ for some field F i.e., either $a=0$ or $d=0$ or char $R=2$ and R satisfies S_{4}. This completes the proof of this part.

Theorem 2.3. Let R be a prime ring of char $R \neq 2$ with a nonzero derivation d and U be a noncentral Lie ideal. If $a \in R$, such that $a u^{s}(d(u))^{n} u^{t} \in Z(R)$ for all $u \in U$ and $s(\geq 0), t(\geq 0), n(\geq 1)$ fixed integers, then either $a=0$ or R satisfies S_{4}, the standard identity in four variables.

Proof. Assume that $a \neq 0$. Since char $R \neq 2$ and U is noncentral, by [2, Lemma 1], there exists an ideal I of R such that $0 \neq[I, R] \subseteq U$ and $[U, U] \neq 0$. Let J be any nonzero two-sided ideal of R. Then it is easy to check that $V=$ $\left[I, J^{2}\right] \subseteq U$ is a noncentral Lie ideal of R. If for each $v \in V, a v^{s}(d(v))^{n} v^{t}=0$, then by Theorem $2.2, d=0$ which contradicts our assumption. Hence for some $v \in V, 0 \neq a v^{s}(d(v))^{n} v^{t} \in J \cap Z(R)$, since $d(V) \subseteq J$. Thus $J \cap Z(R) \neq 0$. Now let K be a nonzero two-sided ideal of R_{Z}, the ring of central quotients of R. Since $K \cap R$ is a nonzero two-sided ideal of $R,(K \cap R) \cap Z(R) \neq 0$. Therefore, K contains an invertible element in R_{Z} and so R_{Z} is a simple ring with identity 1.

Moreover, without loss of generality, we may assume that $U=[I, I]$. Thus I satisfies the generalized differential identity

$$
\begin{equation*}
\left[a\left[x_{1}, x_{2}\right]^{s}\left(d\left[x_{1}, x_{2}\right]\right)^{n}\left[x_{1}, x_{2}\right]^{t}, x_{3}\right] \tag{4}
\end{equation*}
$$

If d is not Q-inner then by Kharchenko's theorem [11],

$$
\begin{equation*}
\left[a\left[x_{1}, x_{2}\right]^{s}\left(\left[y_{1}, x_{2}\right]+\left[x_{1}, y_{2}\right]\right)^{n}\left[x_{1}, x_{2}\right]^{t}, x_{3}\right]=0 \tag{5}
\end{equation*}
$$

for all $x_{1}, x_{2}, x_{3}, y_{1}, y_{2} \in I$. By ChuAng [5], this GPI is also satisfied by Q and hence by R. By localizing R at $Z(R)$, it follows that $\left[a\left[x_{1}, x_{2}\right]^{s}\left(\left[y_{1}, x_{2}\right]+\right.\right.$ $\left.\left.\left[x_{1}, y_{2}\right]\right)^{n}\left[x_{1}, x_{2}\right]^{t}, x_{3}\right]$ is also an identity of R_{Z}. Since R and R_{Z} satisfy the same polynomial identities, in order to prove that R satisfies S_{4}, we may assume that R is simple ring with 1 and $[R, R] \subseteq U$. Thus R satisfies the identity (5). Now putting $y_{1}=\left[b, x_{1}\right]=\delta\left(x_{1}\right)$ and $y_{2}=\left[b, x_{2}\right]=\delta\left(x_{2}\right)$ for some $b \notin Z(R)$, where δ is an inner derivation induced by some $b \in R$, we obtain that R satisfies

$$
\left[a\left[x_{1}, x_{2}\right]^{s}\left(\left[y_{1}, x_{2}\right]+\left[x_{1}, y_{2}\right]\right)^{n}\left[x_{1}, x_{2}\right]^{t}, x_{3}\right]=0
$$

Thus by Martindale's theorem [15], R is a primitive ring with minimal right ideal, whose commuting ring D is a division ring which is finite dimensional over $Z(R)$. However, since R is simple with $1, R$ must be Artinian. Hence $R=D_{k^{\prime}}$, the $k^{\prime} \times k^{\prime}$ matrices over D, for some $k^{\prime} \geq 1$. Again by [13, Lemma 2], it follows that there exists a field F such that $R \subseteq M_{k}(F)$, the ring of $k \times k$ matrices over the field F, and $M_{k}(F)$ satisfies

$$
\left[a\left[x_{1}, x_{2}\right]^{s}\left(\delta\left[x_{1}, x_{2}\right]\right)^{n}\left[x_{1}, x_{2}\right]^{t}, x_{3}\right]=0
$$

If $k \geq 3$, then by substituting $x_{1}=e_{12}, x_{2}=e_{22}$ we see that the rank of $\left[x_{1}, x_{2}\right]$ is equal to 1 and thus the rank of $a\left[x_{1}, x_{2}\right]^{s}\left(\delta\left[x_{1}, x_{2}\right]\right)^{n}\left[x_{1}, x_{2}\right]^{t}$ is ≤ 2. Therefore $a\left[x_{1}, x_{2}\right]^{s}\left(\delta\left[x_{1}, x_{2}\right]\right)^{n}\left[x_{1}, x_{2}\right]^{t}=0$ for all $x_{1}, x_{2} \in M_{k}(F)$. Since char $F \neq 2$, by Theorem 2.2, we get either $a=0$ or $\delta=0$ i.e., $b \in Z(R)$. In both cases we have a contradiction. Thus $k=2$, that is, R satisfies S_{4}.

Similar arguments can be adapted to draw the same conclusion in case d is a Q-inner derivation induced by some $b \in Q$.

Acknowledgment. The authors wish to thank the referees for their valuable comments and suggestions for the improvement of this paper.

References

[1] J. Bergen and L. Carini, A note on derivations with power central values on a Lie ideal, Pac. J. Math. 132(2) (988), 209-213.
[2] J. Bergen, I. N. Herstein and J. W. Keer, Lie ideals and derivations of prime rings, J. Algebra 71 (1981), 259-267.
[3] M. Brešar, A note on derivations, Math. J. Okayama Univ. 32 (1990), 83-88.
[4] Chi-Ming Chang and Yu-Ching Lin, Derivations on one-sided ideals of prime rings, Tamsui Oxford J. Math. Sci. 17(2) (2001), 139-145.
[5] C. L. Chuang, GPI's having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103(3) (1988), 723-728.
[6] T. S. Erickson, W. S. Martindale III and J. M. Osborn, Prime nonassociative algebras, Pacific J. Math. 60 (1975), 49-63.
[7] I. N. Herstein, Topics in ring theory, Univ. of Chicago Press, Chicago, 1969.
[8] I. N. Hesrein, Center-like elements in prime rings, J. Algebra 60 (1979), 567-574.
[9] I. N. Herstein, Derivations of prime rings having power central values, Algebraist's Homage, Contemporary Mathematics Vol. 13, A.M.S., Providence, Rhode Island, 1982.
[10] N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Pub. 37, Amer. Math. Soc., Providence, RI, 1964.
[11] V. K. Kharchenko, Differential identity of prime rings, Algebra and Logic. 17 (1978), 155-168.
[12] C. Lanski, Differential identities, Lie ideals, and Posner's theorems, Pacific J. Math. 134(2) (1988), 275-297.
[13] C. Lanski, An engel condition with derivation, Proc. Amer. Math. Soc. 118(3) (1993), 731-734.
[14] T. K. Lee and J. S. Lin, A result on derivations, Proc. Amer. Math. Soc. 124(6) (1996), 1687-1691.
[15] W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584.
[16] E. C. Posner, Derivation in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
[17] R. K. Sharma and B. Dhara, An annihilator condition on prime rings with derivations, Tamsui Oxf. J. Math. Sci. 21(1) (2005), 71-80.

BASUDEB DHARA
DEPARTMENT OF MATHEMATICS
INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR
KHARAGPUR-721302
INDIA
E-mail: basu_dhara@yahoo.com
R. K. SHARMA

DEPARTMENT OF MATHEMATICS
INDIAN INSTITUTE OF TECHNOLOGY, DELHI
HAUZ KHAS, NEW DELHI 110016
INDIA
E-mail: rksharma@maths.iitd.ac.in
(Received July 13, 2005; revised May 17, 2006)

