Publ. Math. Debrecen 43 / 3-4 (1993), 329-336

On the tangency of sets of the class $\tilde{M}_{p,k}$

By TADEUSZ KONIK (Częstochowa, Poland)

Abstract. In the present paper the problem of the tangency of sets of the class $\tilde{M}_{p,k}$ in generalized metric spaces is considered.

Introduction. Let E be an arbitrary non-empty set and E_0 the family of all non-empty subsets of this set.

Let ϱ be any metric of the set E. We shall denote

(1)
$$\varrho(x,A) = \inf_{y \in A} \varrho(x,y) \quad \text{for} \quad x \in E, \ A \in E_0.$$

Let k be an arbitrary but fixed positive real number. By A' we shall denote the set of all cluster points of the set $A \in E_0$.

We assume by definition (see [5])

(2)
$$\tilde{M}_{p,k} = \left\{ A \in E_0 : p \in A' \text{ and there exists } \mu > 0 \text{ such that} \right.$$

for an arbitrary $\varepsilon > 0$ there exists $\delta > 0$ such that for every pair of points $(x, y) \in [A, p; \mu, k]$
if $\varrho(x, p) < \delta$ and $\frac{\varrho(x, A)}{\varrho^k(x, p)} < \delta$ then $\frac{\varrho(x, y)}{\varrho^k(x, p)} < \varepsilon \right\}$

where

(3)
$$[A, p; \mu, k] =$$

= { $(x, y) : x \in E, y \in A \text{ and } \mu \varrho(x, A) < \varrho^k(x, p) = \varrho^k(y, p)$ }

Let ℓ denote any non-negative real function defined on the Cartesian product $E_0 \times E_0$. The pair (E, ℓ) we shall call a generalized metric space (see [8]).

We say that the set $A \in E_0$ has the Darboux property at the point p of the space (E, ℓ) if there exists a number $\tau > 0$ such that $A \cap S_{\ell}(p, r) \neq \emptyset$ for

Tadeusz Konik

 $r \in (0, \tau)$. $S_{\ell}(p, r)$ denotes here the sphere with the centre at the point p and the radius r in the space (E, ℓ) . The set of all sets having the Darboux property at the point p of the space (E, ℓ) will be denoted by $D_p(E, \ell)$.

Let a, b be any non-negative real functions defined in a certain righthand side neighbourhood of 0 such that

(4)
$$a(r) \xrightarrow[r \to 0+]{} 0, \quad b(r) \xrightarrow[r \to 0+]{} 0.$$

The pair (A, B) of sets $A, B \in E_0$ we call (a, b)-clustered at the point p of the space (E, ℓ) if 0 is the cluster point of the set of all real numbers r > 0 such that the sets $A \cap S_{\ell}(p, r)_{a(r)}, B \cap S_{\ell}(p, r)_{b(r)}$ are non empty.

The sets $S_{\ell}(p,r)_{a(r)}$, $S_{\ell}(p,r)_{b(r)}$ are so-called a(r), b(r)-neighbourhoods of the sphere $S_{\ell}(p,r)$ in the space (E,ℓ) (see [8]). From the above definitions it follows that the pair (A, B) is (a, b)-clustered at the point pof the space (E,ℓ) if the sets $A, B \in D_p(E,\ell)$.

Let $d_{\varrho}A$ denote the diameter of the set $A \in E_0$ and $\varrho(A, B)$ the distance of the sets $A, B \in E_0$ in the metric space (E, ϱ) .

By F_{ϱ} we shall denote the class of the functions ℓ fulfilling the conditions:

- $1^{\circ} \ \ell : E_0 \times E_0 \to \langle 0, \infty \rangle,$
- 2° there exist a numbers m, M such that $0 < m \le M < \infty$ and $m\varrho(A, B) \le \ell(A, B) \le M d_{\varrho}(A \cup B)$ for $A, B \in E_0$,
- 3° the function ℓ generates on the set E the metric ℓ_0 defined by the formula: $\ell_0(x, y) = \ell(\{x\}, \{y\})$ for $x, y \in E$.

From Lemma 1.1 of the paper [5] it follows that for an arbitrary set $A \in \tilde{M}_{p,k} \cap D_p(E,\ell)$

(5)
$$\frac{1}{r^k} d_\ell \left(A \cap S_\ell(p, r)_{a(r)} \right) \xrightarrow[r \to 0+]{} 0,$$

when

(6)
$$\frac{a(r)}{r^{k+1}} \xrightarrow[r \to 0+]{} \alpha, \quad (\alpha < \infty).$$

According to the definition given by W. WALISZEWSKI in the paper [8], the set $A \in E_0$ is (a, b)-tangent of order k to the set $B \in E_0$ at the point p of the space (E, ℓ) , which we shall write in the form $(A, B) \in T_{\ell}(a, b, k, p)$, iff the pair (A, B) is (a, b)-clustered at the point p of this space and

(7)
$$\frac{1}{r^k}\ell(A\cap S_\ell(p,r)_{a(r)}, B\cap S_\ell(p,r)_{b(r)}) \xrightarrow[r \to 0+]{} 0.$$

We call $T_{\ell}(a, b, k, p)$ the relation of (a, b)-tangency of sets of order k at the point p of the space (E, ℓ) .

In this paper the problem of the tangency of sets of the class $M_{p,k}$ is considered, our considerations being based on W. Waliszewski's definition.

For k = 1 the class $M_{p,k}$ contains among other things such classes of sets as H_p , A_p^* (see [1]) and the class I_p of all simple arcs with an origin at the point $p \in E$.

Moreover W. Waliszewski's definition essentially generalizes known earlier definitions of the tangency of sets in a metric space (E, ϱ) .

One of these definitions (the most general) says that the set $A \in E_0$ is tangent to the set $B \in E_0$ at the point $p \in E$ if $p \in A'$ and

(8)
$$\frac{\varrho(x,B)}{\varrho(p,x)} \xrightarrow[A \ni x \to p]{} 0.$$

The condition (8) is equivalent to the condition

(9)
$$\frac{1}{r} \sup\{\varrho(x,B) : x \in A \text{ and } \varrho(p,x) = r\} \xrightarrow[r \to 0+]{} 0.$$

If we put

(10)
$$\varrho_0(A,B) = \sup_{x \in A} \varrho(x,B) \text{ for } A, B \in E_0,$$

then the condition (9) can be written in the form

(11)
$$\frac{1}{r}\varrho_0(A \cap S_{\varrho}(p,r),B) \xrightarrow[r \to 0+]{} 0,$$

where $S_{\varrho}(p,r)$ denotes the sphere with centre at the point p and radius r in a metric space (E, ϱ) .

Setting a(r) = 0, b(r) = r for r > 0, condition (11) can be written

(12)
$$\frac{1}{r}\varrho_0\left(A\cap S_{\varrho}(p,r)_{a(r)}, \ B\cap S_{\varrho}(p,r)_{b(r)}\right) \xrightarrow[r \to 0+]{} 0,$$

which, according to the definition of the tangency relation $T_{\ell}(a, b, k, p)$, means that $(A, B) \in T_{\varrho_0}(a, b, 1, p)$.

This implies that if we replace the function ρ_0 in condition (12) by an arbitrary non-negative real function ℓ defined on the Cartesian product $E \times E$, then we get the definition of the tangency of sets in the sense of W. Waliszewski.

Because the function ρ_0 is a particular case of the function ℓ , W. Waliszewski's definition does in reality generalize the above mentioned definition of the tangency of sets in a metric space (E, ρ) .

In this paper (by hypothesis) the function ℓ generates on the set E the metric ℓ_0 , so one can also speak about considering the problem of the tangency of sets of the class $\tilde{M}_{p,k}$ in the ordinary metric space (E, ℓ_0) .

Tadeusz Konik

In Section 1 of the present paper the problem of the tangency of sets of the class $\tilde{M}_{p,k}$ for the functions ℓ belonging to the class F_{ρ} is considered.

In Section 2 this problem is examined for the functions ℓ belonging to a certain class contained in the class F_{ϱ} .

1. Let a, b be arbitrary non-negative real functions defined in the right-hand side neighbourhood of 0 such that

(1.1)
$$\frac{a(r)}{r^{k+1}} \xrightarrow[r \to 0+]{} \alpha, \quad \frac{b(r)}{r^{k+1}} \xrightarrow[r \to 0+]{} \beta$$

where $\alpha, \beta \in (0, \infty)$.

Theorem 1.1. If the functions a, b fulfil the condition (1.1), and the function $\ell \in F_{\varrho}$, then $(A, B) \in T_{\ell}(a, b, k, p)$ for arbitrary sets $A, B \in \tilde{M}_{p,k} \cap D_p(E, \ell)$ such that $A \subset B$ or $A \supset B$.

PROOF. Let us suppose that $A \subset B$ for $A, B \in \tilde{M}_{p,k} \cap D_p(E, \ell)$. Then for an arbitrary function $\ell \in F_{\varrho}$ we have

(1.2)
$$0 \leq \frac{1}{M} \ell \left(A \cap S_{\ell}(p,r)_{a(r)}, B \cap S_{\ell}(p,r)_{b(r)} \right) \leq \\ \leq d_{\varrho} \left((A \cap S_{\ell}(p,r)_{a(r)}) \cup (B \cap S_{\ell}(p,r)_{b(r)}) \right) \leq \\ \leq d_{\varrho} \left((B \cap S_{\ell}(p,r)_{a(r)}) \cup (B \cap S_{\ell}(p,r)_{b(r)}) \right) \leq \\ \leq d_{\varrho} \left(B \cap S_{\ell}(p,r)_{\max\{a(r),b(r)\}} \right).$$

From the fact that the set $B \in \tilde{M}_{p,k} \cap D_p(E,\ell)$, the function $\ell \in F_{\varrho}$, from (1.1) and from Lemma 1.1 of the paper [5] it follows

(1.3)
$$\frac{1}{r^k} d_{\varrho} \left(B \cap S_{\ell}(p, r)_{\max\{a(r), b(r)\}} \right) \xrightarrow[r \to 0+]{} 0.$$

Hence and from (1.2) we get

(1.4)
$$\frac{1}{r^k} \ell \left(A \cap S_\ell(p,r)_{a(r)}, \ B \cap S_\ell(p,r)_{b(r)} \right) \xrightarrow[r \to 0+]{} 0.$$

In view of $A, B \in D_p(E, \ell)$ the pair (A, B) is (a, b)-clustered at the point p of the space (E, ℓ) .

From here and from (1.4) it follows that $(A, B) \in T_{\ell}(a, b, k, p)$.

If $A \supset B$ for $A, B \in \tilde{M}_{p,k} \cap D_p(E, \ell)$, then the proof of this theorem is analogous.

332

Corollary 1.1. If the sequence of sets $A_1, A_2, \ldots, A_n \in \tilde{M}_{p,k} \cap D_p(E, \ell)$ is a monotonically increasing or a monotonically decreasing sequence, and the functions a, b fulfil condition (1.1), $\ell \in F_{\varrho}$, then $(A_i, A_j) \in T_{\ell}(a, b, k, p)$ for $i, j = 1, 2, \ldots, n$.

Corollary 1.2. If $A, B \in \tilde{M}_{p,k} \cap D_p(E,\ell)$, the functions a, b fulfil condition (1.1), and $\ell \in F_{\varrho}$, then $(A, A) \in T_{\ell}(a, b, k, p)$, $(A, A \cup B) \in T_{\ell}(a, b, k, p)$ and $(A, A \cap B) \in T_{\ell}(a, b, k, p)$, for $A \cap B \in D_p(E, \ell)$.

From Corollary 1.2 it follows that the tangency relation $T_{\ell}(a, b, k, p)$ is reflexive in the class of sets $\tilde{M}_{p,k} \cap D_p(E, \ell)$ for a function $\ell \in F_{\varrho}$ and functions a, b fulfilling the condition (1.1).

Theorem 1.2. If the functions a, b fulfil the condition (1.1) and $\ell \in F_{\varrho}$, then for arbitrary sets $A, B, C \in \tilde{M}_{p,k} \cap D_p(E,\ell)$ such that $B \subset C$ or $B \supset C$, if $(A, B) \in T_{\ell}(a, b, k, p)$ then $(A, C) \in T_{\ell}(a, b, k, p)$.

PROOF. Let us assume that $(A, B) \in T_{\ell}(a, b, k, p)$. This implies

(1.5)
$$\frac{1}{r^k}\ell(A\cap S_\ell(p,r)_{a(r)}, B\cap S_\ell(p,r)_{b(r)}) \xrightarrow[r\to 0+]{} 0.$$

Hence and from the fact that $\ell \in F_{\rho}$ we get

(1.6)
$$\frac{1}{r^k}\varrho(A \cap S_\ell(p,r)_{a(r)}, \ B \cap S_\ell(p,r)_{b(r)}) \xrightarrow[r \to 0+]{} 0.$$

Let us suppose that $B \subset C$ for $B, C \in \tilde{M}_{p,k} \cap D_p(E,\ell)$. Hence and from (1.6) we have

(1.7)
$$\frac{1}{r^k} \varrho(A \cap S_\ell(p, r)_{a(r)}, \ C \cap S_\ell(p, r)_{b(r)}) \xrightarrow[r \to 0+]{} 0.$$

From $A, C \in \tilde{M}_{p,k} \cap D_p(E, \ell)$, $\ell \in F_{\varrho}$ and from Lemma 1.1 of the paper [5] it follows

(1.8)
$$\frac{1}{r^k} d_{\varrho}(A \cap S_{\ell}(p,r)_{a(r)}) \xrightarrow[r \to 0+]{} 0, \quad \frac{1}{r^k} d_{\varrho}(C \cap S_{\ell}(p,r)_{b(r)}) \xrightarrow[r \to 0+]{} 0.$$

Moreover

$$0 \leq \frac{1}{M} \ell \left(A \cap S_{\ell}(p,r)_{a(r)}, \ C \cap S_{\ell}(p,r)_{b(r)} \right) \leq \\ \leq d_{\varrho} \left((A \cap S_{\ell}(p,r)_{a(r)}) \cup (C \cap S_{\ell}(p,r)_{b(r)}) \right) \leq \\ \leq d_{\varrho} \left((A \cap S_{\ell}(p,r)_{a(r)}) + d_{\varrho}(C \cap S_{\ell}(p,r)_{b(r)}) \right) + \\ + \varrho \left(A \cap S_{\ell}(p,r)_{a(r)}, C \cap S_{\ell}(p,r)_{b(r)} \right).$$

Hence from (1.7) and (1.8) we get

(1.9)
$$\frac{1}{r^k}\ell\left(A\cap S_\ell(p,r)_{a(r)},\ C\cap S_\ell(p,r)_{b(r)}\right)\xrightarrow[r\to 0+]{}0.$$

Owing to $A, C \in D_p(E, \ell)$, the pair (A, C) is (a, b)-clustered at the point p of the space (E, ℓ) .

Hence and from (1.9) it follows that $(A, C) \in T_{\ell}(a, b, k, p)$.

Let us now suppose that $B \supset C$ for $B, C \in \tilde{M}_{p,k} \cap D_p(E,\ell)$. From here and from the assumption that $\ell \in F_{\varrho}$ we get

$$(1.10) \qquad 0 \leq \frac{1}{M} \ell \left(A \cap S_{\ell}(p,r)_{a(r)}, \ C \cap S_{\ell}(p,r)_{b(r)} \right) \leq \\ \leq d_{\varrho} \left((A \cap S_{\ell}(p,r)_{a(r)}) \cup (C \cap S_{\ell}(p,r)_{b(r)}) \right) \leq \\ \leq d_{\varrho} \left((A \cap S_{\ell}(p,r)_{a(r)}) \cup (B \cap S_{\ell}(p,r)_{b(r)}) \right) \leq \\ \leq d_{\varrho} \left((A \cap S_{\ell}(p,r)_{a(r)}) + d_{\varrho} (B \cap S_{\ell}(p,r)_{b(r)}) \right) + \\ + \varrho \left(A \cap S_{\ell}(p,r)_{a(r)}, B \cap S_{\ell}(p,r)_{b(r)} \right).$$

Now by Lemma 1.1 of [5]

$$\frac{1}{r^k}d_{\varrho}(A \cap S_{\ell}(p,r)_{a(r)}) \xrightarrow[r \to 0+]{} 0, \quad \frac{1}{r^k}d_{\varrho}(B \cap S_{\ell}(p,r)_{b(r)}) \xrightarrow[r \to 0+]{} 0,$$

and from here, from (1.6) and from (1.10) we obtain

$$\frac{1}{r^k}\ell(A\cap S_\ell(p,r)_{a(r)},\ C\cap S_\ell(p,r)_{b(r)})\xrightarrow[r\to 0+]{} 0.$$

Hence and from the fact that the pair of sets (A, C) is (a, b)-clustered at the point p of the space (E, ℓ) it follows that $(A, C) \in T_{\ell}(a, b, k, p)$. This ends the proof.

This theorem implies the

Corollary 1.3. If the functions a, b fulfil the condition (1.1) and $\ell \in F_{\varrho}$, then for arbitrary sets $A, B_1, B_2, \ldots, B_n \in \tilde{M}_{p,k} \cap D_p(E, \ell)$ such that the sequence B_1, B_2, \ldots, B_n is monotonically increasing or monotonically decreasing, if $(A, B_i) \in T_{\ell}(a, b, k, p)$ then $(A, B_j) \in T_{\ell}(a, b, k, p)$ for $i, j = 1, 2, \ldots, n$.

2. Let F_{ϱ}^* be the class of functions ℓ fulfilling the conditions: $1^{\circ} \ \ell : E_0 \times E_0 \to \langle 0, \infty \rangle,$ $2^{\circ} \ \varrho(A, B) \leq \ell(A, B) \leq d_{\varrho}(A \cup B)$ for $A, B \in E_0.$ From the definition of the classes of functions F_{ϱ} and F_{ϱ}^* it follows that $F_{\varrho}^* \subset F_{\varrho}$. Moreover, any function $\ell \in F_{\varrho}^*$ generates on the set E the metric ϱ because

(2.1)
$$\varrho(x,y) = \varrho(\{x\},\{y\}) \le \ell(\{x\},\{y\}) \le d_{\varrho}(\{x\} \cup \{y\}) = \varrho(x,y).$$

Let a_i , b_i (i = 1, 2) be arbitrary non-negative real functions defined in a right-hand side neighbourhood of 0 such that

(2.2)
$$\frac{a_i(r)}{r^{k+1}} \xrightarrow[r \to 0+]{} \alpha_i, \quad \frac{b_i(r)}{r^{k+1}} \xrightarrow[r \to 0+]{} \beta_i,$$

where $\alpha_i, \beta_i \in (0, \infty)$.

Hence and from Corollary 1.1 of the paper [5] there follows the equivalence

(2.3)
$$(A,B) \in T_{\ell_1}(a_1,b_1,k,p) \equiv (A,B) \in T_{\ell_2}(a_2,b_2,k,p),$$

for any sets $A, B \in \tilde{M}_{p,k} \cap D_p(E,\varrho)$ and functions $\ell_1, \ell_2 \in F_{\varrho}^*$.

Let C be an arbitrary set of the class $\tilde{M}_{p,k} \cap D(E,\varrho)$ such that $C \subset B$ or $C \supset B$.

From here and from Theorem 1.2 the present paper there follows the implication

$$(2.4) \qquad (A,B) \in T_{\ell_2}(a_2,b_2,k,p) \implies (A,C) \in T_{\ell_2}(a_2,b_2,k,p)$$

for $\ell_2 \in F_{\varrho}^*$ and $A, B, C \in \tilde{M}_{p,k} \cap D_p(E, \varrho)$.

Hence and from (2.3) we get

Theorem 2.1. If the functions a_i, b_i (i = 1, 2) fulfil the condition (2.2) and $\ell_1, \ell_2 \in F_{\varrho}^*$, then for arbitrary sets $A, B, C \in \tilde{M}_{p,k} \cap D_p(E, \varrho)$ such that $B \subset C$ or $B \supset C$, if $(A, B) \in T_{\ell_1}(a_1, b_1, k, p)$ then $(A, C) \in T_{\ell_2}(a_2, b_2, k, p)$.

From this theorem we get

Corollary 2.1. If the functions a_k , b_k (k = 1, 2) fulfil the condition (2.2), and $\ell_1, \ell_2 \in F_{\varrho}^*$, then for arbitrary sets $A, B_1, B_2, \ldots, B_n \in \tilde{M}_{p,k} \cap D_p(E, \varrho)$ such that the sequence B_1, B_2, \ldots, B_n is monotonically increasing or monotonically decreasing if $(A, B_i) \in T_{\ell_1}(a_1, b_1, k, p)$ then $(A, B_j) \in T_{\ell_2}(a_2, b_2, k, p)$ for $i, j = 1, 2, \ldots, n$.

References

- A. CHĄDZYŃSKA, On some classes of sets related to the symmetry of the tangency relation in a metric space, Ann. Soc. Math. Polon. Comm. Math. 16 (1972), 219–228.
- [2] S. GOLAB et Z. MOSZNER, Sur le contact des courbes dans les espaces metriques generaux, Colloq. Math. 10 (1963), 305–311.

- [3] J. GROCHULSKI, T. KONIK and M. TKACZ, On the tangency of sets in metric spaces, Ann. Polon. Math. 38 (1980), 121–131.
- [4] J. HAANTIES and NOTTROT, Distance geometry. Directions in metric spaces, Torsion, Indag. Math. 17 (1955), 405–410.
- [5] T. KONIK, On the tangency of sets of some class in generalized metric spaces, Demonstratio Math. 22,4 (1989), 1093–1107.
- [6] T. KONIK, On the equivalence of the tangency relation of sets, Ann. Soc. Math. Polon., Comm. Math. 31 (1991), 73–78.
- [7] GY. Soós, Richtungsbegriff in metrischen Raumen, Doctoral thesis, *Budapest*, 1970, (*unpublished*).
- [8] W. WALISZEWSKI, On the tangency of sets in generalized metric spaces, Ann. Polon. Math. 28 (1973), 275–284.

TADEUSZ KONIK INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY 42–200 CZĘSTOCHOWA POLAND

(Received April 7, 1992; revised November 26, 1992)