Almost everywhere convergence of a subsequence of the logarithmic means of quadratical partial sums of double Walsh-Fourier series

By GYÖRGY GÁT (Nyíregyháza) and USHANGI GOGINAVA (Tbilisi)

Abstract

The main aim of this paper is to prove that the maximal operator of the logarithmic means of quadratical partial sums of double Walsh-Fourier series is of weak type $(1,1)$ provided that the supremum in the maximal operator is taken over special indicies. The set of Walsh polynomials is dense in $L_{1}(I \times I)$, so by the wellknown density argument we have that $t_{2^{n}} f\left(x^{1}, x^{2}\right) \rightarrow f\left(x^{1}, x^{2}\right)$ a.e. for all integrable two-variable functions f.

1. Introduction

The partial sums $S_{n}(f)$ of the Walsh-Fourier series of a function $f \in L(I)$, $I=[0,1]$ converges in measure on I ([8], Ch. 5). The condition $f \in L \ln L(I \times I)$ provides convergence in measure on $I \times I$ of the rectangular partial sums $S_{n, m}(f)$ of double Fourier-Walsh series ([13], Ch. 3.) The first example of a function from classes wider than $L \ln L(I \times I)$ with $S_{n, n}(f)$ divergent in measure on $I \times I$ was obtained in [3]. Moreover, in each Orlicz space wider than $L \ln L(I \times I)$ the set of functions which quadratic Walsh-Fourier sums converge in measure on $I \times I$ is of first Baire category [11]. In [2] we proved that similar proposition is true also

Mathematics Subject Classification: 42C10.
Key words and phrases: double Walsh-Fourier series, logarithmic means, a.e. convergence. The first author is supported by the Hungarian National Foundation for Scientific Research (OTKA), grant no. M 36511/2001., T 048780, and by the Széchenyi fellowship of the Hungarian Ministry of Education Szö 184/2003.
for logarithmic means of quadratical partial sums

$$
t_{n} f\left(x^{1}, x^{2}\right):=\frac{1}{l_{n}} \sum_{i=1}^{n-1} \frac{S_{i, i}(f, x, y)}{n-i}
$$

of double Walsh-Fourier series. We proved that for any Orlicz space, which is not a subspace of $L \ln L(I \times I)$, the set of the functions that these means converges in measure is of first Baire category. From this result follows that in classes wider than $L \ln L(I \times I)$ there exists functions f for which logarithmic means $t_{n}(f)$ of quadratical partial sums of double Walsh-Fourier series diverges in measure.

Besides, it is surprising that the two cases (the logarithmic means of quadratical and the two-dimensional partial sums) are not different in this point of view. Namely, for instance in the case of $(C, 1)$ means we have a quite different situation. That is, it is well-known [13] that the Marcinkiewicz means $\sigma_{n}(f)=\frac{1}{n} \sum_{j=1}^{n} S_{j, j}(f)$, that is the $(C, 1)$ means of quadratical partial sums of double trigonometric Fourier series of a function $f \in L$ converges in L-norm and a.e. to f. Analogical questions with respect to the Walsh, Vilenkin systems are discussed by Weisz [12], Goginava [5] and Gát [1].

Thus, in question of convergence in measure logarithmic means of quadratical partial sums of double Walsh-Fourier series differs from Marcinkiewicz means and like the usual quadratical partial sums of double Walsh-Fourier series. In spite of this in [7] it is proved the difference between Nörlund logarithmic summability and the usual convergence for Walsh-Fourier series.

The main aim of this paper is to prove that the maximal operator of the logarithmic means of quadratical partial sums of double Walsh-Fourier series is of weak type $(1,1)$ provided that the supremum in the maximal operator is taken over special indicies. The set of Walsh polynomials is dense in $L_{1}(I \times I)$, so by the well-known density argument we have that $t_{2^{n}} f\left(x^{1}, x^{2}\right) \rightarrow f\left(x^{1}, x^{2}\right)$ a.e. for all integrable two-variable function f.

2. Definitions and notation

Let \mathbb{P} denote the set of positive integers, $\mathbb{N}:=\mathbb{P} \cup\{0\}$. Denote Z_{2} the discrete cyclic group of order 2 , that is $Z_{2}=\{0,1\}$, where the group operation is the modulo 2 addition and every subset is open. The Haar measure on Z_{2} is given such a way that the measure of a singleton is $1 / 2$. Let I be the complete direct product of the countable infinite copies of the compact groups Z_{2}. The elements of I are of the form $x=\left(x_{0}, x_{1}, \ldots, x_{k}, \ldots\right)$ with $x_{k} \in\{0,1\}(k \in \mathbb{N})$. The group
operation on I is the coordinate-wise addition, the measure (denoted by μ) and the topology are the product measure and topology. The compact Abelian group I is called the Walsh group. A base for the neighborhoods of I can be given in the following way:

$$
\begin{gathered}
I_{0}(x):=I, \quad I_{n}(x):=\left\{y \in I: y=\left(x_{0}, \ldots, x_{n-1}, y_{n}, y_{n+1}, \ldots\right)\right\} \\
(x \in I, n \in \mathbb{N})
\end{gathered}
$$

These sets are called the dyadic intervals. Let $0=(0: i \in \mathbb{N}) \in I$ denote the null element of $I, I_{n}:=I_{n}(0)(n \in \mathbb{N})$. Set $\bar{I}_{n}:=I \backslash I_{n}$.

For $k \in \mathbb{N}$ and $x \in I$ denote

$$
r_{k}(x):=(-1)^{x_{k}} \quad(x \in I, k \in \mathbb{N})
$$

the k-th Rademacher function. If $n \in \mathbb{N}$, then $n=\sum_{i=0}^{\infty} n_{i} 2^{i}$, where $n_{i} \in\{0,1\}$ $(i \in \mathbb{N})$, i.e. n is expressed in the number system of base 2 . Denote $|n|:=\max \{j \in$ $\left.\mathbb{N}: n_{j} \neq 0\right\}$, that is, $2^{|n|} \leq n<2^{|n|+1}$.

The Walsh-Paley system is defined as the sequence of Walsh-Paley functions:

$$
w_{n}(x):=\prod_{k=0}^{\infty}\left(r_{k}(x)\right)^{n_{k}}=r_{|n|}(x)(-1)^{\sum_{k=0}^{|n|-1} n_{k} x_{k}} \quad(x \in I, n \in \mathbb{P})
$$

The Walsh-Dirichlet kernel is defined by

$$
D_{n}(x)=\sum_{k=0}^{n-1} w_{k}(x)
$$

Recall that

$$
D_{2^{n}}(x)= \begin{cases}2^{n}, & \text { if } x \in I_{n} \tag{1}\\ 0, & \text { if } x \in \bar{I}_{n}\end{cases}
$$

The rectangular partial sums of the 2-dimensional Walsh-Fourier series are defined as follows:

$$
S_{M, N}\left(f ; x^{1}, x^{2}\right):=\sum_{i=0}^{M-1} \sum_{j=0}^{N-1} \widehat{f}(i, j) w_{i}\left(x^{1}\right) w_{j}\left(x^{2}\right)
$$

where the number

$$
\widehat{f}(i, j)=\int_{I \times I} f\left(x^{1}, x^{2}\right) w_{i}\left(x^{1}\right) w_{j}\left(x^{2}\right) d \mu\left(x^{1}, x^{2}\right)
$$

is said to be the (i, j) th Walsh-Fourier coefficient of the function f.
The norm of the space $L_{p}(I \times I)$ is defined by

$$
\|f\|_{p}:=\left(\int_{I \times I}\left|f\left(x^{1}, x^{2}\right)\right|^{p} d \mu\left(x^{1}, x^{2}\right)\right)^{1 / p} \quad(1 \leq p<\infty)
$$

and $\|f\|_{\infty}:=\operatorname{ess} \sup \left|f\left(x^{1}, x^{2}\right)\right|$. The space weak- $L_{1}(I \times I)$ consists of all measurable functions f for which

$$
\|f\|_{\text {weak }-L_{1}(I \times I)}:=\sup _{\lambda>0} \lambda \mu(|f|>\lambda)<+\infty
$$

The logarithmic means of cubical partial sums of the double Walsh-Fourier series are defined as follows

$$
t_{n} f\left(x^{1}, x^{2}\right)=\frac{1}{l_{n}} \sum_{i=1}^{n-1} \frac{S_{i, i}\left(f, x^{1}, x^{2}\right)}{n-i}
$$

where

$$
l_{n}=\sum_{k=1}^{n-1} \frac{1}{k}
$$

Denote

$$
\begin{aligned}
F_{n}(x) & =\frac{1}{l_{n}} \sum_{k=1}^{n-1} \frac{D_{k}(x)}{n-k} \\
F_{n}\left(x^{1}, x^{2}\right) & =\frac{1}{l_{n}} \sum_{k=1}^{n-1} \frac{D_{k}\left(x^{1}\right) D_{k}\left(x^{2}\right)}{n-k} \\
K_{n}(x) & =\frac{1}{n} \sum_{k=1}^{n} D_{k}(x) \\
K_{n}\left(x^{1}, x^{2}\right) & =\frac{1}{n} \sum_{k=1}^{n} D_{k}\left(x^{1}\right) D_{k}\left(x^{2}\right)
\end{aligned}
$$

For the function f we consider the maximal operators

$$
t_{\#} f=\sup _{n \in \mathbb{N}}\left|t_{2^{n}} f\right|
$$

3. Formulation of the main results

Theorem 1. Let $f \in L_{1}(I \times I)$. Then

$$
\mu\left\{t_{\#} f>\lambda\right\} \leq \frac{c}{\lambda}\|f\|_{1}
$$

Corollary 1. Let $f \in L_{1}(I \times I)$. Then

$$
t_{2^{n}} f\left(x^{1}, x^{2}\right) \rightarrow f\left(x^{1}, x^{2}\right) \quad \text { a.e. as } n \rightarrow \infty
$$

4. Auxiliary propositions

Lemma 1 (Calderon-Zygmund decomposition [10]). Let $f \in L_{1}(I \times I)$, $\lambda>\|f\|_{1}$. Then there exists $\left(u^{(i, 1)}, u^{(i, 2)}\right) \in I \times I, k_{i} \in \mathbb{N}(i=1,2, \ldots$,$) and a$ decomposition

$$
f=f_{0}+\sum_{i=1}^{\infty} f_{i}
$$

where
1)

$$
\left\|f_{0}\right\|_{1} \leq c \lambda, \quad\left\|f_{0}\right\|_{1} \leq c\|f\|_{1}
$$

2) $\quad \operatorname{supp} f_{i} \subset I_{k_{i}}\left(u^{i, 1}\right) \times I_{k_{i}}\left(u^{i, 2}\right), \quad \int_{I \times I} f_{i}=0, i=1,2, \ldots$;
3)

$$
\mu\left(\bigcup_{i=1}^{\infty}\left(I_{k_{i}}\left(u^{i, 1}\right) \times I_{k_{i}}\left(u^{i, 2}\right)\right)\right) \leq c\|f\|_{1} / \lambda
$$

Lemma 2. [6] Let $A \geq k, A, k \in \mathbb{N}$. Then

$$
\int_{\bar{I}_{k}} \sup _{n \geq 2^{A}}\left|K_{n}(x)\right| d \mu(x) \leq c \frac{A-k+1}{2^{A-k}}
$$

Lemma 3. [1] Let $k \in \mathbb{N}$. Then

$$
\int_{\overline{I_{k} \times I_{k}}} \sup _{n \geq 2^{k}}\left|K_{n}\left(x^{1}, x^{2}\right)\right| d \mu\left(x^{1}, x^{2}\right) \leq c<\infty
$$

5. Proof of the main results

Proof of Theorem 1. Since

$$
D_{2^{n}-j}=D_{2^{n}}-w_{2^{n}-1} D_{j}
$$

we can write

$$
\begin{align*}
F_{2^{n}}\left(x^{1}, x^{2}\right)= & \frac{1}{l_{2^{n}}} \sum_{j=1}^{2^{n}-1} \frac{D_{2^{n}-j}\left(x^{1}\right) D_{2^{n}-j}\left(x^{2}\right)}{j} \\
= & D_{2^{n}}\left(x^{1}\right) D_{2^{n}}\left(x^{2}\right)-\frac{D_{2^{n}}\left(x^{1}\right) w_{2^{n}-1}\left(x^{2}\right)}{l_{2^{n}}} \sum_{j=1}^{2^{n}-1} \frac{D_{j}\left(x^{2}\right)}{j} \\
& -\frac{D_{2^{n}}\left(x^{2}\right) w_{2^{n}-1}\left(x^{1}\right)}{l_{2^{n}}} \sum_{j=1}^{2^{n}-1} \frac{D_{j}\left(x^{1}\right)}{j} \\
& +\frac{w_{2^{n}-1}\left(x^{1}\right) w_{2^{n}-1}\left(x^{2}\right)}{l_{2^{n}}} \sum_{j=1}^{2^{n}-1} \frac{D_{j}\left(x^{1}\right) D_{j}\left(x^{2}\right)}{j} \\
= & F_{n}^{(1)}\left(x^{1}, x^{2}\right)-F_{n}^{(2)}\left(x^{1}, x^{2}\right)-F_{n}^{(3)}\left(x^{1}, x^{2}\right)+F_{n}^{(4)}\left(x^{1}, x^{2}\right) \tag{2}
\end{align*}
$$

Denote

$$
t_{n}^{(i)} f:=f * F_{n}^{(i)}, \quad i=1,2,3,4
$$

Since the operator

$$
\sup _{n \in \mathbb{N}} 2^{2 n}\left|\int_{I_{n}\left(x^{1}\right) \times I_{n}\left(x^{2}\right)} f\left(u^{1}, u^{2}\right) d \mu\left(u^{1}, u^{2}\right)\right|
$$

is of weak type $(1,1)$ and

$$
t_{\#}^{(1)} f:=\sup _{n \in \mathbb{N}}\left|t_{n}^{(1)} f\right|=\sup _{n \in \mathbb{N}} 2^{2 n}\left|\int_{I_{n}\left(x^{1}\right) \times I_{n}\left(x^{2}\right)} f\left(u^{1}, u^{2}\right) d \mu\left(u^{1}, u^{2}\right)\right|
$$

we obtain that

$$
\begin{equation*}
\left\|t_{\#}^{(1)} f\right\|_{\text {weak }-L_{1}(I \times I)} \leq c\|f\|_{1} . \tag{3}
\end{equation*}
$$

We prove that

$$
\begin{equation*}
\int_{\overline{I_{N} \times I_{N}}} \sup _{n \geq N}\left|F_{n}^{(4)}\left(x^{1}, x^{2}\right) d \mu\left(x^{1}, x^{2}\right)\right| \leq c<\infty \tag{4}
\end{equation*}
$$

Using Abel's transformation we can write that

$$
\sum_{j=1}^{2^{n}-1} \frac{D_{j}\left(x^{1}\right) D_{j}\left(x^{2}\right)}{j}=\sum_{j=1}^{2^{n}-2} \frac{K_{j}\left(x^{1}, x^{2}\right)}{j+1}+K_{2^{n}-1}\left(x^{1}, x^{2}\right)
$$

Then we have

$$
\begin{align*}
\int_{\overline{I_{N} \times I_{N}}} & \sup _{n \geq N}\left|F_{n}^{(4)}\left(x^{1}, x^{2}\right) d \mu\left(x^{1}, x^{2}\right)\right| \\
\leq & \int_{\overline{I_{N} \times I_{N}}} \sup _{n \geq N} \frac{1}{l_{2^{n}}} \sum_{j=1}^{2^{n}-2} \frac{\left|K_{j}\left(x^{1}, x^{2}\right)\right|}{j+1} d \mu\left(x^{1}, x^{2}\right) \\
& +\int \frac{I_{\bar{I}} \times I_{N}}{} \sup _{n \geq N}\left|K_{2^{n}-1}\left(x^{1}, x^{2}\right)\right| d \mu\left(x^{1}, x^{2}\right)=I+I I \tag{5}
\end{align*}
$$

Since [4]

$$
\sup _{n} \int_{I \times I}\left|K_{n}\left(x^{1}, x^{2}\right)\right| d \mu\left(x^{1}, x^{2}\right)<\infty
$$

from Lemma 3 we get

$$
\begin{equation*}
I I \leq c<\infty \tag{6}
\end{equation*}
$$

and also

$$
\begin{align*}
I \leq & \int_{\overline{I_{N} \times I_{N}}} \sup _{n \geq N} \frac{1}{l_{2^{n}}} \sum_{j=1}^{2^{N}-1} \frac{\left|K_{j}\left(x^{1}, x^{2}\right)\right|}{j+1} d \mu\left(x^{1}, x^{2}\right) \\
& +\int_{\overline{I_{N} \times I_{N}}} \sup _{n \geq N} \frac{1}{l_{2^{n}}} \sum_{j=2^{N}}^{2^{n}-2} \frac{\left|K_{j}\left(x^{1}, x^{2}\right)\right|}{j+1} d \mu\left(x^{1}, x^{2}\right) \\
\leq & \frac{1}{l_{N}} \sum_{j=1}^{2^{N}-1} \frac{1}{j} \int_{I \times I}\left|K_{j}\left(x^{1}, x^{2}\right)\right| d \mu\left(x^{1}, x^{2}\right) \\
& +\sup _{n \geq N} \frac{1}{l_{2^{n}}} \sum_{j=2^{N}}^{2^{n}-2} \frac{1}{j+1} \int \frac{\sup _{\overline{I_{N} \times I_{N}}}\left|K_{j \geq 2^{N}}\left(x^{1}, x^{2}\right)\right| d \mu\left(x^{1}, x^{2}\right) \leq c<\infty .}{} . \tag{7}
\end{align*}
$$

Combining (5)-(7) we obtain the proof of (4).
Hence, we can write that (see GÁт [1])

$$
\begin{equation*}
\left\|t_{\#}^{(4)} f\right\|_{\text {weak }-L_{1}(I \times I)} \leq c\|f\|_{1} . \tag{8}
\end{equation*}
$$

Finally, we prove that

$$
\begin{equation*}
\left\|t_{\#}^{(2)} f\right\|_{\text {weak }-L_{1}(I \times I)} \leq c\|f\|_{1} \tag{9}
\end{equation*}
$$

Since

$$
\sum_{j=1}^{2^{n}-1} \frac{D_{j}(u)}{j}=\sum_{j=1}^{2^{n}-2} \frac{K_{j}(u)}{j+1}+K_{2^{n}-1}(u)
$$

we have

$$
\begin{align*}
& t_{n}^{(2)} f\left(y^{1}, y^{2}\right) \\
& =\int_{I \times I} f\left(x^{1}, x^{2}\right) \frac{D_{2^{n}}\left(x^{1}+y^{1}\right) w_{2^{n}-1}\left(x^{2}+y^{2}\right)}{l_{2^{n}}} \sum_{j=1}^{2^{n}-1} \frac{D_{j}\left(x^{2}+y^{2}\right)}{j} d \mu\left(x^{1}, x^{2}\right) \\
& = \\
& \int_{I \times I} f\left(x^{1}, x^{2}\right) \frac{D_{2^{n}}\left(x^{1}+y^{1}\right) w_{2^{n}-1}\left(x^{2}+y^{2}\right)}{l_{2^{n}}} \sum_{j=1}^{2^{n}-2} \frac{K_{j}\left(x^{2}+y^{2}\right)}{j+1} d \mu\left(x^{1}, x^{2}\right) \\
& \tag{10}\\
& +\int_{I \times I} f\left(x^{1}, x^{2}\right) \frac{D_{2^{n}}\left(x^{1}+y^{1}\right) w_{2^{n}-1}\left(x^{2}+y^{2}\right)}{l_{2^{n}}} K_{2^{n}-1}\left(x^{2}+y^{2}\right) d \mu\left(x^{1}, x^{2}\right) \\
& = \\
& t_{n}^{(2,1)} f\left(y^{1}, y^{2}\right)+t_{n}^{(2,2)} f\left(y^{1}, y^{2}\right)
\end{align*}
$$

Denote (use the notation of Lemma 1)

$$
g(t):=\sum_{i=1}^{\infty} \frac{\left|f_{i}(t)\right|}{k_{i}}, L(t):=\sum_{i=1}^{\infty} \frac{\left|K_{i}(t)\right|}{i+1} .
$$

Let

$$
\begin{equation*}
\left(y^{1}, y^{2}\right) \in \overline{\bigcup_{i=1}^{\infty}\left(I_{k_{i}}\left(u^{i, 1}\right) \times I_{k_{i}}\left(u^{i, 2}\right)\right)} \tag{11}
\end{equation*}
$$

Since $\int f_{i}=0$ we have

$$
\begin{equation*}
t_{n}^{(2,1)} f_{i}\left(y^{1}, y^{2}\right)=0 \quad \text { for } n \leq k_{i} \tag{12}
\end{equation*}
$$

Let $y^{1} \in \overline{I_{k_{i}}\left(u^{i, 1}\right)}$. Then from (1) we can write that $t_{n}^{(2,1)} f_{i}\left(y^{1}, y^{2}\right)=0$ for $n>k_{i}$. Hence $t_{n}^{(2,1)} f_{i}\left(y^{1}, y^{2}\right) \neq 0$ implies that $y^{1} \in I_{k_{i}}\left(u^{i, 1}\right)$. Consequently, from (11) we can suppose that

$$
y^{2} \in \bigcap_{i=1}^{\infty} \overline{I_{k_{i}}\left(u^{i, 2}\right)}
$$

Then we write

$$
\begin{align*}
D & :=\mu\left\{\left(y^{1}, y^{2}\right) \in I \times\left(\bigcap_{i=1}^{\infty} \overline{I_{k_{i}}\left(u^{i, 2}\right)}\right): t_{\#}^{(2,1)} f\left(y^{1}, y^{2}\right)>c \lambda\right\} \\
& \leq \int_{\bigcap_{i=1}^{\infty} \frac{I_{k_{i}}\left(u^{i, 2}\right)}{}} \mu\left\{y^{1} \in I: t_{\#}^{(2,1)}\left(\sum_{i=1}^{\infty} f_{i}\right)\left(y^{1}, y^{2}\right)>c \lambda\right\} d \mu\left(y^{2}\right) . \tag{13}
\end{align*}
$$

From (12), we have

$$
\begin{aligned}
& \left|t_{n}^{(2,1)}\left(\sum_{i=1}^{\infty} f_{i}\right)\left(y^{1}, y^{2}\right)\right| \leq \sum_{i=1}^{\infty} \mid \int_{I_{k_{i}}\left(u^{i, 1}\right) \times I_{k_{i}}\left(u^{i, 2}\right)} f_{i}\left(x^{1}, x^{2}\right) \\
& \left.\quad \times \frac{D_{2^{n}}\left(x^{1}+y^{1}\right) w_{2^{n}-1}\left(x^{2}+y^{2}\right)}{l_{2^{n}}} \sum_{j=1}^{2^{n}-2} \frac{K_{j}\left(x^{2}+y^{2}\right)}{j+1} d \mu\left(x^{1}, x^{2}\right) \right\rvert\, \\
& \leq \int_{I}\left(\int_{I} \sum_{i=1}^{\infty} \frac{\left|f_{i}\left(x^{1}, x^{2}\right)\right|}{k_{i}} \sum_{j=1}^{2^{n}-2} \frac{\left|K_{j}\left(x^{2}+y^{2}\right)\right|}{j+1} d \mu\left(x^{2}\right)\right) D_{2^{n}}\left(x^{1}+y^{1}\right) d \mu\left(x^{1}\right) \\
& =\int_{I}\left(\int_{I} g\left(x^{1}, x^{2}\right) L\left(x^{2}+y^{2}\right) d \mu\left(x^{2}\right)\right) D_{2^{n}}\left(x^{1}+y^{1}\right) d \mu\left(x^{1}\right) .
\end{aligned}
$$

The one-dimensional operator $\sup _{n \in \mathbb{N}}\left|S_{2^{n}} f\right|$ is of weak type $(1,1)$. We apply this fact for the one-dimensional function $h\left(x^{1}\right):=\int_{I} g\left(x^{1}, x^{2}\right) L\left(x^{2}+y^{2}\right) d \mu\left(x^{2}\right)$ for every fixed $y^{2} \in I$. Consequently, from (13) and by the above we can write

$$
\begin{aligned}
& D \leq \int_{\cap_{i=1}^{\infty} \frac{I_{k_{i}}\left(u^{i, 2}\right)}{} \mu\left\{y^{1} \in I: \sup _{n} \int_{I}\left(\int_{I} g\left(x^{1}, x^{2}\right) L\left(x^{2}+y^{2}\right) d \mu\left(x^{2}\right)\right)\right.} \\
& \text { - } \left.D_{2^{n}}\left(x^{1}+y^{1}\right) d \mu\left(x^{1}\right)>c \lambda\right\} d \mu\left(y^{2}\right) \\
& \leq \frac{c}{\lambda} \int_{\cap_{i=1}^{\infty}}\left[\int_{I}\left(\int_{I} g\left(x^{1}, x^{2}\right) L\left(x^{2}+y^{2}\right) d \mu\left(x^{2}\right)\right) d \mu\left(x^{1}\right)\right] d \mu\left(y^{2}\right) \\
& \left.=\frac{c}{\lambda} \int_{\cap_{i=1}^{\infty}} \frac{I_{k_{i}\left(u^{i, 2}\right)}}{}\left(\int_{I} g\left(x^{1}, x^{2}\right) d \mu\left(x^{1}\right)\right) L\left(x^{2}+y^{2}\right) d \mu\left(x^{2}\right)\right] d \mu\left(y^{2}\right) \\
& \leq \frac{c}{\lambda} \sum_{i=1}^{\infty} \frac{1}{k_{i}} \frac{\int}{I_{k_{i}}\left(u^{i, 2}\right)}\left[\int_{I_{k_{i}}\left(u^{i, 2}\right)}\left(\int_{I_{k_{i}}\left(u^{i, 1}\right)}\left|f_{i}\left(x^{1}, x^{2}\right)\right| d \mu\left(x^{1}\right)\right) L\left(x^{2}+y^{2}\right) d \mu\left(x^{2}\right)\right] d \mu\left(y^{2}\right)
\end{aligned}
$$

$$
\begin{align*}
= & \frac{c}{\lambda} \sum_{i=1}^{\infty} \frac{1}{k_{i}} \frac{\int}{I_{k_{i}}\left(u^{i, 2}\right)}\left[\int_{I_{k_{i}}\left(u^{i, 2}\right)}\left(\int_{I_{k_{i}}\left(u^{i, 1}\right)}\left|f_{i}\left(x^{1}, x^{2}\right)\right| d \mu\left(x^{1}\right)\right)\right. \\
& \left.\cdot \sum_{j=1}^{2^{k_{i}}-1} \frac{\left|K_{j}\left(x^{2}+y^{2}\right)\right|}{j+1} d \mu\left(x^{2}\right)\right] d \mu\left(y^{2}\right) \\
& +\frac{c}{\lambda} \sum_{i=1}^{\infty} \frac{1}{k_{i}} \frac{\int}{I_{k_{i}}\left(u^{i, 2}\right)}\left[\int_{k_{i}\left(u^{i, 2}\right)}\left(\int_{I_{k_{i}}\left(u^{i, 1}\right)}\left|f_{i}\left(x^{1}, x^{2}\right)\right| d \mu\left(x^{1}\right)\right)\right. \\
& \left.\cdot \sum_{j=2^{k_{i}}}^{\infty} \frac{\left|K_{j}\left(x^{2}+y^{2}\right)\right|}{j+1} d \mu\left(x^{2}\right)\right] d \mu\left(y^{2}\right)=S+M . \tag{14}
\end{align*}
$$

Since [10]

$$
\int_{I}\left|K_{j}(x)\right| d \mu(x) \leq c<\infty
$$

we have

$$
\begin{align*}
S & \leq \frac{c}{\lambda} \sum_{i=1}^{\infty} \frac{1}{k_{i}} \int_{I_{k_{i}}\left(u^{i, 2}\right)}\left[\int_{I_{k_{i}}\left(u^{i, 1}\right)}\left|f_{i}\left(x^{1}, x^{2}\right)\right| d \mu\left(x^{1}\right)\right. \\
& \left.\int \frac{2^{2_{k_{i}}\left(u^{i, 2}\right)}}{} \sum_{j=1}^{\infty} \frac{\left|K_{j}\left(x^{2}+y^{2}\right)\right|}{j+1} d \mu\left(y^{2}\right)\right] d \mu\left(x^{2}\right) \\
& \leq \frac{c}{\lambda} \sum_{i=1}^{\infty}\left\|f_{i}\right\|_{1} \leq \frac{c}{\lambda}\|f\|_{1} \tag{15}
\end{align*}
$$

Using Lemma 2 for M we have

$$
\begin{aligned}
M \leq & \frac{c}{\lambda} \sum_{i=1}^{\infty} \frac{1}{k_{i}} \int_{I_{k_{i}}\left(u^{i, 2}\right)}\left[\int_{I_{k_{i}}\left(u^{i, 1}\right)}\left|f_{i}\left(x^{1}, x^{2}\right)\right| d \mu\left(x^{1}\right)\right. \\
& \left.\int \frac{\left|K_{j}\left(x^{2}+y^{2}\right)\right|}{j+1} d \mu\left(y^{2}\right)\right] d \mu\left(x^{2}\right) \\
\leq & \frac{c}{\lambda} \sum_{i=1}^{\infty} \frac{1}{I_{k_{i}}\left(u^{i, 2}\right)} \int_{j=2^{k_{i}}}^{\infty} \int_{I_{k_{i}}\left(u^{i, 2}\right)}\left[\int_{I_{k_{i}(u}\left(u^{i, 1}\right)}\left|f_{i}\left(x^{1}, x^{2}\right)\right| d \mu\left(x^{1}\right)\right. \\
& \left.\sum_{r=k_{i}}^{\infty} \sum_{j=2^{r}}^{2^{r+1}-1} \frac{1}{j} \int \frac{I_{k_{i}\left(u^{i, 2}\right)}}{}\left|K_{j}\left(x^{2}+y^{2}\right)\right| d \mu\left(y^{2}\right)\right] d \mu\left(x^{2}\right)
\end{aligned}
$$

$$
\begin{align*}
& \leq \frac{c}{\lambda} \sum_{i=1}^{\infty}\left(\sum_{r=k_{i}}^{\infty} \frac{r-k_{j}+1}{2^{r-k_{i}}}\right) \int_{I_{k_{i}}\left(u^{i, 2}\right)} \int_{I_{k_{i}}\left(u^{i, 1}\right)}\left|f_{i}\left(x^{1}, x^{2}\right)\right| d \mu\left(x^{1}, x^{2}\right) \\
& \leq \frac{c}{\lambda} \sum_{i=1}^{\infty}\left\|f_{i}\right\|_{1} \leq \frac{c}{\lambda}\|f\|_{1} . \tag{16}
\end{align*}
$$

Combining (14)-(16) we obtain

$$
\begin{equation*}
\mu\left\{\left(y^{1}, y^{2}\right) \in \bigcup_{i=1}^{\infty}\left(I_{k_{i}}\left(u^{i, 1}\right) \times I_{k_{i}}\left(u^{i, 2}\right)\right): t_{\#}^{(2,1)} f\left(y^{1}, y^{2}\right)>c \lambda\right\} \leq \frac{c}{\lambda}\|f\|_{1} . \tag{17}
\end{equation*}
$$

From Lemma 1, we get

$$
\begin{align*}
\mu\left\{(y ^ { 1 } , y ^ { 2 }) \in \bigcup _ { i = 1 } ^ { \infty } \left(I_{k_{i}}\left(u^{i, 1}\right)\right.\right. & \left.\left.\times I_{k_{i}}\left(u^{i, 2}\right)\right): t_{\#}^{(2,1)} f\left(y^{1}, y^{2}\right)>c \lambda\right\} \\
& \leq \mu\left(\bigcup_{i=1}^{\infty}\left(I_{k_{i}}\left(u^{i, 1}\right) \times I_{k_{i}}\left(u^{i, 2}\right)\right)\right) \leq \frac{c}{\lambda}\|f\|_{1} \tag{18}
\end{align*}
$$

and consequently from (17) and (18) we have

$$
\begin{equation*}
\mu\left\{\left(y^{1}, y^{2}\right) \in I \times I: t_{\#}^{(2,1)} f\left(y^{1}, y^{2}\right)>c \lambda\right\} \leq \frac{c}{\lambda}\|f\|_{1} . \tag{19}
\end{equation*}
$$

Analogously, we can prove that

$$
\begin{equation*}
\mu\left\{\left(y^{1}, y^{2}\right) \in I \times I: t_{\#}^{(2,2)} f\left(y^{1}, y^{2}\right)>c \lambda\right\} \leq \frac{c}{\lambda}\|f\|_{1} . \tag{20}
\end{equation*}
$$

Combining (10), (19) and (20) we obtain

$$
\begin{equation*}
\mu\left\{\left(y^{1}, y^{2}\right) \in I \times I: t_{\#}^{(2)} f\left(y^{1}, y^{2}\right)>c \lambda\right\} \leq \frac{c}{\lambda}\|f\|_{1} . \tag{21}
\end{equation*}
$$

The estimation of $\mu\left\{\left(y^{1}, y^{2}\right) \in I \times I: t_{\#}^{(3)} f\left(y^{1}, y^{2}\right)>c \lambda\right\}$ is analogous to the estimation of $\mu\left\{\left(y^{1}, y^{2}\right) \in I \times I: t_{\#}^{(2)} f\left(y^{1}, y^{2}\right)>c \lambda\right\}$ and we have

$$
\begin{equation*}
\mu\left\{\left(y^{1}, y^{2}\right) \in I \times I: t_{\#}^{(3)} f\left(y^{1}, y^{2}\right)>c \lambda\right\} \leq \frac{c}{\lambda}\|f\|_{1} . \tag{22}
\end{equation*}
$$

Combining (2), (3), (8), (21) and (22) we complete the proof of Theorem 1.
By making use of the well-known density argument due to Marcinkiewicz and Zygmund [9] we can show that Corollary 1 follows from Theorem 1.

References

[1] G. GÁt, Convergence of Marcinkiewicz means of integrable functions with respect to two-dimensional Vilenkin systems, Georgian Math. J. 11(3) (2004), 467-478.
[2] G. Gát, U. Goginava and G. Tkebuchava, Convergence in measure of logarithmic means of quadratical partial sums of double Walsh-Fourier series, J. Math. Anal. Appl. 323 (2006), 535-549.
[3] R. Getsadze, On the divergence in measure of multiple Fourier series, Some problems of functions theory 4 (1988), 84-117 (in Russian).
[4] V. A. Glukhov, On the summability of multiple Fourier series with respect to multiplicative systems, Mat. Zamet. 39 (1986), 665-673 (in Russian).
[5] U. Goginava, Marcinkiewicz-Fejer means of d-dimensional Walsh-Fourier series, J. Math. Anal. Appl. 307 (2005)), 206-218.
[6] U. Goginava, Almost everywhere convergence of (C, α)-means of cubical partial sums of d-dimensional Walsh-Fourier series, J. Approx. Theory 141 (1) (2006), 8-28.
[7] U. Goginava and G. Tkebuchava, Convergence of subsequence of partial sums and logarithmic means of Walsh-Fourier series, Acta Sci. Math. (Szeged) $\mathbf{7 2}$ (2006), 159-177.
[8] B. I. Golubov, A. V. Efimov and V. A. Skvortsov, Series and transformations of Walsh, Nauka, Moscow, 1987, English transl.: Kluwer Acad. Publ; 1991 (in Russian).
[9] I. Marcinkiewicz and A. Zygmund, On the summability of double Fourier series, Fund. Math. 32 (1939)), 112-132.
[10] F. Schipp, W. R. Wade, P. Simon and J. Pál, Walsh series. An introduction to dyadic harmonic analysis, Adam Hilger, Bristol and New York, 1990.
[11] G. Tkebuchava, Subsequence of partial sums of multiple Fourier and Fourier-Walsh series, Bull. Georg. Acad. Sci. 169 (2) (2004), 252-253.
[12] F. Weisz, Convergence of double Walsh-Fourier series and Hardy spaces, Approx. Theory Appl. 17 (2) (2001), 32-44.
[13] L. V. Zhizhiashvili, Some problems of multidimensional harmonic analysis, Tbilisi, TGU, 1996 (in Russian).

```
GYÖRGY GÁT
INSTITUTE OF MATHEMATICS AND COMPUTER SCIENCE
COLLEGE OF NYÍREGYHÁZA, P.O. BOX }16
H-4400, NYÍREGYHÁZA
HUNGARY
E-mail: gatgy@zeus.nyf.hu
USHANGI GOGINAVA
DEPARTMENT OF MECHANICS AND MATHEMATICS
TBILISI STATE UNIVERSITY
CHAVCHAVADZE STR. 1
TBILISI 0128
GEORGIA
E-mail: z_goginava@hotmail.com
```

(Received February 13, 2006; revised October 30, 2006)

