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On curvature decreasing property of a class
of navigation problems

By XIAOHUAN MO (Beijing) and LIBING HANG (Beijing)

Abstract. In Finsler geometry the flag curvature is an important quantity be-

cause it is a natural extension of the sectional curvature in Riemannian geometry. This

note gives flag curvature a decreasing property via some navigation problems. As an

application, we prove some rigidity results for Finsler metrics with special flag curvature

properties.

1. Introduction

Finsler metrics arise naturally in many areas of mathematics as well as nat-
ural science. In Finsler geometry the flag curvature is an important quantity
because it is a natural extension of the sectional curvature in Riemannian geome-
try. For a Finsler manifold (M, F ), the flag curvature K = KF (y, Π) is a function
of the tangent planes Π ⊂ TxM and direction y ∈ Π\{0}. This quantity tells us
how curved the space is at a point.

Recently, one of the important approaches in discussing Finsler metric is the
navigation problem. For instance, Bao–Robles–Shen have classified Randers
metrics of constant flag curvature via the navigation problem in Riemannian
manifolds [5]. Moreover Robles has determined the geodesics of these Randers
metrics [16].

Randers metrics are among the simplest non-Riemannian Finsler metrics.
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They are expressed in the form F = α + β, where α :=
√

aij(x)yiyj is a Rie-
mannian metric on M and β := bi(x)yi is a 1-form with ‖β‖α < 1. Randers
metrics arise naturally from physical applications [15].

The main technique of the navigation problem is described as follows. Given
a Finsler metric F and a vector field V with F (x, Vx) < 1, define a new Finsler
metric F̃ by

F

(
x,

y

F̃ (x, y)
+ Vx

)
= 1, ∀ x ∈ M, y ∈ TxM. (1.1)

For non-collinear u, v ∈ TxM , we denote the tangent plane Span{u, v} by
u ∧ v. Using Chern connection and moving frames, this note gives the following

Theorem 1.1. Let F = F (x, y) be a Finsler metric on a manifold M and V

a vector field on M with F (x, Vx) < 1. Let F̃ = F̃ (x, y) denote the Finsler metric

on M defined by (1.1). Suppose that V is homothetic with dilation c. Then the

flag curvature of F̃ and F is related by

KF̃ (y, y ∧ u) = KF (ỹ, ỹ ∧ u)− c2

where ỹ = y − F (x, y)V .

Recall that a vector field V on M is called homothetic with dilation c if its
flow φt satisfies

F (φt(x), (φt)∗y) = e2ctF (x, y), ∀ x ∈ M, y ∈ TxM.

(For more details, see Section 5.) Some examples of non-trivial homothetic fields
have been constructed in Sections 5 and 7.

Theorem 1.1 generalizes theorems previously only known in the case of Ran-
ders metrics [5, Theorem 3.1].

It is also worth mentioning the recent announcement of Foulon that if F is a
Finsler metric and V is a Killing field, then F and F̃ have the same flag curvature,
where F̃ denotes the navigation representation of (F, V ). In this paper we give a
new geometric proof of Foulon’s claim.

For a non-Killing homothetic field Theorem 1.1 means that the navigation
problem has the flag curvature decreasing property. After noting this interesting
phenomenon, we investigate a series of rigidity theorems for Finsler metrics with
special flag curvatures.

Mo–Shen’s global rigidity theorem tells us that every Finsler metric on an
n dimensional compact manifold of negative scalar flag curvature must be of
Randers type for n ≥ 3 [13]. Since navigation data preserve Randers type of
Finsler metrics, on the basis of Theorem 1.1, we obtain the following
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Theorem 1.2. Let (M, F ) be a compact Finsler manifold of dimension n ≥ 3
and V a vector field with F (x, Vx) < 1. Suppose that V is a homothetic field

with dilation c, and F is of scalar curvature K(x, y), which satisfies

supK(x, y) < c2.

Then F is a Randers metric.

Theorem 1.2 greatly narrows down the possibility of compact Finsler mani-
folds satisfying given flag curvature conditions. We also obtain some other rigidity
results in Section 7.

2. Preliminaries

In this section, we are going to give a brief description of the Chern connec-
tion, the flag curvature, and other quantities mentioned above. For more detail
see [3].

Let M be a smooth manifold of dimension n, and let TM (resp. T ∗M) be
its tangent (resp. cotangent) bundle. By definition, a Finsler metric F (x, y) on
M is a nonnegative function on TM , which is positively y-homogeneous of degree
one with positive definite fundamental tensor g := gijdxi ⊗ dxj , where gij :=
1
2

[
F 2

]
yiyj (x, y). To characterize Riemannian metrics among Finsler metrics, we

define the Cartan tensor A by

A :=
1
4
F

∂3F 2

∂yi∂yj∂yk
dxi ⊗ dxj ⊗ dxk.

Throughout the paper, our index conventions are as follows:

1 ≤ i, j, k, · · · ≤ n, 1 ≤ α, β, γ, · · · ≤ n− 1, 1 ≤ a, b, c, · · · ≤ 2n− 1.

Usually it is more convenient to do calculations on TM and to interpret
them on SM , where SM is known to be the sphere bundle of M whose fibre at x

consists of all directions in TxM . Each geometrical quantity on TM , homogeneous
of degree zero, is considered to sit on SM . In [7], a basis {êa}2n−1

a=1 for T (SM) is
introduced to satisfy G(êa, êb) = δab and ên = yi

F
δ

δxi , where

êi = ui
j δ

δxj
, êᾱ = uα

jF
∂

∂yj
, ᾱ := n + α (2.1)
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and G is the Sasaki type Riemannian metric on SM . As its dual, a basis {ωa}
for T ∗SM is given by

ωi = vj
idxj , ωᾱ = vj

α 1
F

δyj . (2.2)

Among them, ωn = Fyidxi is the most important and it is called the Hilbert form.
In [7] Chern claims that there is a unique set of connection 1-forms {ωi

j}
satisfying

dωi = ωj ∧ ωj
i (2.3)

δkiωj
k + δkjωi

k = −2Hijαωᾱ, Hijk := A(ei, ej , ek) (2.4)

which, when collected together, are called the Chern connection forms.
It is an easy consequence that ωn

α = −ωα
n = ωᾱ and ωn

n = 0.
The curvature 2-forms Ωi

j are defined by

Ωi
j = dωi

j − ωi
k ∧ ωk

j .

Let Rβ
α := Ωn

β(eα, en). It naturally leads to a quantity, which is called the
Riemann tensor [8]

R := Rβ
αωα ⊗ eβ .

For a tangent plane Π = Span{y, u}, y, u ∈ TxM , we have the notion of flag
curvature

K(y, y ∧ u) :=
g(R(u), u)

g(en, en)g(u, u)− (g(en, u))2

where {ei} is a dual adapted orthonormal frame on the Finsler bundle. Take
h := (ω1)2 + · · ·+ (ωn−1)2, then the flag curvature can be written as

K(y, y ∧ u) =
h(R(u), u)

h(u, u)
. (2.5)

3. Description in terms of the Chern connection and its curvatures

In this section, we are going to use the Chern connection and its curvatures
describing some concepts we will use later. We continue to use the notations of
Section 2.
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Lemma 3.1.
[ên, êα] = ωα

β(ên)êβ + Rβ
α êβ̄ (3.1)

[ên, êᾱ] = −êα + ωα
β(ên)êβ̄ . (3.2)

Proof. Direct computation yields

ωi[ên, êα] = −dωi(ên, êα) = −ωj ∧ ωj
i(ên, êα)

= −ωn
i(êα) + ωα

i(ên) = ωα
i(ên).

By Section 2,

dωᾱ = dωn
α = Ωn

α + ωn
k ∧ ωk

α = Ωn
α + ωβ̄ ∧ ωβ

α.

It follows that

ωβ̄ [ên, êα] = −dωβ̄(ên, êα) = (−Ωn
β − ωγ̄ ∧ ωγ

β)(ên, êα)

= −Ωn
β(ên, êα) = Rβ

α.

Thus [ên, êα] = ωα
β(ên)êβ + Rβ

αêβ̄ . A similar calculation gives (3.2). ¤

There is a special vector field X on SM . We characterize it by the following

Proposition 3.2. Let ω = ωn be the Hilbert form. Then there is a unique

vector field X on SM satisfying

ω(X) = 1, dω(X, ·) = 0. (3.3)

Proof. Put X = Xiêi + X ᾱêᾱ, then

Xn = ω(X) = 1

Xα = ωα(X) = ωj ∧ ωj
n(X, êᾱ) = dω(X, êᾱ) = 0

X ᾱ = ωᾱ(X) = ωj ∧ ωj
n(X, êα) = dω(X, êα) = 0.

Thus we have X = ên. ¤

The vertical distribution V SM := span{êᾱ} is naturally defined on SM ,
which is independent of the Finsler structure F . Actually, it can be realized as
{v ∈ TSM | v(f) = 0, f ∈ C∞(M) ⊂ C∞(SM)}.

Proposition 3.3. There is a unique (1, 1)-tensor V satisfying

V(v) = V(X) = 0, V[X, v] = −v, ∀v ∈ V SM. (3.4)
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Proof. By the first equation of (3.4), we can write V = (Ai
β êi +Aγ̄

β êγ̄)⊗ωβ .
From (3.2), we have

−êᾱ = V[X, êᾱ] = −(Ai
β êi + Aγ̄

β êγ̄)δα
β = −Ai

αêi −Aγ̄
αêγ̄ .

A comparing of the coefficients yields

Ai
α = 0, Aγ̄

α = δγ
α.

Hence V = êᾱ ⊗ ωα, that is, it is uniquely determined. ¤

Remark. In natural coordinates one can also derive that

V
(

∂

∂xi

)
= F

∂

∂yi
, V

(
F

∂

∂yi

)
= 0,

which provides another proof of Proposition 3.3.

Proposition 3.4. Define H(v) := −[X, v] − 1
2V[X, [X, v]] for v ∈ V SM ,

then H is C∞-linear and H(êᾱ) = êα.

Proof. For any f ∈ C∞(SM), we have

−H(f · v) = [X, f · v] + 1/2V[X, [X, f · v]]

= X(f)v + f · [X, v] + 1/2V[X, X(f)v + f · [X, v]]

= X(f)v + f · [X, v]− 1/2X(f)v + 1/2V[X, f · [X, v]]

= 1/2X(f)v + f · [X, v] + 1/2V(
X(f)[X, v] + f · [X, [X, v]]

)

= 1/2X(f)v + f · [X, v]− 1/2X(f)v + 1/2f · V[X, [X, v]] = −f · H(v),

which preserves the C∞-linearity. By using (3.1) and (3.2), we have

−H(êᾱ) = [ên, êᾱ] +
1
2
V[ên, [ên, êᾱ]]

= −êα + ωα
β(ên)êβ̄ +

1
2
V[ên,−êα + ωα

β(ên)êβ̄ ]

= −êα + ωα
β(ên)êβ̄ −

1
2
V[ên, êα] +

1
2
ωα

β(ên)V[ên, êβ̄ ]

= −êα + ωα
β(ên)êβ̄ −

1
2
V(

ωα
β(ên)êβ + Rβ

αêβ̄

)

+
1
2
ωα

β(ên)V(− êβ + ωβ
γ(ên)êγ̄

)

= −êα + ωα
β(ên)êβ̄ −

1
2
V(

ωα
β(ên)êβ

)
+

1
2
ωα

β(ên)V(−êβ) = −êα.

It follows that H(êᾱ) = êα. ¤
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Take HSM := H(V SM) = span{êα}. Then SM = HSM ⊕ Span{X} ⊕
V SM . Define

H(u) = H(X) = 0, u ∈ HSM. (3.5)

Then we have the following

Corollary 3.5. H is a (1, 1)-tensor on SM .

From the proof of Proposition 3.4, we see that H = êα ⊗ ωᾱ.

Corollary 3.6. The tensor J := H − V is an almost complex structure on

HSM ⊕ V SM .

We denote the projection to V SM (resp. HSM) by PV := V ◦ H (resp.
PH := H ◦ V).

Proposition 3.7. Define a map R : TSM → TSM by

R(v) := PV [X,H(v)], v ∈ V SM (3.6)

R(u) := H[X, u], u ∈ HSM (3.7)

R(X) := 0. (3.8)

Then R is actually the Riemann tensor with a slight difference. It commutes with

the almost complex structure J .

Proof. It is easy to check that R is C∞-linear. By a direct computation,
one obtains

R(êα) = H[X, êα] = H(
ωα

β(ên)êβ + Rβ
αêβ̄

)
= Rβ

αêβ

R(êᾱ) = VH[X,H(êᾱ)] = VH[X, êα] = V(Rβ
αêβ) = Rβ

αêβ̄ .

It follows that R = Rβ
α

(
êβ ⊗ ωα + êβ̄ ⊗ ωᾱ

)
. The commutability is obvious. ¤

Finally we define the flag curvature alternatively on the projectively vertical
subbundle P (V SM).

Proposition 3.8. Let

h(v1, v2) :=





dω([X, v1], v2) if v1, v2 ∈ V SM

h(J (v1),J (v2)) if v1, v2 ∈ HSM

0 if v1 ∈ V SM, v2 ∈ HSM.

Then h is an inner product on HSM ⊕ V SM . In particular, h|V SM×V SM is an

inner product on V SM .
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Proof. It is easy to see that h is C∞-linear with respect to each index.
Furthermore we have

h(êᾱ, êβ̄) = dω([X, êᾱ], êβ̄) = (ωδ ∧ ωδ
n)([ên, êᾱ], êβ̄)

= −
(∑

ωδ ∧ ωδ̄
)

(−êα + ωα
γ(X)êγ̄ , êβ̄) = δαβ .

Hence h|V SM×V SM = δαβωᾱ⊗ωβ̄ = (ω1̄)2 + · · ·+(ωn−1)2 is an inner product on
V SM . Extend it to HSM ⊕ V SM . Then h = (ω1)2 + · · · + (ωn−1)2 + (ω1̄)2 +
· · ·+ (ωn−1)2. ¤

Now the flag curvature is defined by

K([v]) := K(v) :=
h(R(v), v)

h(v, v)
, v ∈ V SM, (3.9)

where [v] is the v-equivalent class of V SM with a positive number λ:

[v] := {λv | λ > 0}, v ∈ V SM.

The following lemma explains the relation between (3.9) and (2.5).

Lemma 3.9. There is a globally defined 1 − 1 map Φ between the flags

{y ∧ u | u ∈ TxM
}

and the projectively vertical subbundle P (V SM), such that

K(y, y ∧ u) = K(Φ(y ∧ u)),

where P (V SM) := {[v] | v ∈ V SM} ' V SM/R+. Furthermore, Φ is indepen-

dent of the Finsler metric F .

Proof. Put Φ(y ∧ u) := [V(u)], where [v] is the equivalent class containing
v ∈ V SM . It is clear that Φ(y ∧ u) is independent of the choice of u, that is, it
is globally defined.

Without loss of generality, we assume that u = uα eα ∈ TxM , where {ei} is
the basis of TxM dual to ωi. Then Φ(y ∧ u) = [uαeᾱ]. It follows that

K(y, u) =
h(R(u), u)

h(u, u)
=

δαβRβ
γuαuγ

δαγuαuγ
=

h
(R(uαêᾱ), uγ êγ̄

)

h(uαêᾱ, uγ êγ̄)
= K(Φ(y ∧ u)).

The remark of Proposition 3.3 suggests that in natural coordinates (xi; yi)

Φ
(

y ∧ ∂

∂xi

)
=

[
F

∂

∂yi

]
=

[
∂

∂yi

]
.

Thus Φ is independent of the Finsler metric F . ¤
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Remark. It is straightforward to verify that the tensors V, H and R can be
localized. In fact, given two vector fields u, v ∈ TSM , if u(x0,[y0]) = v(x0,[y0]), then

V(u)|(x0,[y0]) = V(v)|(x0,[y0]).

The following two useful lemmas will be used later.

Lemma 3.10. Using the above notations, we have the following identity for

v ∈ V SM :

PV [X, v]− V[X,H(v)] = 0. (3.10)

Proof. Note that [X, v] = −H(v)− 1
2V[X, [X, v]]. Thus its vertical part is

− 1
2V[X, [X, v]]. Hence the left hand side of (3.10) is equal to

V[X,−1
2
[X, v]−H(v)] = V

[
X,

1
2
[X, v] +

1
2
V[X, [X, v]]

]

= V
[
X,

1
2
[X, v]

]
− 1

2
V[X, [X, v]] = 0.

The desired identity is proved. ¤

Lemma 3.11. ω[X, v] = ω[X, u] = 0, ω[X, [X, v]] = ω[X, [X, u]] = 0, where

v ∈ V SM , u ∈ HSM .

Proof. By (3.1) and (3.2), [X, v] and [X,u] have no X-component, thus
ω[X, v] = ω[X, u] = 0. Using this fact again, we get the result. ¤

4. A dual construction on the co-sphere bundles

The geometry of the cotangent bundle is naturally dual to the geometry of
the tangent bundle via the Legendre transformation [12]. In a similar manner, we
claim that the geometry of the co-sphere bundle is dual to the geometry on the
sphere bundle, which we have discussed in Section 3. However, we can derive more
results because the cotangent bundle admits a canonical symplectic structure.

By introducing (xi, pi) as natural coordinates on T ∗M , i.e., p = pidxi ∈
T ∗x M , we get a symplectic form dp := dpi ∧ dxi.

Definition 4.1 ([12]). For each function f on T ∗M , there is a unique vector
field Xf satisfying

dp(Xf , ·) = −df,

which is called the Hamiltonian vector field for f .



150 Xiaohuan Mo and Libing Hang

Indeed, Xf can be locally expressed as

Xf =
∂f

∂pi

∂

∂xi
− ∂f

∂xi

∂

∂pi
.

Definition 4.2 ([12]). Given two functions f, g : T ∗M → R, the Poisson
bracket {f, g} is defined by

{f, g} := dp(Xf , Xg).

Using Definition 4.1, we have the following equivalent expressions:

{f, g} = −df(Xg) = dg(Xf ).

It is easy to verify that

Proposition 4.3 ([11]). X{f,g} = −[Xf , Xg].

We associate a Finsler metric F on M to a family of maps LF
x : TxM → T ∗x M

defined by

(LF
x (y))(u) :=

1
2

d
dt

F 2(x, y + tu)
∣∣∣∣
t=0

= Fω(u), y, u ∈ TxM.

We call the family LF := {LF
x | x ∈ M} the Legendre transformation. In fact,

LF : TM → T ∗M is a bundle map.
Note that LF is a smooth diffeomorphism on TM\{0} and the function

H(x, p) := F (x, (LF
x )−1(p)), p ∈ T ∗x M is a Minkowski norm on T ∗x M [11].

Recall that a smooth manifold where each cotangent space T ∗x M is equipped
with a Minkowski norm H(x, p) smoothly depending on x, is called a Cartan
manifold [12], and H is called a Cartan metric. The Hamiltonian vector field XH

for a given H has the local expression

XH =
∂H

∂pi

∂

∂xi
− ∂H

∂xi

∂

∂pi
.

By definition, H is p-homogeneous of degree one. It follows that p(XH) =
pidxi(XH) = H.

In the rest of this section, unless otherwise stated, we always assume that H :
T ∗M → R is the dual of F : TM → R in the sense of the Legendre transformation
LF : TM → T ∗M , i.e., H(x, p) = F (x, (LF

x )−1(p)).

Lemma 4.4. We have an alternative definition for H, that is

H(x, p) = max
y∈TxM\{0}

p(y)
F (x, y)

.
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Proof. By homogeneity, we can restrict our considerations to the indicatrix

{y ∈ TxM | F (x, y) = 1}.

Since the indicatrix is compact, there exists some point y0 ∈ TxM\{0}, such that

p(y0)
F (x, y0)

= max
y∈TxM

p(y)
F (x, y)

.

It follows that
d
dt

p(y0 + tu)
F (x, y0 + tu)

∣∣∣∣
t=0

= 0, ∀u ∈ TxM.

Expanding this equation yields

p(u)
F (x, y0)

− p(y0)
F 2(x, y0)

d
dt

F (y0 + tu)
∣∣∣∣
t=0

= 0, ∀u ∈ TxM.

Together with the definition of LF
x (y0), we have

p(u) =
p(y0)

F 2(x, y0)
(LF

x (y0))(u), ∀u ∈ TxM,

hence

p =
p(y0)

F 2(x, y0)
LF

x (y0).

Taking H(x, · ) on both sides, we have

H(x, p) =
p(y0)

F 2(x, y0)
H(x, LF

x (y0)) =
p(y0)

F (x, y0)
= max

y∈TxM

p(y)
F (x, y)

. ¤

Remark. From the above proof, it is clear that the maximizer of p(y)/F (x, y)
can be taken as y = (LF

x )−1(p). H is called the co-Finsler metric of F [17].

Note that p = LF (y) = F (x, y)ω ∈ T ∗x M . If we view ω as a 1-form on TM ,
then ω[, its dual quantity on T ∗M , satisfies

ω[ :=
(
(LF )−1

)∗
ω =

(
(LF )−1

)∗ LF
x (y)

F (x, y)
=

p

H
.

Lemma 4.5. The Hamiltonian vector field XH satisfies

ω[(XH) = 1, dω[(XH , ·) = 0,

i.e., XH = (LF )∗X. We also denote XH by X[.
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Proof. From previous analysis ω[(XH) = p(XH)/H = 1. By Definition 4.1
we have dH(XH) = −dp(XH , XH) = 0. It follows that

dω[(XH , ·) = d(p/H)(XH , ·) = d
1
H
∧ p(XH , ·) +

1
H

dp(XH , ·)

= − 1
H2

dH ∧ p(XH , ·)− 1
H

dH

= − 1
H2

dH(XH) · p +
1

H2
p(XH)dH − 1

H
dH

=
1
H

dH − 1
H

dH = 0.

Comparing this with Proposition 3.2 we conclude that XH is dual to X. ¤

A quick glance shows that both ω[ and X[ are sitting on S∗M , the co-sphere
bundle of M . Hence they can be used to define other quantities on S∗M just
as we have done in Section 2. Those quantities naturally become the duals of
their corresponding quantities on SM without any change of formulation, be-
cause they are all defined by exterior differentiation and Lie brackets, which have
good commutability with pullbacks and tangent maps. To reduce the amount of
symbols, we denote each dual quantity on S∗M by simply adding a ‘ [ ’ to the
corresponding symbol on SM , as we have done with ω and X. The dual of the
vertical distribution V is now denoted by V[. It is characterized by

Proposition 4.6. Given a Cartan metric H on M , there is a unique (1, 1)-
tensor V[ satisfying

V[(v) = V[(X[) = 0, V[[X[, v] = −v, ∀v ∈ V S∗M, (4.1)

where V S∗M := {v ∈ TSM | v(f) = 0, ∀f ∈ C∞(M) ⊂ C∞(S∗M)} is the dual

of V SM , which is independent of the metric H.

We omit the proof because of duality. For the same reason, we can prove the
remaining results of Section 3 step by step and we obtain

Proposition 4.7. Define H[(v) := −[X[, v]− 1
2V[X[, [X[, v]] for v ∈ V S∗M ,

then H[ is C∞-linear. Additionally, set HS∗M := H[(V S∗M) and define

H[(u) := H[(X[) := 0, u ∈ HS∗M,

then H is a (1, 1)-tensor on S∗M .

Proposition 4.8. The tensor J [ := H[−V[ is an almost complex structure

on HS∗M ⊕ V S∗M .
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We denote the projection to V S∗M (resp. HS∗M) by P [
V := V[ ◦ H[ (resp.

P [
H := H[ ◦ V[). Define

R[(v) := P [
V [X[,H[(v)], v ∈ V S∗M

R[(u) := H[[X[, u], u ∈ HS∗M

R[(X[) := 0,

then the flag curvature on P (V S∗M) is given by

K[(v) :=
h[(R[(v), v)

h[(v, v)
, v ∈ TS∗M, (4.2)

where

h[(v1, v2) :=





dω[([X, v1], v2), if v1, v2 ∈ V S∗M ;

h[(J [(v1),J [(v2)), if v1, v2 ∈ HS∗M ;

0, if v1 ∈ V S∗M, v2 ∈ HS∗M.

The following observations will be used in the proof of our main results. They
are the duals of Lemma 3.10 and Lemma 3.11.

Lemma 4.9.
P [
V [X[, v]− V[[X[,H[(v)] = 0, v ∈ V S∗M. (4.3)

Lemma 4.10. ω[[X[, v] = ω[[X[, u] = 0, ω[[X[, [X[, v]]= ω[[X[, [X[, u]]= 0,

where v ∈ V S∗M, u ∈ HS∗M .

5. Homothetic maps and homothetic fields

In this section we discuss homothetic maps and homothetic fields for a Finsler
(resp. Cartan) manifold, the latter being of special importance for the navigation
problem.

Note that a local diffeomorphism ϕ : M → M can be (locally) lifted to the
maps ϕ̆ : TM0 → TM0 and ϕ̃ : T ∗M0 → T ∗M0, where

ϕ̆(x, y) := (ϕ(x), ϕ∗(y)), y ∈ TxM ;

ϕ̃(x, p) := (ϕ(x), (ϕ∗)−1(p)), p ∈ T ∗x M.

With this notation, an isometry ϕ of a Finsler manifold (M, F ) (resp. Cartan
manifold (M,H)) actually means

F = ϕ̆∗F (resp. H = ϕ̃∗H),

i.e. F (x, y) = F (ϕ(x), ϕ∗(y)) (resp. H(x, p) = H(ϕ(x), (ϕ∗)−1(p))).
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Definition 5.1. For a Finsler manifold (M,F ) (resp. Cartan manifold (M,H)),
the map ϕ : M → M is called homothetic, if there exists a constant λ > 0, s.t.

ϕ̆∗F = λF (resp. ϕ̃∗H = λ−1H). (5.1)

An immediate consequence of Definition 5.1 is the following

Lemma 5.2. For a homothetic map ϕ on a Finsler manifold (M, F ) (resp.

Cartan manifold (M, H)), we have

1. ϕ̆∗ω = λω (resp. ϕ̃∗ω[ = λω[);

2. ϕ̆∗X = λ ·X (resp. ϕ̃∗X[ = λ ·X[);

3. ϕ̆∗ ◦ V = λ−1 · V ◦ ϕ̆∗ (resp. ϕ̃∗ ◦ V[ = λ−1 · V[ ◦ ϕ̃∗);

4. ϕ̆∗ ◦ H = λ · H ◦ ϕ̆∗. (resp. ϕ̃∗ ◦ H[ = λ · H[ ◦ ϕ̃∗).

Proof. We only prove the Finslerian case. Rewriting (5.1) as

F (ϕ(x), ϕ∗(y)) = λF (x, y), ∀y ∈ TxM

we have

F (ϕ(x), ϕ∗(y + tu)) = λF (x, y + tu), ∀y, u ∈ TxM, t ∈ R.

Differentiating the above equation with respect to t at t = 0 yields ω(ϕ∗(u)) =
λω(u) for u ∈ TxM . It follows that ϕ̆∗ω = λω.

One can verify that 1
λ ϕ̆∗X satisfies (3.3). Thus ϕ̆∗X = λX.

For a vertical vector field v and f ∈ C∞(M) we have

(ϕ̆∗v)(f) = v(ϕ̆∗f) = v(f ◦ ϕ) = 0.

From this we obtain that ϕ̆∗v is vertical. Thus, ϕ̆∗ ◦ V(v) = λ−1 · V ◦ ϕ̆∗(v) = 0.
Form the second equation in Lemma 5.2 we have ϕ̆∗◦V(X) = λ−1 ·V ◦ϕ̆∗(X).

It follows that λ−1 · V ◦ ϕ̆∗[X, v] = λ−1 · V[ϕ̆∗(X), ϕ̆∗(v)] = λ−1 · V[λX, ϕ̆∗(v)] =
−ϕ̆∗(v) = ϕ̆∗ ◦ V[X, v]. Thus ϕ̆∗ ◦ V = λ−1 · V ◦ ϕ̆∗.

From the above results and the definition of H we obtain ϕ̆∗ ◦H=λ ·H ◦ ϕ̆∗.
¤

Recall that a (local) flow on a manifold M is a map φ : (−ε, ε) ×M → M ,
also denoted by φt := φ(t, ·), satisfying
• φ0 = id : M → M ;
• φs ◦ φt = φs+t for any s, t ∈ (−ε, ε) with s + t ∈ (−ε, ε).
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Hence, the lift of a flow φt on M is again a flow φ̆t (resp. φ̃t) on TM (resp.
T ∗M),

φ̆t(x, y) := (φt(x), φt∗(y)), (resp. φ̃t(x, p) := (φt(x), (φ∗t )
−1(p))) (5.2)

By the relationship of vector fields and flows, (5.2) induces a natural way to lift
a vector field u on M to a vector field Xu (resp. X∗

u) on TM (resp. T ∗M). In
natural coordinates, we have

Xu = ui ∂

∂xi
+ yj ∂ui

∂xj

∂

∂yi
∈ Γ(T (TM0))

X∗
u = ui ∂

∂xi
− pj

∂uj

∂xi

∂

∂pi
∈ Γ(T (T ∗M0)),

(5.3)

where u = ui ∂
∂xi .

Remark. Xu is not dual to X∗
u in general.

Definition 5.3. A vector field V on a Finsler manifold (M, F ) (resp. Cartan
manifold (M, H)) is said to be a homothetic field of F (resp. H) with dilation c,
if the corresponding flow φt is homothetic, i.e.,

φ̆∗t F = e2ctF (resp. φ̃∗t H = e−2ctH). (5.4)

In particular V is called a Killing field if c = 0.

Differentiating (5.4) with respect to t at t = 0 yields

Lemma 5.4. V is a homothetic field of F (resp. H) if and only if XV (F ) =
2cF (resp. XV (H) = −2cH).

Example. Consider the domain

M :=
{
x = (x1, . . . , xn) ∈ Rn | x1 > 0

}
.

Note that |x| 6= 0 for ∀x ∈ M . Let

F (x, y) =
x1

|x| |y|, y ∈ TxM

be a reversible Finsler metric. Put V (x) =
∑

i xi ∂

∂xi
. It is easy to see that

∂|x|
∂xi

=
xi

|x|
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for i = 1, . . . , n. Hence

∂F

∂xj
=





(x2)2 + · · ·+ (xn)2

|x|3 |y| if j = 1,

−x1xj

|x|3 |y| if j ≥ 2.

It follows that

XV (F ) = V i ∂F

∂xi
+ yj

∑

i

∂V j

∂xi

∂F

∂yi
= xi ∂F

∂xi
+ yj

∑

i

δj
i

∂F

∂yi

= x1 (x2)2 + · · ·+ (xn)2

|x|3 |y|+ Σi≥2x
i

(
−x1xi

|x|3 |y|
)

+ yi ∂F

∂yi
= F.

Hence V is a homothetic field of F with dilation 1
2 .

An important property of homothetic fields is the invariance of horizontal
and vertical distributions under Lie derivatives.

Lemma 5.5. Given a homothetic field V on a Finsler manifold (M,F ) (resp.

Cartan manifold (M, H)), we have

1. [XV , u] is vertical for u ∈ V SM (resp. [X∗
V , u] is vertical for u ∈ V S∗M);

2. [XV , w] is horizontal for w ∈ HSM (resp. [X∗
V , w] is horizontal for w ∈

HS∗M).

Proof. As before, we only prove the Finslerian case. Let φt (resp. φ̆t) be
the flow generated by V (resp. XV ).

As indicated in the proof of Lemma 5.2, φ̆t∗u is vertical. Hence [XV , u] =
lim
t→0

u−φ̆t∗u
t is vertical.

Considering w ∈ HSM , we write w = H(u), where u ∈ V SM . Then from
Lemma 5.2 we get that

φ̆t∗w = φ̆t∗(H(u)) = e2ctH(φ̆t∗u).

Thus φ̆t∗w is horizontal. Hence [XV , w] = lim
t→0

w−φ̆t∗w
t is horizontal, too. ¤

We provide here the following lemma with Cartan version.

Lemma 5.6. For a homothetic field V on a Cartan manifold (M,H) with

dilation c, we have [X[, X∗
V ] = −2cX[.

Proof. Actually, X∗
V is the Hamiltonian vector field of p(V ). In view of

Proposition 4.3, we have [X[, X∗
V ] = [XH , Xp(V )] = −X{H,p(V )} = XX∗

V (H) =
X(−2cH) = −2cXH . ¤
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6. Navigation problem

Recall that a navigation problem makes use of a Finsler metric F and a
vector field V with F (x, Vx) < 1, and produces a new Finsler metric F̃ by solving
the equation

F
(
x, y + F̃ (x, y)V

)
= F̃ (x, y). (6.1)

With the help of the Legendre transformation, we obtain Cartan metrics H(x, p)
and H̃(x, p) on M , i.e., H(x, p) := F (x, (LF

x )−1(p)), and
H̃(x, p) := F̃ (x, (LF̃

x )−1(p)).

Lemma 6.1 ([17]). The above H and H̃ are related by

H(x, p) = H̃(x, p) + p(V ). (6.2)

Proof. By Lemma 4.4,

H(p) = max
y∈TxM

p(y)
F (x, y)

= max
y∈TxM

p(y + F̃ v)
F (x, y + F̃ v)

= max
y∈TxM

p(y + F̃ v)
F̃ (x, y)

= max
y∈TxM

p(y)
F̃ (x, y)

+ p(V )

= H̃(x, p) + p(V ). ¤

Remark. In the above proof we have used the fact that y → y + F̃ v is a 1−1
map on TxM . By the remark of Lemma 4.4 we see that if (LF

x )−1(p) = y, then
(LF̃

x )−1(p) = λ(y + F̃ v), where λ > 0.

The simple relation (6.2) suggests that the curvatures of the Cartan metrics
H and H̃ may be related by simple rules. Let ω[, X[,V[,H[,R[, h[, K[ be quan-
tities associated with H, and ω̃[, X̃[, Ṽ[, H̃[, R̃[, h̃[, K̃[ be quantities associated
with H̃, as their meaning was explained in Section 4.

By definition of the Hamiltonian vector field, we get

Lemma 6.2. X[ = X̃[ + X∗
V .

Proof.
X[ = XH = XH̃ + Xp(V )

= XH̃ + X∗
V = X̃[ + X∗

V . ¤

Lemma 6.3. V[ = Ṽ[ − Ṽ[(X∗
V )⊗ ω[.
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Proof. We will check that the right hand side satisfies (4.1).
It is clear that (Ṽ[ − Ṽ[(X∗

V )⊗ ω[)(v) = 0, for v ∈ V S∗M .
By Lemma 6.2, Ṽ[(X[)− Ṽ[(X∗

V )⊗ ω[(X[) = Ṽ[(X̃[) = 0.
By Lemma 4.10 and Lemma 5.5

Ṽ[[X[, v]− Ṽ[(X∗
V )⊗ ω[[X[, v] = Ṽ[[X[, v]

= Ṽ[[X̃[ + X∗
V , v] = Ṽ[[X̃[, v] = −v.

Hence Ṽ[ − Ṽ[(X∗
V )⊗ ω[ satisfies all the equations in (4.1), and it must coincide

with V[. ¤

Lemma 6.3 tells us that V[ = Ṽ[ on HS∗M ⊕ V S∗M .

Lemma 6.4. Let V be a homothetic field of H with dilation c. ThenH[(v) =
H̃[(v) + c · v for v ∈ V S∗M and H[(u) = H̃[(u)− c · u + c2Ṽ[(u) for u ∈ HS∗M .

Proof. From Proposition 4.7 and Lemma 4.10, we obtain

−H[(v) = [X[, v] +
1
2
V[[X[, [X[, v]] = [X[, v] +

1
2
Ṽ[[X[, [X[, v]]

and

Ṽ[[X[, [X[, v]] = Ṽ[[X̃[, [X[, v]] + Ṽ[[X∗
V , [X[, v]]

= Ṽ[[X̃[, [X̃[, v]] + Ṽ[[X̃[, [X∗
V , v]] + Ṽ[[X∗

V , [X[, v]]

= Ṽ[[X̃[, [X̃[, v]]− [X∗
V , v] + Ṽ[[X∗

V , [X[, v]]

= Ṽ[[X̃[, [X̃[, v]]− [X∗
V , v]− Ṽ[[X[, [v,X∗

V ]]− Ṽ[[v, [X∗
V , X[]]

= Ṽ[[X̃[, [X̃[, v]]− 2[X∗
V , v]− Ṽ[[v, [X∗

V , X[]],

where [X∗
V , X[] = 2cX[ (by Lemma 5.6). It follows that Ṽ[v, [X∗

V , X[]] = 2c · v .
Combining these results, we have

H[(v) = H̃[(v) + c · v, v ∈ V S∗M. (6.3)

For u ∈ HS∗M we write u = H[(v), where v ∈ V S∗M . We have

H̃[(u)− c · u + c2 · Ṽ[(u) = H̃[(H[(v))− c · H[(v) + c2 · v
= H̃[(H̃[(v) + cv)− c · (H̃[(v) + cv) + c2 · v
= 0 = H[(u).

It follows that H[(u) = H̃[(u)− c · u + c2 · Ṽ[(u). ¤
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Lemma 6.5. With the same assumption, P [
V = P [

Ṽ−c·Ṽ[ on HS∗M⊕V S∗M .

Proof. For v ∈ V S∗M ,

P [
V(v) = V[ ◦ H[(v) = Ṽ[ ◦ (H̃[(v) + c · v) = P [

Ṽ(v) = P [
Ṽ(v)− c · Ṽ[(v).

For u ∈ HS∗M we write u = H[(v), where v ∈ V S∗M . Then

P [
Ṽ(u)− cṼ[(u) = Ṽ[H̃[(H[(v))− cṼ[(H[(v))

= Ṽ[H̃[(H̃[(v) + cv)− cṼ[(H̃[(v) + cv) = 0 = P [
V(u). ¤

Lemma 6.6. For a homothetic field V of H with dilation c we have R[(v) =
R̃[(v) + c2v where v ∈ V S∗M .

Proof. By Lemma 5.5, [X∗
V ,H(v)] is horizontal. It follows that

R[(v) = P [
V [X[,H[(v)] = P [

V [X̃[ + X∗
V ,H[(v)] = P [

V [X̃[,H[(v)].

Note that [X[,H[(v)] has no X[-component. Now we have

R[(v) = P [
Ṽ [X̃[,H[(v)]− c · Ṽ[[X̃[,H[(v)]

= P [
Ṽ [X̃[, H̃[(v) + cv]− c · Ṽ[[X̃[, H̃[(v) + cv]

= R̃[(v) + P [
Ṽ [X̃[, cv]− c · Ṽ[[X̃[, H̃[(v)] + c2v

= R̃[(v) + c · (P [
Ṽ [X̃[, v]− Ṽ[[X̃[, H̃[(v)]

)
+ c2v = R̃[(v) + c2v.

At the last step we have used (4.3). ¤

Lemma 6.7. h[(v1, v2) = (H̃/H)h̃[(v1, v2), v1, v2 ∈ V S∗M .

Proof. By using the definitions of h[ and of H̃, we obtain

h[(v1, v2) = −ω[[[X[, v1], v2] = −(p/H)[[X[, v1], v2],

and

h̃(v1, v2) = −ω̃[[[X̃[, v1], v2] = −ω̃[[[X[, v1], v2] = −(p/H̃)[[X[, v1], v2].

Hence h[(v1, v2) = (H̃/H)h̃[(v1, v2). ¤

From Lemma 6.6 and Lemma 6.7 we have the following

Lemma 6.8. K[(v) = K̃[(v) + c2 for v ∈ V S∗M .
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7. Main results and examples

Now we are going to prove our main theorem on a navigation problem in
terms of a homothetic field.

Proof of Theorem 1.1. Applying the Legendre transformations in Sec-
tion 6, we get two Cartan metrics H(x, p), and H̃(x, p), where V is a homo-
thetic field of H with dilation c, H(x, p) := F (x, (LF

x )−1p) and H̃(x, p) :=
F̃ (x, (LF̃

x )−1p). By Lemma 6.8 we have

[
K[(v)

]
(x,[p])

=
[
K̃[(v)

]
(x,[p])

+ c2, v ∈ V S∗M.

Pulling back to the sphere bundle, we have

[
K((LF )−1

∗ v)
]
(x,[y])

=
[
K̃((LF̃ )−1

∗ v)
]
(x,[y+F̃ v])

+ c2, v ∈ V SM.

Note that

(LF )−1
∗

∂

∂pi
=

∂2H2/2
∂pi∂pj

∂

∂yj
= H

∂2H

∂pi∂pj

∂

∂yj
= H

∂2H̃

∂pi∂pj

∂

∂yj
, (7.1)

where we have used the fact that
∂H

∂pj

∂

∂yj
=

yj

F

∂

∂yj
= 0 on SM . Similarly,

(LF̃ )−1
∗

∂

∂pi
= H̃

∂2H̃

∂pi∂pj

∂

∂yj
. (7.2)

Combining (7.1) with (7.2), we have (LF̃ )−1
∗ v = H̃/H · u, where (LF )−1

∗ v := u.
It follows that [

K(u)
]
(x,[y])

=
[
K̃(u)

]
(x,[y+F̃ v])

+ c2.

By Lemma 3.9 we get the desired result. ¤

Proof of Theorem 1.2. Given the hypotheses of Theorem 1.2 the conclu-
sion of Theorem 1.1 implies that sup K̃(x, y) is negative; thus by the rigidity result
of Mo and Shen [13], F̃ must be of Randers type; consequently, by reconstructing
F from F̃ , we see that F is a Randers metric as well. ¤

Corollary 7.1. Let F = F (x, y) be a Finsler metric on a manifold M and

V a vector field on M with F (x, Vx) < 1. Let F̃ = F̃ (x, y) denote the Finsler

metric on M defined by (1.1). Suppose that V is homothetic with dilation c. If

F is of scalar curvature, then F̃ is also of scalar curvature. Moreover, if F has

constant curvature, then so does F̃ .
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Recall that a Finsler metric F is said to be of scalar curvature if its flag cur-
vature KF (y, Π) = KF (y) is a scalar function on the slit tangent bundle TM\ {0}.
Furthermore, F is said to be of constant (flag) curvature if KF (y, Π) = constant.
Using Shen’s rigidity result in [19], we get

Corollary 7.2. Let (M,F ) be a closed Finsler manifold and V a vector field

on M with F (x, Vx) < 1. Suppose that V is homothetic with dilation c and the

flag curvature K of F satisfies

supK < c2.

If F has constant S-curvature then it must be Riemannian.

For details about (constant) S-curvature, see [18], [19]. Similarly, we have
Akbar-Zadeh and Numata’ type rigidity theorems (see [1], [8], [14]). Finally
we give some examples.

Example 1. Given a Minkowski norm ϕ : E → R on a vector space E, one
can construct a convex domain Ω := {v ∈ E | ϕ(v) < 1}, TxΩ ' E. Thus
(Ω, F (x, y) := ϕ(y)) is a Minkowski manifold and has constant curvature K = 0.
For each x ∈ Ω, identify TxΩ with E. Then Vx := x is a vector field on Ω satisfying
F (x, Vx) = ϕ(x) < 1. Moreover, we have

XV (F ) = V i ∂F

∂xi
+ yj ∂V j

∂xi

∂F

∂yi
= yjδj

i

∂ϕ(y)
∂yj

= F.

Hence V is a homothetic field of F with dilation c = 1/2. The produced Finsler
metric F̃ , known as the Funk metric on Ω, also has constant curvature K̃ =
K − c2 = −1/4.

Example 2. As in [3], we substitute (x1, x2) by (x, y) and (y1, y2) by (p, q)
for a two dimensional manifold. Let M = {(x, y) ∈ R2 | y > 1} be a half-plane.
Let

F (x, y; p, q) =

√
p2 + 2q2

y
+

q

y

be a Randers metric on M . One can verify that V = (1, 0) is a Killing field for F

and F (x, V ) < 1. The corresponding navigation problem creates again a Randers
metric

F̃ (x, y; p, q) =

√
2pqy + 2q2y2 − q2 + y2p2

y2 − 1
+

p + yq

y2 − 1
.

A direct calculation shows that their Gauss curvatures are given respectively by

K(x, y; p, q) = −1/16(48q8 + 192p2q6 + 165p4q4 + 50p6q2 + 5p8)/(p2 + q2)4

+ 1/4
√

p2 + 2q2(8q6 + 30p2q4 + 19q2p4 + 3p6)q/(p2 + q2)4
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and by

K̃(x, y; p, q) = −(48y4q8 − 3q8 + 36yq7p + 18p2q6 + 192y4p2q6 − 126y2p2q6

+ 204y3p3q5 − 56yp3q5 + 36y2p4q4 + 165y4p4q4 − 3p4q4 + 4q3p5y

+ 120y3p5q3 + 50y4p6q2 + 18q2y2p6 + 12p7y3q + 5y4p8)/[16y4(p2 + q2)4]

+ q(8y3q6 + 30y3p2q4 + 19y3p4q2 + 3y3p6 − 4y2pq5 + 23y2p3q3 + 9y2p5q

+ 2yq6 − 13p2yq4 + 3yp4q2 + 3q5p− 3p3q3)

·
√

2pqy + 2q2y2 − q2 + y2p2/[4y4(p2 + q2)4].

By a direct computation, one can verify

K(x, y; p + F̃ , q) = K̃(x, y; p, q).

References

[1] H. Akbar-Zadeh, Sur les espaces de Finsler a courbures sectionnelles constants, Bull.
Acad. Roy. Bel. Bull. Cl. Sci. (5)74 (1988), 281–322.

[2] P. L. Antonelli, R. S. Ingarden and M. Matsumoto, The theory of sprays and Finsler
spaces with appications in physics and biology, Kluwer Academic Publishers, Dordrecht,
1993.

[3] D. Bao, S.-S. Chern and Z. Shen, An Introduction to Riemann-Finsler Geometry, Grad-
uate Texts in Math. 200, Springer-Verlag, New York, 2000.

[4] D. Bao and C. Robles, On Ricci curvature and flag curvature in Finsler geometry, In “A
Sampler of Finsler Geometry” MSRI series, Cambridge University Press, 2004.

[5] D. Bao, C. Robles and Z. Shen, Zermelo navigation on Riemannian spaces, J. Diff. Geom.
66 (2004), 377–435.

[6] W. Chen and S. Chern, Lectures on Differentail Geometry, World Scientific, Singapore,
1999.

[7] S. Chern, Local equivalence and Euclidean connections in Finsler spaces, Selected Papers,
vol. II, Springer, 1989, 194–212.

[8] S. Chern and Z. Shen, Riemann–Finsler Geometry, World Scientific Press.

[9] P. Foulon, Curvature and global rigidity in Finsler manifolds, Houston Jour. Math. 28
(2002), 263–292.

[10] Kobayashi and Nomizu, Foundations of differential geometry, Vol. I, Interscience Publish-
ers, New York – London, 1963, 14–16.

[11] J. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry, 2nd Edition,
Springer-Verlag, New York, Inc., 1999, 82–86.

[12] R. Miron, D, Hrimiuc, H. Shimada and S. Sabau, The geometry of Hamilton and La-
grange spaces, Kluwer Acad. Publ. FTPH, vol. 118, 2001, Chapters 4–7.

[13] X. Mo and Z. Shen, On negatively curved Finsler manifolds of scalar curvature, Canada
Math. Bull. 48 (2005), 112–120.



On curvature decreasing property of a class of navigation problems 163

[14] S. Numata, On Landsberg spaces of scalar curvature, J. Korea Math. Soc. 12 (1975),
97–100.

[15] G. Randers, On an asymmetric metric in the four-space of general relatively, Phys. Rev.
59 (1941), 195–199.

[16] C. Robles, Geodesics in Randers spaces of constant curvature, Trans. Amer. Math. Soc.
(to appear).

[17] Z. Shen, Two-dimensional Finsler metrics of constant flag curvature, Manu. Math. 109
(2002), 349–366.

[18] Z. Shen, Finsler metrics with K = 0 and S = 0, Canad. J. Math. 55 (2003), 112–132.

[19] Z. Shen, Nonpositively curved Finsler manifolds with constant S-curvature, Math. Z. 249
(2005), 625–639.

XIAOHUAN MO

LMAM

SCHOOL OF MATHEMATICAL SCIENCES,

PEKING UNIVERSITY

BEIJING 100871

CHINA

E-mail: moxh@math.pku.edu.cn

LIBING HANG

LMAM

SCHOOL OF MATHEMATICAL SCIENCES,

PEKING UNIVERSITY

BEIJING 100871

CHINA

(Received January 20, 2006; revised June 13, 2006)


