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A note on the modular group algebras
of odd p-groups of M-length three

By MARTIN HERTWECK (Stuttgart)

Dedicated to Prof. Adalbert Bovdi on the occasion of his 70th birthday

Abstract. Let G be a finite p-group of odd order. It is shown that if the Brauer–

Jennings–Zassenhaus series (also termed M-series) of G has length three, then the iso-

morphism type of G is determined by its modular group algebra kG, k being the field

with p elements.

1. Introduction

The (still open) modular isomorphism problem is about the question whether
for a finite p-group G, there are possibly other groups H, non-isomorphic to G,
such that kG ∼= kH as algebras, where k denotes the field with p elements. If
this is not the case one says that G is determined by its modular group algebra.
More generally, a property of G is said to be determined (by its modular group
algebra) if any other group basis of kG also has this property, with a group basis
of kG being a subgroup of the group of units of kG which forms a basis of the
underlying vector space. In the present context, an invariant of kG will simply
be a property of a group basis which is determined by kG.

Many fundamental observations on various isomorphism problems for group
rings were published during the 1970s (or earlier) and discussions of these prob-
lems were included in the books of Passman [11] (Chapter 14) and Sehgal [17]

Mathematics Subject Classification: Primary: 16S34, 20D15; Secondary: 16U60.
Key words and phrases: p-group, Jennings basis, modular isomorphism problem.



84 Martin Hertweck

(Chapter III), thus giving further impetus to the whole subject. Concerning the
modular isomorphism problem, Sandling’s 1984 survey [15] still gives an im-
pression of the state of the art, cf. [9]. Bovdi’s more recent survey [5] on units
in modular group algebras may be chosen for some complementary reading.

Throughout this paper, G will denote a finite p-group. Jennings introduced
certain bases of kG (as a vector space) which can easily be derived from the group
bases and which are compatible with the radical filtration of kG (for details, see
Chapter 3, §3 and Chapter 11, §1 from [11]). This laid the foundation for much
of the work to follow, and ours is not an exception. Such a Jennings basis,
obtained from the group basis G, is defined in terms of the Brauer–Jennings–
Zassenhaus series for G, called M-series by Jennings, which is defined inductively
by M1(G) = G and for i ≥ 2

Mi(G) = 〈[G,Mi−1(G)], Mdi/pe(G)p〉

where di/pe is the smallest integer ≥ i/p. This means that the M-series is the
fastest descending p-restricted N -series, and Jennings has shown that this series
coincides with the series of dimension subgroups, defined by

Di(G) = G ∩ (1 + I(kG)i)

where I(kG) denotes the augmentation ideal of kG. The aim of this note is to
prove the following result (or rather Theorem′ below from which it immediately
follows).

Theorem. Let p be an odd prime. Then for a finite p-group G, the quotient

G/M4(G) is determined by its modular group algebra kG over the field k with p

elements.

To put it in perspective: For arbitrary p, Jennings has shown that the ranks of
the elementary abelian quotients Mi(G)/Mi+1(G) are determined, and Passi and
Sehgal [10] showed that G/M3(G) is determined. An important generalization
was given by Sandling [16] who showed that the largest central-elementary-by-
abelian quotient of G, now called Sandling-quotient, is determined. All these
quotients in particular have class 2, while G/M4(G) may have class 3. More
generally, Passi and Sehgal proved that all the quotients Mi(G)/Mi+2(G) are
determined by kG, a result which was later improved by Ritter and Sehgal [12]
when showing that Mi(G)/M2i+1(G) is determined (still, all quotients are central-
elementary-by-abelian). Further work may show whether our result extends in
this direction.
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Nowadays there are powerful computer algebra systems available – in the
present context, we mention GAP [7] – which provide a convenient programming
environment as well as databases of groups of “small” order. We also mention
the GAP package LAGUNA [6] which provides functionality for calculation of the
group of units of the modular group algebra of a finite p-group and which soon
will provide tools related to the modular isomorphism problem.

One line of reasoning about the modular isomorphism problem suggests to
work through these databases to find either a counterexample or to settle the
problem for a specific group order. Then the first step consists in splitting the
cluster of all (isomorphism classes of) groups of some fixed order pn into sets of
smaller clusters by successively considering different group-theoretical invariants
of kG. At the end of this process (i.e., when “running out” of invariants), one is
left, at best, with only a few clusters containing only a few groups each. Even
only rudimentary programming skills allow everyone to reproduce such cluster
splittings on the own PC. To deal with the remaining clusters it seems inevitable to
do a large number of calculations inside the group algebras themselves. The stand-
alone program SISYPHOS1 written by Wursthorn served this purpose and enabled
its author to demonstrate that the groups of order 26 and 27 are determined by
their modular group algebras (see [18], [3], and [9]).

In [3, Theorem 7], the most common and powerful group-theoretical invari-
ants so far known are listed (cf. also [15] and [9]). Among them (item 3) are
the above-mentioned sections along the M-series, but Wursthorn pointed out
that “It should be noted that invariant 3. usually does not distinguish any more
groups that share all of the other invariants.” Not surprisingly, our new in-
variant has more potential. The groups of order 36 provide a good example:
Splitting the 504 groups of order 36 using the common group-theoretical invari-
ants leaves 174 groups (all of them metabelian) distributed among 76 clusters:
[[2, 62], [3, 8], [4, 4], [5, 2]], meaning that 62 clusters consist of pairs, and so on.2

Use of the new invariant eliminates further 110 groups: 64 groups in 29 clusters
will be left, with distribution [[2, 24], [3, 4], [4, 1]].

One may call “small group algebra” any quotient algebra of kG into which
each group basis of kG embeds. Though it is well-known that in general G is not
determined by a small group algebra, not even in “classical cases” (see [1, Sec-
tion 4], [8]), many authors examined the embedding of group bases into such

1In the future, GAP and LAGUNA should provide the full functionality of SISYPHOS.
2The referee pointed out that the nilpotency class of G is determined if G has cyclic derived

subgroup [2]. Use of this invariant would eliminate a pair and one group from a triple from our

list.
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quotients. To quote Salim and Sandling from one of their 1996 papers [14]:
“One can chart a progression in recent papers on the modular isomorphism prob-
lem. Each sets out to deduce as much as possible from a quotient algebra of FG.3

The ideals which are divided out have become smaller and smaller, resulting in
larger and larger sections of FG susceptible to purposeful analysis. At each stage
a more complicated group basis becomes embeddable in the quotient algebra and
thence its structure made accessible.” In retrospect this sounds quite optimistic.
To the best of our knowledge, the last paper where this strategy was successfully
applied dates back to 1999 when Bagiński [1], only using information provided by
the quotient algebra kG/I(kG′)2kG, showed that an elementary abelian-by-cyclic
p-group G is determined.

The ideas addressed above revolve around the problem of the existence of a
normal complement for G in the group V(kG) of augmentation one units in kG,
a problem for which only a few results are known (see Section 3 in [9] for some
references). We remark that it is still an open problem whether a finite p-group
G admitting a normal complement in V(kG) is determined by kG.4

Our theorem resulted from the attempt to find directly large normal sub-
groups in V(kG) such that each group basis embeds into the quotient. In fact,
the theorem follows immediately from:

Theorem′. Let p be an odd prime, let G be a finite p-group, and set V =
V(kG). Then V has a normal subgroup N such that V/N is naturally isomorphic

to H/M4(H) for each group basis H of kG.

For the proof, we may assume that M4(G) = 1. The normal subgroup N will
emerge from the following procedure. We take a Jennings basis of kG specified
by generators g1, . . . , gn of G and let S be the span of all basis elements which do
not lie in G − 1. Then S is multiplicatively closed since I(kG)4 ⊆ S. Thus if S

would be invariant under conjugation with the gi, then 1+S would be the desired
normal subgroup since S is “complementary” to the Zassenhaus ideals, but this
is rarely the case. So we have a close look at the conjugates of the basis elements
spanning S which, interestingly enough, reveals an almost canonical way of how
to modify the basis elements so to get a modified, G-invariant subspace S′ and
one can set N = 1+S′. The modified basis elements reflect the relations between
the pc-generators g1, . . . , gn.

A striking feature is that the terms which have to be added to the basis

3F stands for the field with p elements.
4In [13], it is claimed that the answer is in the affirmative, but the proof of Theorem 3.2 contains

an obvious mistake (on page 617).
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elements have a factor of 1/2. This reminds us that there is no perfect correspon-
dence between (discrete) p-groups and Lie algebras of characteristic p, due to the
non-existence of mutually-inverse functions exp and log; in general, the best one
can consider are the truncations

exp(x) = 1 + x + O(x2), log(1 + x) = x + O(x2).

Nevertheless, the hope may be entertained that further investigations along the
line presented here will actually lead to connections between group and Lie-
algebra objects!

In the next section, we present some well-known facts as well as a small
example which hopefully eases the access to the main idea of the proof. The
necessary calculations are given in the final section.

2. Preliminaries and an illustrating example

We briefly introduce the notions of Jennings basis and Zassenhaus ideal.
Suppose that G has order pn. A set of pc-generators of G is a sequence g1, . . . , gn

of generators of G that have the property that for each i between 1 and n the
elements gi+1, . . . , gn generate a subgroup of order pn−i that is normal in G. No-
tice that gp

i ∈ 〈gi+1, . . . , gn〉. (The prefix “pc” stands for “power-commutator.”)
It is possible to choose pc-generators g1, . . . , gn such that the first r generators
lie in G \ M2(G), the next s generators lie in M2(G) \ M3(G), and so on. If a
generator gi lies in Mj(G) \Mj+1(G), then j = w(gi) is called its weight. There
are pn products of the form (g1 − 1)ν1 · · · (gn − 1)νn with 0 ≤ νi < p. The weight
of such a product is

∑
w(gi)νi. Jennings’ theorem states that the set of products

of weight j lie in I(kG)j , and forms a basis of I(kG)j modulo I(kG)j+1. Thus the
set B of all these products is a basis of kG, called a Jennings basis, which is com-
patible with the radical filtration. The set 1 + B \ {1} consists of pc-generators
for V(kG), the group of augmentation one units of kG. We remark that Bovdi

noted that a smaller generating set of V(kG) possibly may be obtained from this
set by leaving out certain elements (see [4] or [5, Section 10]).

The Zassenhaus ideals Hi(kG) of kG are defined in terms of kG alone, but for
us the essential point will be that these ideals also have the alternative description
Hi(kG) = Mi(G) − 1 + I(kG)i+1 which – on first sight – seems to depend on
the chosen group basis G of kG (see [10]). Here is a consequence of that result.
Suppose that we are given a subspace S′ of I(kG) which is multiplicatively closed,
so that S = 1 + S′ is a subgroup of V(kG). Suppose further that S′ ∩ Hi(kG) ⊆
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I(kG)i+1 for all i less than a given natural number l. Then H ∩ S ≤ Ml(H) for
each group basis H of kG. Indeed, it suffices to show this only for the group
basis G. Let g ∈ G ∩ S. Then g ∈ M1(G) and as long as i < l and g ∈ Mi(G) we
have g− 1 ∈ S′ ∩Hi(kG) ⊆ I(kG)i+1, that is, g ∈ Mi+1(G). Thus g ∈ Ml(G). We
may use a Jennings basis of kG to obtain such subspaces. More precisely, we can
proceed as follows. Fix some natural number l. Let B be a Jennings basis of kG

consisting, as described above, of products (g1− 1)ν1 · · · (gn− 1)νn . Let C be the
set of all basis elements in B for which

∑
i νi ≥ 2, and let C be the subspace of

kG spanned by C . Let D be the subspace spanned by the gi− 1, so that I(kG) =
C⊕D. Notice that Hi(kG) ⊆ D+I(kG)i+1, so (C +I(kG)l)∩Hi(kG) ⊆ I(kG)i+1

for i < l since the Jennings basis is adapted to the radical filtration. Thus the
subspace S = C + I(kG)l satisfies the above condition of being “complementary”
to the Zassenhaus ideals, but in general this subspace will not be multiplicatively
closed. Notice that if S happens to be multiplicatively closed, then S = 1 + S

is a subgroup of V(kG) satisfying V(kG) = HS and H ∩ S = Ml(H) for each
group basis H of kG. Then the question arises as to whether S is a normal
subgroup of V(kG), i.e., whether S is invariant under conjugation with the gi.
In principal, there are two possibilities to find a remedy. First, one could try to
remove “interfering” elements from C , starting with elements of weight l−1, so to
obtain a smaller set C ′ spanning a subspace C ′ with S = 1+C ′+I(kG)l having all
the desired properties (cf. [9, Section 3]). While this will always work, it has the
disadvantage of producing (normal) subgroups S which are possibly smaller than
one would like to expect. Nevertheless, this kind of reasoning led to a practicable
approach for the groups of order 26, see [9]. Second, one could try to “modify”
the elements from C to obtain a modified set C ′ spanning a subspace C ′ (still
complementing D in I(kG)) with S = 1+C ′+I(kG)l again having all the desired
properties. Thereby, one might be guided by the shape of the G-conjugates of
the elements of C , starting with conjugates of elements of weight 2. This is the
approach taken in this note.

An example. We found our theorem while considering the group G of order
729 which has pc-generators a1, a2, b1, c1, c2, c3 and relations

a3
1 = c1, a3

2 = c2, aa1
2 = a2b1, ba1

1 = b1c2, ba2
1 = b1c3.

Note that only nontrivial relations are listed. For example, there is no relation
involving b3

1, so it is understood that b3
1 = 1. Likewise we have that the ci are in

the center of G since there is no relation listed that has the form g−1cig with a
pc-generator g listed before ci.
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We remark that G has elementary abelian derived subgroup G′ = 〈b1, c2, c3〉,
and [G, G′] = 〈c2, c3〉, so G is of class 3.

The catalogue number of G in the Small Groups Library in GAP [7] is
[729, 10], and G cannot be distinguished from the group H with number [729, 12]
by the common group-theoretical invariants of kG. (A presentation of H is ob-
tained by replacing the second relation above by a3

2 = c3.) This is why we had a
look at G.

The M-series of G is given by

G > M2(G) = 〈b1, c1, c2, c3〉 > M3(G) = 〈c1, c2, c3〉 > M4(G) = 1.

We shall write Ai = ai − 1, Bi = bi − 1 and Ci = ci − 1. The Jennings basis
of kG specified by the given pc-generators is depicted in Figure 1.

1

A1 A2

B1 A2
1 A1A2 A2

2

C1 C2 C3 A1B1 A2
1A2 A1A

2
2 A2B1

...

Figure 1. A Jennings basis of kG, written out up to I(kG)4. The

basis elements C in the highlighted region span a subspace C which

is obviously multiplicatively closed, but not G-invariant.

The interested reader is encouraged to verify the following calculations im-
mediately by hand (congruences are modulo I(kG)4):

(A2
1)

a2 ≡ A2
1 + (A1B1 − C2), (A2

2)
a1 ≡ A2

2 − (A2B1 − C3),

(A1A2)a1 ≡ A1A2 + A1B1, (A1A2)a2 ≡ A1A2 −A2B1 − C3,

(B1)a1 ≡ B1 + C2, (B1)a2 ≡ B1 + C3.

The first line suggests that the basis elements A1B1 and A2B1 of weight 3 should
be altered as shown in Figure 2 (the reason why we have written −1 = 1

2 will
become evident when handling the general case). One cannot help thinking that
now something should be added on both sides of the equations displayed in line
two, and the third line suggests precisely what is to do. This leaves us with the
satisfactory picture shown in Figure 2.
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1

A1 A2

B1 A2
1 A1A2 + 1

2B1 A2
2

C1 C2 C3 A1B1 + 1
2C2 A2

1A2 A1A
2
2 A2B1 + 1

2C3

...

Figure 2. The modified Jennings basis of kG. The basis elements C ′ in
the highlighted region span a G-invariant subspace C′, so N = 1 + C′

is a normal complement to any group basis of kG in V(kG).

3. Proof of the theorem

We start right off doing the necessary calculations. Let G be a finite p-group.
Throughout, “≡” shall mean “congruence modulo I(kG)4.” Recall that for all
g ∈ G and l ∈ N, we have g−1 ∈ I(kG)l if and only if g ∈ Ml(G). First, we record
a few well-known calculation rules. Let g, h ∈ G and x, y, x1, . . . , xm ∈ M2(G).
From the identities

gh− 1 = (g − 1) + (h− 1) + (g − 1)(h− 1) (1)

hg([g, h]− 1) = (g − 1)(h− 1)− (h− 1)(g − 1) (2)

it follows that

(x1 · · ·xm)− 1 ≡ (x1 − 1) + . . . + (xm − 1) (3)

[g, h]− 1 ≡ −([h, g]− 1) (4)

[x, h]− 1 ≡ (x− 1)(h− 1)− (h− 1)(x− 1) (5)

[xy, h]− 1 ≡ ([x, h]− 1) + ([y, h]− 1) (6)

Indeed, (3) is immediate from (1), and (4) also follows from (1) since [g, h] ∈
M2(G) and ([g, h] − 1) + ([h, g] − 1) = ([g, h] − 1) + ([g, h]−1 − 1). Last, (5) is
immediate from (2) since [x, h] ∈ M3(G), and (6) follows from (5) and (3).

Now let a1, a2, . . . be elements of G. We set xij = [aj , ai], that is, aai
j = ajxij .

We shall write Ai = ai − 1 and Xij = xij − 1.
The crucial calculation—use (3) twice for the last step:

(xij − 1)al = (a−1
j a−1

i ajai − 1)al = x−1
lj a−1

j x−1
li a−1

i ajxljaixli − 1

= x−1
lj [aj , xli]x

−1
li [aj , ai]xlj [xlj , ai]xli − 1
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≡ ([aj , xli]− 1) + (xij − 1) + ([xlj , ai]− 1) + ([xlj , xli]− 1︸ ︷︷ ︸
≡0 by (5)

)

together with a little cosmetic (4) shows that for all i, j, l:

(Xij)al = Xij + ([xlj , ai]− 1)− ([xli, aj ]− 1). (7)

Furthermore,

(AiAj)al = (aixli − 1)(ajxlj − 1) ≡ (Ai + Xli)(Aj + Xlj)

by (1), and
XliAj ≡ AjXli + ([xli, aj ]− 1)

by (5), so

(AiAj)al ≡ AiAj + AiXlj + AjXli + ([xli, aj ]− 1). (8)

Setting i = j, we obtain in particular

(A2
i )

al ≡ A2
i + 2AiXli + ([xli, ai]− 1). (9)

Now suppose that p is odd. Then it follows from (7) and (8) that for all i, j, l:
(

AiAj +
1
2
Xij

)al

≡
(

AiAj +
1
2
Xij

)

+ AiXlj +
1
2
([xlj , ai]− 1) + AjXli +

1
2
([xli, aj ]− 1).

(10)

Finally, fix some indices i, j, l and suppose that xlj = xν1
1 · · ·xνm

m , all xs in
M2(G) and 0 ≤ νs < p. Then by (3) and (6),

AiXlj ≡ ν1AiX1 + . . . + νsAiXs, (11)

1
2
([xlj , ai]− 1) ≡

m∑
s=1

νs
1
2
([xs, ai]− 1). (12)

We are well prepared to give a proof of Theorem′. As a matter of fact, what
is left to do is just to set up a lot of notation and to check trivial things. The
group G has a system of pc-generators

a1, . . . , ar, b1, . . . , bs, c1, . . . , ct, . . .

such that the ai lie in G \ M2(G), the bi lie in M2(G) \ M3(G), the ci lie in
M3(G)\M4(G) and the remaining generators lie in M4(G). Actually, it can happen
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that the M-series “stutters.” If, e.g., M3(G) = M4(G), then it is understood that
t = 0 and {c1, . . . , ct} = ∅. The given generators give rise to a Jennings basis of
kG. We set

A∗ = {A1, . . . , Ar}, B∗ = {B1, . . . , Bs}, C∗ = {C1, . . . , Ct},
A∗∗ = {AiAj | 1 ≤ i < j ≤ r}, A2

∗ = {A2
1, . . . , A

2
r},

A∗B∗ = {AiBj | 1 ≤ i ≤ r, 1 ≤ j ≤ s},
A∗∗∗ = {AiAjAl | 1 ≤ i ≤ j ≤ l ≤ r, if p = 3 not i = j = l}.

In the Jennings basis, we have the subsets of elements of

weight 1: A∗,
weight 2: B∗ ∪ A∗∗ ∪ A2

∗,

weight 3: C∗ ∪ A∗B∗ ∪ A∗∗∗.
We set

(A∗∗)′ =
{

AiAj +
1
2
([aj , ai]− 1) | 1 ≤ i < j ≤ r

}
,

(A∗B∗)′ =
{

AiBj +
1
2
(
[bj , ai]− 1

) | 1 ≤ i ≤ r, 1 ≤ j ≤ s

}

and let C ′ be the k-span of (A∗∗)′ ∪ A2
∗ ∪ (A∗B∗)′ ∪ A∗∗∗ ∪ I(kG)4. Further,

let D be the k-span of A∗ ∪ B∗ ∪ C∗. Obviously, C ′ is multiplicatively closed
since it is contained in I(kG)2. Thus N = 1 + S′ is a subgroup of V(kG). Since
I(kG) = D⊕C ′, it follows that V(kG) = HN and H ∩N = M4(H) for any group
basis H of kG, see the discussion in Section 2 concerning the Zassenhaus ideals.
Moreover, C ′ is invariant under conjugation with elements of G. Therefore, it
suffices to show that C ′ is invariant under conjugation with the al which holds
since conjugation with an al maps A2

∗ and (A∗∗)′ into C ′ by (9) respectively (10)
and (11), (12). Thus N is a normal subgroup of V(kG), and the proof of the
theorem is complete.
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[2] CzesÃlaw Bagiński and Alexander Konovalov, The modular isomorphism problem for
finite p-groups with a cyclic subgroup of index p2, Proceedings of Groups St Andrews 2005,
London Mathematical Society Lecture Note Series, Cambridge University Press.



On group algebras of odd p-groups of M-length three 93

[3] Frauke M. Bleher, Wolfgang Kimmerle, Klaus W. Roggenkamp and Martin
Wursthorn, Computational aspects of the isomorphism problem, Algorithmic algebra
and number theory (Heidelberg, 1997), Springer, Berlin, 1999, 313–329.

[4] Adalbert Bovdi, Generators of the units of the modular group algebra of a finite p-group,
Methods in ring theory (Levico Terme, 1997), Vol. 198, Lecture Notes in Pure and Appl.
Math., Dekker, New York, 1998, 49–62.

[5] Adalbert Bovdi, The group of units of a group algebra of characteristic p, Publ. Math.
Debrecen 52, no. 1–2 (1998), 193–244.

[6] V. Bovdi, A. Konovalov, R. Rossmanith and C. Schneider, LAGUNA – Lie AlGebras
and UNits of group Algebras, Version 3.3.1, 2005, (http://ukrgap.exponenta.ru/laguna.htm).

[7] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.4, 2005,
(http://www.gap-system.org).

[8] Martin Hertweck and Marcos Soriano, Parametrization of central Frattini extensions
and isomorphisms of small group rings, 2005 (to appear in Israel Journal of Mathematics),
http://www.igt.uni-stuttgart.de/LstDiffgeo/Hertweck/.

[9] Martin Hertweck and Marcos Soriano, On the modular isomorphism problem: groups
of order 26, 2005, 1–37 (to appear in Groups, Rings & Algebras; Papers in Honor of Donald
S. Passman’s 65-th Birthday. Edited by: W. Chin, J. Osterburg, and D. Quinn, CONM
book series.), http://www.igt.uni-stuttgart.de/ LstDiffgeo/Hertweck/.

[10] Inder Bir S. Passi and Sudarshan K. Sehgal, Isomorphism of modular group algebras,
Math. Z. 129 (1972), 65–73.

[11] Donald S. Passman, The algebraic structure of group rings, Pure and Applied Mathemat-
ics, Wiley-Interscience [John Wiley & Sons], New York, 1977, xiv+720.

[12] Jürgen Ritter and Sudarshan Sehgal, Isomorphism of group rings, Arch. Math. (Basel)
40, no. 1 (1983), 32–39.
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