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Integrals of weighted maximal kernels with respect
to Vilenkin systems

By ISTVÁN MEZŐ (Debrecen) and PÉTER SIMON (Budapest)

Abstract. The integrals of maximal Dirichlet- and Fejér kernels are infinite, so

we have to use some weight function to “pull them back” to the finite. In this paper

we give necessary and sufficient conditions for weight functions to get finite integrals

on arbitrary Vilenkin groups. Especially some equivalence to the finiteness of integral

norms of weighted maximal kernels follows in the so-called bounded case. We investigate

also the role of the bounded structure of Vilenkin groups in this connection. Similar

results are known with respect to the Walsh–Kaczmarz–Dirichlet kernels proved by

Gy. Gát [1].

1. Introduction

In this section we introduce the most important definitions and notations and
formulate some known results with respect to the Vilenkin systems. For details
we refer to the book Schipp–Wade–Simon and Pál [3] and to Vilenkin [5].

If m = (m0,m1, . . . , mk, . . . ) is a sequence of natural numbers such that
mk ≥ 2 (k ∈ N := {0, 1, . . . }) then for all k ∈ N we shall denote by Zmk

the mk-
th discrete cyclic group. Let Zmk

be represented by {0, 1, . . . ,mk−1}. The group
operation in Zmk

, i.e. the addition modulo mk will be denoted by ⊕. Gm will
denote the complete direct product of Zmk

’s, then Gm forms a compact Abelian
group with Haar measure 1. The usual symbol L1 denotes the Lebesgue space of
complex-valued functions f defined on Gm with the norm ‖f‖1 :=

∫
Gm

|f |.
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The elements of Gm are sequences of the form x = (xk, k ∈ N), where
xk ∈ Zmk

for every k ∈ N. If y = (yk, k ∈ N) ∈ Gm, then x+̇y := (xk⊕ yk, k ∈ N)
is the sum of x, y in Gm. The topology of the group Gm is completely determined
by the sets

In := {(x0, x1, . . . , xk, . . . ) ∈ Gm : xj = 0 (j = 0, . . . , n− 1)}

(0 6= n ∈ N, I0 := Gm).

It is well-known that the characters of Gm (the so-called Vilenkin system)
form a complete orthonormal system Ĝm in L1. If

rn(x) := exp
2πıxn

mn

(n ∈ N, x = (x0, x1, . . . ) ∈ Gm, ı :=
√−1 ), then these functions and their finite

products are evidently characters. Let these products be ordered in Paley’s sense,
which means the following enumeration of the elements of Ĝm. We write each
n ∈ N uniquely in the form

n =
∞∑

k=0

nkMk,

where M0 := 1, Mk :=
∏k−1

j=0 mj (k ≥ 1) and nk ∈ Zmk
(k ∈ N). It can easily be

seen that the elements of Ĝm are nothing but the functions

Ψn :=
∞∏

k=0

rnk

k .

If mn = 2 for all n ∈ N, then Ĝm is the well-known Walsh–Paley system.

Let Dn and Kn be the n-th Dirichlet and Fejér kernel, respectively, defined
by

Dn :=
n−1∑

k=0

Ψk, Kn :=
1
n

n∑

k=1

Dk (0 < n ∈ N).

We need the following well-known results with respect to the kernels from the
Vilenkin–Fourier analysis (see e.g. Pál–Simon [2], Simon [4]):

Dn = Ψn

∞∑

k=0

mk−1∑

j=mk−nk

rj
kDMk

(
n =

∞∑

k=0

nkMk ∈ N
)

; (1)

DMn = χInMn (n ∈ N), (2)
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where χA denotes the characteristic function of a set A; if n ∈ N and for some
s ∈ N we have Ms−1 ≤ n < Ms, then

|Kn(x)| = 1
n

∣∣∣∣∣∣

s−1∑
ν=0

s−1∑

i=ν

mi−1∑

j=mi−ni

ri(x)jcν
ij(x)

∣∣∣∣∣∣
(x ∈ Gm), (3)

where

cν
ij(x) := nνDMi

(x)−
mν−1∑

k=0

km−1
ν

mν−1∑

l=0

rν(leν)nν−kri(leν)jDMi
(x+̇leν),

leν := (0, 0, . . . , 0, l, 0, . . . ) ∈ Gm and l is the (ν + 1)-th coordinate of the element
in question.

From now on C will denote positive absolute constant not always the same
at different occurences.

2. Theorems

Let α : [0,+∞) → (0, +∞) be a monotone increasing function and define the
weighted maximal functions D∗

α,K∗
α as follows:

D∗
α := sup

n

|Dn|
α(n)

, K∗
α := sup

n

|Kn|
α(n)

.

Then the next statements are true.

Theorem 2.1. There are positive absolute contsants C1, C2 such that

C1

∞∑

k=0

log mk

α(Mk+1)
≤ ‖R∗α‖1 ≤ C2

∞∑

k=0

log mk

α(Mk)
,

where R∗α := D∗
α or R∗α := K∗

α.

Proof. First we deal with D∗
α and with the right hand side inequality of the

theorem. To this end we write ‖D∗
α‖1 as ‖D∗

α‖1 =
∑∞

A=0

∫
IA\IA+1

Dα∗ . If A ∈ N
and x ∈ IA \ IA+1, then we get by (1) and (2) that

|Dn(x)| =
∣∣∣∣∣∣

A−1∑

k=0

nkMk + MA

mA−1∑

j=mA−nA

rA(x)j

∣∣∣∣∣∣
= |Dñ(x)|,
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if ñ :=
∑A

k=0 nkMk. Therefore

D∗
α(x) = sup

n<MA+1

|Dn(x)|
α(n)

≤
A∑

k=0

sup
Mk≤n<Mk+1

|Dn(x)|
α(n)

≤
A∑

k=0

sup
Mk≤n<Mk+1

|Dn(x)|
α(Mk)

.

When here n < Mk+1 ≤ MA (i.e. k = 0, . . . , A − 1), then (see above) |Dn(x)| ≤∑k
l=0 nlMl < Mk+1. Furthermore, for MA ≤ n < MA+1 we get

|Dn(x)| =
A−1∑

k=0

nkMk + MA

∣∣∣∣∣∣

nA∑

j=1

exp
2πıjxA

mA

∣∣∣∣∣∣
≤ MA +

∣∣∣∣∣MA

exp 2πınAxA

mA
− 1

exp 2πıxA

mA
− 1

∣∣∣∣∣

= MA

(
1 +

| sin πnAxA

mA
|

sin πxA

mA

)
≤ CMA

(
1 +

mA

x̃A

)
,

where x̃A := xA if xA ≤ mA/2, while xA := mA − xA in the case xA > mA/2.
(We recall that x ∈ IA \ IA+1, i.e. xA 6= 0.) Summarizing the above facts we have

‖D∗
α‖1 ≤

∞∑

A=0

∫

IA\IA+1

A∑

k=0

supMk≤n<Mk+1
|Dn(x)|

α(Mk)

≤
∞∑

A=0

∫

IA\IA+1

A−1∑

k=0

Mk+1

α(Mk)
+ C

∞∑

A=0

MA

α(MA)

∫

IA\IA+1

(
1 +

mA

x̃A

)
dx

≤
∞∑

k=0

Mk+1

α(Mk)

∞∑

A=k+1

(
1

MA
− 1

MA+1

)
+ C

∞∑

A=0

MA

α(MA)

mA−1∑
xA=1

1
MA+1

(
1+

mA

x̃A

)

≤
∞∑

k=0

1
α(Mk)

+ C

∞∑

A=0

MA

α(MA)

∑

1≤l≤mA/2

1
MA+1

(
1 +

mA

l

)

≤
∞∑

k=0

1
α(Mk)

+ C

∞∑

A=0

MA

α(MA)
mA log mA

MA+1
≤ C

∞∑

k=0

log mk

α(Mk)
.

The right hand side inequality for ‖K∗
α‖1 follows trivially from the case R∗α =

D∗
α, since

K∗
α = sup

n

|∑n
k=1 Dk|

nα(n)
≤ sup

n

∑n
k=1 |Dk|
nα(n)

≤ sup
n

1
n

n∑

k=1

|Dk|
α(k)



Integrals of weighted maximal kernels. . . 61

≤ sup
n

∑n
k=1 D∗

α

n
= D∗

α.

For the proof of the estimate of ‖K∗
α‖1 from below we compute first |KqMp(x)|

(x ∈ Gm), if p ∈ N and q := the entire part of mp

2 . It is clear that (qMp)i = 0
(N 3 i 6= p) and (qMp)p = q. Applying (3) we get

∣∣KqMp(x)
∣∣ =

1
qMp

∣∣∣
p∑

ν=0

Mν

mp−1∑

j=mp−q

rj
p(x)(qMp)νDMp(x)

−
p∑

ν=0

Mν

mp−1∑

j=mp−q

rj
p(x)

mν−1∑

k=0

k

mν

mν−1∑

l=0

(rν(leν))(qMp)ν−krj
p(leν)DMp

(x+̇leν)
∣∣∣

=
1

qMp

∣∣∣Mp

mp−1∑

j=mp−q

rj
p(x)qDMp(x)

−
p∑

ν=0

Mν

mp−1∑

j=mp−q

rj
p(x)

mν−1∑

k=0

k

mν

mν−1∑

l=0

(rν(leν))(qMp)ν−krj
p(leν)DMp(x+̇leν)

∣∣∣.

If x ∈ Ip \ Ip+1, then by (1) DMp(x+̇leν) = 0 for all ν = 0, . . . , p − 1 and
l = 1, . . . , mν−1. Furthermore, DMp(x+̇lep) = DMp(x) = Mp (l = 0, . . . , mp−1).
Therefore

∣∣KqMp(x)
∣∣ =

1
qMp

∣∣∣qM2
p

mp−1∑

j=mp−q

rj
p(x)−M2

p

mp−1∑

j=mp−q

rj
p(x)

mp−1∑

k=0

k

mp

mp−1∑

l=0

(rp(lep))j+q−k

−Mp

p−1∑
ν=0

Mν

mp−1∑

j=mp−q

rj
p(x)

mν−1∑

k=0

k

mν

∣∣∣.

Here the next equalities hold:

Mp

p−1∑
ν=0

Mν

mp−1∑

j=mp−q

rj
p(x)

mν−1∑

k=0

k

mν
= Mp

p−1∑
ν=0

Mν

mp−1∑

j=mp−q

rj
p(x)

mν − 1
2

=
Mp(Mp − 1)

2

mp−1∑

j=mp−q

rj
p(x),

and

M2
p

mp−1∑

j=mp−q

rj
p(x)

mp−1∑

k=0

k

mp

mp−1∑

l=0

(rp(lep))j+q−k
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= M2
p

q−1∑
s=0

rs−q
p (x)

mp−1∑

k=0

k

mp

mp−1∑

l=0

(rp(lep))s−k = M2
p

q−1∑
s=0

srs−q
p (x).

(We recall that
∑mp−1

l=0 (rp(lep))s−k = 0, when s 6= k.) Thus it follows that

∣∣KqMp
(x)

∣∣ =
1

qMp

∣∣∣
(
qM2

p −
Mp(Mp − 1)

2

) q−1∑
s=0

rs
p(x)−M2

p

q−1∑
s=0

srs
p(x)

∣∣∣

=
Mp

q

∣∣∣∣
(

q − 1
2

+
1

2Mp

)
rq
p(x)− 1

rp(x)− 1
− qrq

p(x)
rp(x)− 1

− rp(x)(rq
p(x)− 1)

(rp(x)− 1)2

∣∣∣∣

≥ Mp

|rp(x)− 1|

(
1−

(
1− 1

2q
+

1
2qMp

) ∣∣rq
p(x)− 1

∣∣−
∣∣rq

p(x)− 1
∣∣

q|rp(x)− 1|

)
.

It is not hard to see that

(
1− 1

2q
+

1
2qMp

) ∣∣rq
p(x)− 1

∣∣ ≤ 1/4 and

∣∣rq
p(x)− 1

∣∣
q|rp(x)− 1| ≤ 1/4,

if xp ≤ mp

3π is even and mp is large enough, say mp > 6π. Indeed,

|rq
p(x)− 1| =

∣∣∣∣exp
2πıqxp

mp
− 1

∣∣∣∣ = 2
∣∣∣∣sin

πqxp

mp

∣∣∣∣ = 0

for all xp = 1, . . . ,mp − 1, if mp and xp are even. Assume that mp = 2l + 1 for

some 0 < l ∈ N which implies q = l and |rq
p(x) − 1| = 2

∣∣∣sin πlxp

2l+1

∣∣∣. Let xp = 2k

(k = 1, . . . , l), then

|rq
p(x)− 1| = 2

∣∣∣∣sin
2πlk

2l + 1

∣∣∣∣ = 2 sin
πk

2l + 1
≤ 2πk

2l + 1
,

i.e. (
1− 1

2q
+

1
2qMp

)
|rq

p(x)− 1| ≤ 3
2
|rq

p(x)− 1| ≤ 3πk

2l + 1
≤ 1

2

for all k ≤ 2l+1
6π . This last inequality is equivalent to xp ≤ mp

3π . Here xp ≥ 2,
therefore we assume that mp > 6π.

On the other hand (see above)

|rq
p(x)− 1|

q|rp(x)− 1| = 0,
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when xp = 1, . . . , mp − 1 and mp, xp are even. For mp = 2l + 1 (0 < l ∈ N),
xp = 2k (1 ≤ k ≤ l/2) we get

|rq
p(x)− 1|

q|rp(x)− 1| =

∣∣∣sin πlxp

2l+1

∣∣∣
l sin πxp

2l+1

=

∣∣∣sin πk
2l+1

∣∣∣
l sin π2k

2l+1

≤ π

2
πk/(2l + 1)

lπ2k/(2l + 1)
=

π

4l
≤ 1

4
,

if l ≥ π, i.e. if mp ≥ 2π + 1. Hence in this case

∣∣KqMp(x)
∣∣ ≥ 1

2
Mp

|rp(x)− 1|

and so
∫

Ip\Ip+1

∣∣KqMp

∣∣ ≥ Mp

2

∫

Ip\Ip+1

dx

|rp(x)− 1| ≥
1

2mp

∑

1≤xp≤mp/(3π),xp is even

1
sin πxp

mp

≥ C
∑

1≤xp≤mp/(3π),xp is even

1
xp

≥ C log mp.

If mp is “small”, i.e. mp < 6π and p > 0, then

∫

Ip\Ip+1

|KMp | =
(

1
Mp

− 1
Mp+1

)
Mp − 1

2
≥ 1

8
≥ C log mp,

since by (1) and (2) KMp(x) = (Mp − 1)/2 (x ∈ Ip \ Ip+1) follows immediately.

Thus

‖K∗
α‖1 ≥

∞∑
p=1, mp<6π

∫

Ip\Ip+1

|KMp |
α(Mp)

+
∞∑

p=0, mp>6π

∫

Ip\Ip+1

|K∆pMp |
α(∆pMp)

≥ C
∞∑

p=1

log mp

α(Mp)
+ C

∞∑
p=1

log mp

α(Mp+1)
≥ C

∞∑
p=0

log mp

α(Mp+1)
.

Therefore the inequality K∗
α ≤ D∗

α implies the analogous estimation also for
‖D∗

α‖1 from below. ¤

This proves Theorem 2.1.
From Theorem 2.1 some corollaries follow immediately. Namely,

Corollary 2.1. If
∑∞

k=0
log mk

α(Mk) < +∞, then R∗α ∈ L1(Gm). Furthermore, if

R∗α ∈ L1(Gm), then
∑∞

k=0
log mk

α(Mk+1)
< +∞.
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In particular, if the sequence m does not grow to rapidly then we can give
an equivalent condition for the integrability of D∗

α and K∗
α. Thus the following

corollary is easy to derive.

Corollary 2.2. Assume that there exists a constant c ≥ 1 such that mk+1 ≤
mc

k (k ∈ N). Then R∗α ∈ L1 if and only if
∑∞

k=0
log mk

α(Mk) < +∞.

It is clear that the same equivalence holds if α satisfies the next assumption:
there exists a constant q > 0 sucht that α(Mk+1) ≤ qα(Mk) (k ∈ N). For example
if δ > 1 and α(Mk) = (k + 1)δ (k ∈ N).

Corollary 2.3. Assume that the generating sequence m is bounded. Then

R∗α ∈ L1(Gm) if and only if
∑∞

k=0
1

α(Mk) < +∞.

Simple examples show that the boundedness of m in the previous corollary
cannot be omitted, although this boundedness is also not necessary. Namely, the
next theorem will be proved.

Theorem 2.2. There exist m and α such that
∑∞

k=0
1

α(Mk) < +∞ and R∗α /∈
L1(Gm). Furthermore, for some unbounded m the equivalence in Corollary 2.3

holds.

Proof. We give details only for D∗
α. Let mk := 2(k+1)2 and α(Mk) :=

(k + 1)2 (k ∈ N). Then
∑∞

k=0 1/α(Mk) < +∞ holds trivially. Furthermore,

∞∑

k=0

log mk

α(Mk+1)
≥ C

∞∑

k=0

(k + 1)2

(k + 2)2
= +∞,

i.e. by Theorem 2.1 we get ‖D∗
α‖1 = +∞.

Now, let m2l := 22l

for l ∈ N and mk := 2, when N 3 k 6= 2l (l ∈ N). Then
by means of simple considerations the next equivalences follow for all α:

∞∑

k=0

log mk

α(Mk)
< +∞ ⇐⇒

∞∑

k=0

log mk

α(Mk+1)
< +∞ ⇐⇒

∞∑

k=0

1
α(Mk)

< +∞,

which completes the proof of Theorem 2.2. ¤
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