The unit group of $\boldsymbol{F} \boldsymbol{A}_{4}$

By R. K. SHARMA (Delhi), J. B. SRIVASTAVA (Delhi)
and MANJU KHAN (Delhi)

Abstract. A complete characterization of the unit group $\mathscr{U}\left(F A_{4}\right)$ of the group algebra $F A_{4}$ of the alternating group of degree $4, A_{4}$, over a finite field F has been obtained.

1. Introduction and result

Let $F G$ be the group algebra of a group G over a field F. For a normal subgroup H of G, the canonical homomorphism $g \mapsto g H: G \longrightarrow G / H$ can be extended to an algebra homomorphism from $F G$ to $F[G / H]$ defined by

$$
\sum_{g \in G} a_{g} g \mapsto \sum_{g \in G} a_{g} g H
$$

for $a_{g} \in F$. The kernel of this homomorphism, denoted by $\omega(H)$, is the ideal of $F G$ generated by $\{h-1 \mid h \in H\}$. Thus $F G / \omega(H) \cong F[G / H]$. The augmentation ideal $\omega(F G)$ of the group algebra $F G$ is defined by

$$
\omega(F G)=\left\{\sum_{g \in G} a_{g} g \in F G \mid a_{g} \in F, \sum_{g \in G} a_{g}=0\right\}
$$

Clearly $\omega(G)=\omega(F G)$. In general, $\omega(H)=\omega(F H) F G=F G \omega(F H)$. For $H=G, F G / \omega(G) \cong F$, showing Jacobson radical of $F G, J(F G)$, is contained in $\omega(F G)$. It is known that $J(F G)=\omega(F G)$ when G is a finite p-group and the characteristic of $F, \operatorname{char}(F)$, is p.

The lower central chain of G is given by

$$
G=\gamma_{1}(G) \supseteq \gamma_{2}(G) \supseteq \cdots \supseteq \gamma_{m+1}(G) \supseteq \cdots
$$

where $\gamma_{m+1}(G)=\left(\gamma_{m}(G), G\right)$, for $m \geq 1$. For $g_{1}, g_{2} \in G$ the commutator $\left(g_{1}, g_{2}\right)=$ $g_{1}^{-1} g_{2}^{-1} g_{1} g_{2}$. The group G is said to be nilpotent of class n if $\gamma_{n+1}(G)=(1)$ and $\gamma_{n}(G) \neq(1)$. In this paper, the work is on the alternating group of degree $4, A_{4}$, whose presentation is given by

$$
A_{4}=\left\langle\sigma, a \mid \sigma^{3}=a^{2}=(\sigma a)^{3}=1\right\rangle
$$

where $\sigma=(1,2,3)$ and $a=(1,2)(3,4)$. Thus, with $b=(1,3)(2,4)$ and $c=$ $(1,4)(2,3)$,

$$
A_{4}=\left\{1, a, b, c, \sigma, \sigma a, \sigma b, \sigma c, \sigma^{2}, \sigma^{2} a, \sigma^{2} b, \sigma^{2} c\right\}
$$

The distinct conjugacy classes of A_{4} are $\mathscr{C}_{0}=\{1\}, \mathscr{C}_{1}=\{a, b, c\}, \mathscr{C}_{2}=\{\sigma, \sigma a$, $\sigma b, \sigma c\}, \mathscr{C}_{3}=\left\{\sigma^{2}, \sigma^{2} a, \sigma^{2} b, \sigma^{2} c\right\}$. Hence $\left\{\widehat{\mathscr{C}}_{0}, \widehat{\mathscr{C}}_{1}, \widehat{\mathscr{C}_{2}}, \widehat{\mathscr{C}_{3}}\right\}$ form a basis of the center $Z\left(F A_{4}\right)$ (cf. Lemma 4.1.1 of [4]), where $\widehat{\mathscr{C}}_{i}$ denotes the class sum. We obtain the relations between $\widehat{\mathscr{C}}_{0}, \widehat{\mathscr{C}}_{1}, \widehat{\mathscr{C}}_{2}, \widehat{\mathscr{C}}_{3}$ given by

$$
\begin{gathered}
\widehat{\mathscr{C}}_{2}^{2}=4 \widehat{\mathscr{C}}_{3}, \quad \widehat{\mathscr{C}}_{2}^{4}=4^{3} \widehat{\mathscr{C}}_{2}, \quad \widehat{\mathscr{C}}_{3}^{2}=4 \widehat{\mathscr{C}}_{2}, \quad \widehat{\mathscr{C}}_{3}^{4}=4^{3} \widehat{\mathscr{C}}_{3} \\
\text { and } \quad \widehat{\mathscr{C}}_{2}^{3}=4^{2}\left(\widehat{\mathscr{C}}_{0}+\widehat{\mathscr{C}}_{1}\right)=\widehat{\mathscr{C}}_{3}^{3}
\end{gathered}
$$

Using these relations one may prove, by induction on r, that for $i=2,3$,

$$
\begin{equation*}
\left(\widehat{\mathscr{C}}_{i}\right)^{3 r+1}=4^{3 r} \widehat{\mathscr{C}}_{i}, \text { for } r \geq 0 \tag{1}
\end{equation*}
$$

We define a matrix representation of A_{4},

$$
\theta: A_{4} \longrightarrow \mathscr{U}(F \oplus \mathbb{M}(3, F))
$$

by the assignment

$$
\sigma \mapsto\left(1,\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)\right) \quad \text { and } \quad a \mapsto\left(1,\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)\right)
$$

and can be extended to an algebra homomorphism

$$
\theta^{*}: F A_{4} \longrightarrow F \oplus \mathbb{M}(3, F),
$$

where $\mathbb{M}(n, F)$ denotes the algebra of all $n \times n$ matrices over F. We use V_{1} to denote $1+J\left(F A_{4}\right)$, the kernel of the epimorphism from $\mathscr{U}\left(F A_{4}\right)$ to $\mathscr{U}\left(F A_{4} / J\left(F A_{4}\right)\right)$ which is induced by the canonical homomorphism: $F A_{4} \longrightarrow F A_{4} / J\left(F A_{4}\right)$.

Allen and Hobby in [2], also Al-Sohebany in [1] have worked on the characterization of the unit group $\mathscr{U}\left(\mathbb{Z} A_{4}\right)$, and obtained that the group A_{4} has a torsion free normal complement in $V\left(\mathbb{Z} A_{4}\right)$, the subgroup of the unit group of augmentation 1. Subsequently, Sharma and Gongopadhaya has given presentations of the torsion free normal complement of A_{4} in $V\left(\mathbb{Z} A_{4}\right)$ and of $V\left(\mathbb{Z} A_{4}\right)$ in [5], [6]. Conjugacy classes of all elements of finite order in $V\left(\mathbb{Z} A_{4}\right)$ have been studied by Allen and Hobby in [3]. However, so far, the structure of the unit group $\mathscr{U}\left(F A_{4}\right)$, for char $(F)=p>0$ is not known.

This paper gives a complete characterization of the unit group $\mathscr{U}\left(F A_{4}\right)$, for $\operatorname{char}(F)=p>0$ by proving the following:

Theorem. Let $\mathscr{U}\left(F A_{4}\right)$ be the group of units of the group algebra $F A_{4}$ of the alternating group of degree 4 over a finite field F of positive characteristic p. Let F_{2} be a quadratic extension of the field F and $V_{1}=1+J\left(F A_{4}\right)$, where $J\left(F A_{4}\right)$ denotes the Jacobson radical of the group algebra $F A_{4}$.
(1) If $p=2$, then V_{1} is a nilpotent group of class 2 and $\mathscr{U}\left(F A_{4}\right)$ is centrally metabelian, but not metabelian.
(2) If $p=3$, then V_{1} is a central subgroup of exponent $|F|$ and

$$
\mathscr{U}\left(F A_{4}\right) / V_{1} \cong F^{*} \times G L(3, F)
$$

(3) If $p>3$ and $|F|=p^{n}$, then

$$
\mathscr{U}\left(F A_{4}\right) \cong \begin{cases}G L(3, F) \times F^{*} \times F^{*} \times F^{*} & \text { if } 3 \mid(p-1) \text { or } n \text { is even; } \\ G L(3, F) \times F_{2}^{*} \times F^{*} & \text { if } n \text { is odd. }\end{cases}
$$

Here $F^{*}=F \backslash\{0\}$ and $G L(3, F)$ is the general linear group of degree 3 over F.

2. Proof of the theorem

(1) Let $\operatorname{char}(F)=2$ with $|F|=2^{n}$. Set $K_{4}=\{1, a, b, c\}$ so that K_{4} is a normal subgroup of A_{4} and $\left[A_{4}: K_{4}\right]=3$. Then, by Theorem 7.2.7 of [4],

$$
J\left(F A_{4}\right)=J\left(F K_{4}\right) F A_{4}=\omega\left(F K_{4}\right) F A_{4}=\omega\left(K_{4}\right) .
$$

Hence $F A_{4} / J\left(F A_{4}\right) \cong F\left[A_{4} / K_{4}\right]$. Note that $A_{4} / K_{4}=\left\langle\bar{\sigma}=\sigma K_{4}\right\rangle$, is a cyclic group of order 3 , say C_{3}. Suppose $x=\alpha_{0}+\alpha_{1} \bar{\sigma}+\alpha_{2} \bar{\sigma}^{2} \in F C_{3}$, for $\alpha_{i} \in F$. If n is even, then $3 \mid\left(2^{n}-1\right)$ and consequently,

$$
x^{2^{n}}=\alpha_{0} 2^{n}+\alpha_{1} 2^{n}(\bar{\sigma})^{2^{n}}+\alpha_{2} 2^{2^{n}}\left(\bar{\sigma}^{2}\right)^{2^{n}}=x
$$

so that $o(x) \mid\left(2^{n}-1\right)$, when $x \in \mathscr{U}\left(F C_{3}\right)$. Thus $F C_{3} \cong F \oplus F \oplus F$, if n is even. When n is odd, $3 \nmid\left(2^{n}-1\right)$; but $3 \mid\left(2^{2 n}-1\right)$ and as above, $x^{2^{2 n}}=x, \forall x \in F C_{3}$. Hence if n is odd, $F C_{3} \cong F_{2} \oplus F$.

Now, observe that $x(a-1) y(b-1) \in Z\left(F A_{4}\right), \forall x, y \in A_{4}$, so that $\omega\left(K_{4}\right)^{2} \subseteq$ $Z\left(F A_{4}\right)$, and consequently, $\omega\left(K_{4}\right)^{3}=0$. For $\xi, \eta \in \omega\left(K_{4}\right)$, we have

$$
(1+\xi, 1+\eta) \equiv(1-\xi-\eta)(1+\xi+\eta) \equiv 1 \quad \bmod Z\left(F A_{4}\right)
$$

Thus $\gamma_{2}\left(V_{1}\right) \subseteq Z\left(F A_{4}\right)$ and hence $\gamma_{3}\left(V_{1}\right)=(1)$, so that V_{1} is a nilpotent group of class 2.

Since $\mathscr{U}\left(F A_{4}\right) / V_{1}$ is an Abelian group, we have $\mathscr{U}\left(F A_{4}\right)^{\prime} \subseteq V_{1}$, therefore $\mathscr{U}\left(F A_{4}\right)^{\prime \prime} \subseteq V_{1}^{\prime} \subseteq Z\left(F A_{4}\right)$. Hence $\mathscr{U}\left(F A_{4}\right)$ is centrally metabelian. But it is not metabelian because $\left(\left(u_{1}, u_{2}\right),\left(u_{1}, u_{3}\right)\right) \neq 1$, where

$$
\begin{aligned}
& u_{1}=1+\sigma+\sigma^{2} a+\sigma^{2} b+b \\
& u_{2}=1+\sigma+\sigma^{2} a+\sigma^{2} c+b \\
& u_{3}=1+\sigma^{2} a+\sigma^{2} b+\sigma^{2} c+c .
\end{aligned}
$$

(2) Let $\operatorname{char}(F)=3$ and $|F|=3^{n}$. Assume $x \in \operatorname{Ker} \theta^{*}$ (cf. Introduction for θ^{*}) with

$$
x=\sum_{(i, t) \in I} \alpha_{i} t+\alpha_{i+1} \sigma t+\alpha_{i+2} \sigma^{2} t
$$

for $\alpha_{i} \in F$ and $I=\{(0,1),(3, a),(6, b),(9, c)\}$. Then $\theta^{*}(x)=0$ gives the following systems of equations:

$$
\begin{align*}
\sum_{i=0}^{11} \alpha_{i} & =0 \tag{2}\\
\alpha_{i}+\alpha_{j}-\alpha_{k}-\alpha_{l} & =0 \tag{3}
\end{align*}
$$

where $(i, j, k, l) \in\{(0,6,3,9),(1,10,4,7),(2,5,8,11),(2,8,5,11),(0,9,3,6)$, $(1,4,7,10),(1,7,4,10),(2,11,5,8),(0,3,6,9)\}$. Solving the system over F we get

$$
\alpha_{i}=\alpha_{i+3 j}, \quad \text { for } i=0,1,2 \quad \text { and } \quad j=1,2,3
$$

Further, from equation (2), $\alpha_{0}+\alpha_{1}+\alpha_{2}=0$. Hence

$$
\text { Ker } \theta^{*}=\left\{\alpha_{0}\left(\widehat{\mathscr{C}_{0}}+\widehat{\mathscr{C}_{1}}\right)+\alpha_{1} \widehat{\mathscr{C}_{2}}+\alpha_{2} \widehat{\mathscr{C}_{3}} \mid \alpha_{0}+\alpha_{1}+\alpha_{2}=0\right\}
$$

Thus $x^{3^{n}}=0, \forall x \in \operatorname{Ker} \theta^{*}$, so that $\operatorname{Ker} \theta^{*} \subseteq J\left(F A_{4}\right)$. Also, since θ^{*} is onto, $\theta^{*}\left(J\left(F A_{4}\right)\right) \subseteq J(F \oplus \mathbb{M}(3, F))=0$ and so $J\left(F A_{4}\right) \subseteq$ Ker θ^{*}. Hence Ker $\theta^{*}=J\left(F A_{4}\right)$, therefore

$$
\left(F A_{4}\right) / J\left(F A_{4}\right) \cong F \oplus \mathbb{M}(3, F)
$$

Now, since $\mathscr{U}\left(F A_{4}\right) / V_{1} \cong \mathscr{U}\left(F A_{4} / J\left(F A_{4}\right)\right)$, we have

$$
\mathscr{U}\left(F A_{4}\right) / V_{1} \cong F^{*} \times G L(3, F)
$$

Since $x^{3^{n}}=0$, for all $x \in J\left(F A_{4}\right)$, we have V_{1} is a central subgroup of exponent 3^{n}.
(3) Assume $p>3$. Since $p \nmid\left|A_{4}\right|$, by Artin-Wedderburn theorem we have

$$
F A_{4} \cong \mathbb{M}\left(n_{1}, D_{1}\right) \oplus \mathbb{M}\left(n_{2}, D_{2}\right) \oplus \cdots \oplus \mathbb{M}\left(n_{r}, D_{r}\right)
$$

where D_{i} 's are finite dimensional division algebras over F. Thus D_{i} 's are finite fields, as F is finite. Since $F A_{4}$ is noncommutative, there exists a k such that $n_{k}>1$, so that n_{k} will be either 2 or 3 . Further, since $\operatorname{dim}_{F}\left(Z\left(F A_{4}\right)\right)=4$, we will get either of the following two possibilities only.

$$
\begin{aligned}
& F A_{4} \cong \mathbb{M}(3, F) \oplus F \oplus F \oplus F \\
& F A_{4} \cong \mathbb{M}(3, F) \oplus F_{2} \oplus F
\end{aligned}
$$

If $3 \mid(p-1)$, then $p^{n} \equiv 1 \bmod 3$, for all n. Using the equation (1) in Section 1, we compute that

$$
\widehat{\mathscr{C}}_{2}^{p^{n}}=\widehat{\mathscr{C}}_{2}^{3 r+1}=\left(4^{3 r}\right) \widehat{\mathscr{C}}_{2}=\left(4^{p^{n}-1}\right) \widehat{\mathscr{C}_{2}}=\widehat{\mathscr{C}_{2}}
$$

Similarly, we have $\widehat{\mathscr{C}}_{3}^{p^{n}}=\widehat{\mathscr{C}_{3}}$. Also, note that $\left(\widehat{\mathscr{C}_{0}}+\widehat{\mathscr{C}_{1}}\right)^{p^{n}}=\widehat{\mathscr{C}_{0}}+\widehat{\mathscr{C}}_{1}$. Thus $x^{p^{n}}=x$, for all $x \in Z\left(F A_{4}\right)$. In particular, if $x \in \mathscr{U}\left(Z\left(F A_{4}\right)\right)$, then $o(x) \mid\left(p^{n}-1\right)$. Hence $F A_{4} \cong \mathbb{M}(3, F) \oplus F \oplus F \oplus F$. Also, when $3 \nmid(p-1)$ but n is even, then $3 \mid\left(p^{n}-1\right)$, so that

$$
F A_{4} \cong \mathbb{M}(3, F) \oplus F \oplus F \oplus F
$$

If $3 \nmid(p-1)$ and n is odd, we get $3 \nmid\left(p^{n}-1\right)$ and so $3 \mid\left(p^{n}+1\right)$. Then $3 \mid\left(p^{2 n}-1\right)$, which implies $x^{p^{2 n}}=x$ for all $x \in Z\left(F A_{4}\right)$. Thus

$$
F A_{4} \cong \mathbb{M}(3, F) \oplus F_{2} \oplus F
$$

Hence

$$
\mathscr{U}\left(F A_{4}\right) \cong \begin{cases}G L(3, F) \times F^{*} \times F^{*} \times F^{*} & \text { if } 3 \mid(p-1) \text { or } n \text { is even; } \\ G L(3, F) \times F_{2}^{*} \times F^{*} & \text { if } n \text { is odd. }\end{cases}
$$

This completes the proof of the Theorem.
Acknowledgements. We would like to thank the referee for the valuable suggestions which improved the quality of the presentation.

References

[1] A. A. Al-Sohebany, On the group of units of $\mathbf{Z}\left[A_{4}\right]$, Arab Gulf J. Sci. Res. 3(1) (1985), 227-235.
[2] P. J. Allen and C. Hobby, A characterization of units in $\mathbf{Z}\left[A_{4}\right]$, J. Algebra 66(2) (1980), 534-543.
[3] P. J. Allen and C. Hobby, Elements of finite order in $V\left(\mathbf{Z} A_{4}\right)$, Pacific J. Math. 138(1) (1989), 1-8.
[4] D. S. Passman, The algebraic structure of group rings, Wiley-Interscience [John Wiley \& Sons], New York, 1977.
[5] R. K. Sharma and S. Gangopadhyay, On chains in units of $\mathbf{Z} A_{4}$, Math. Sci. Res. Hot-Line 4(9) (2000), 1-33.
[6] R. K. Sharma and S. Gangopadhyay, On units in $\mathbf{Z} A_{4}$, Math. Sci. Res. Hot-Line 4(8) (2000), 13-29.
R. K. SHARMA

DEPARTMENT OF MATHEMATICS
INDIAN INSTITUTE OF TECHNOLOGY, DELHI
NEW DELHI-110016
INDIA
E-mail: rksharma@maths.iitd.ac.in
J. B. SRIVASTAVA

DEPARTMENT OF MATHEMATICS
INDIAN INSTITUTE OF TECHNOLOGY, DELHI
NEW DELHI-110016
INDIA
E-mail: jbsrivas@maths.iitd.ac.in
MANJU KHAN
DEPARTMENT OF MATHEMATICS
INDIAN INSTITUTE OF TECHNOLOGY, DELHI
NEW DELHI-110016
INDIA
E-mail: manjukhan.iitd@gmail.com

