On a class of projectively flat (α, β)-metrics

By XINYUE CHENG (Chongqing) and MING LI (Chongqing)

Abstract

In this paper, we find a sufficient and necessary condition for an important class of (α, β) - metrics in the form $F=\alpha \phi(\beta / \alpha)$ to be locally projectively flat, where $\phi=\phi(s)$ is a positive C^{∞} function satisfying certain conditions, characterized by a polynomial or a power series of s, α is a Riemannian metric and β is a 1 -form.

1. Introduction

Hilbert's Fourth Problem in the regular case requires to study and characterize Finsler metrics $F=F(x, y)$ on an open domain $\mathbf{U} \subset R^{n}$ whose geodesics are straight lines [4]. Finsler metrics on \mathbf{U} with this property are called projectively flat metrics. In [3], G. Hamel first found a simple system of partial differential equations that characterizes projectively flat Finsler metrics on an open domain $\mathbf{U} \subset R^{n}$. That is $F=F(x, y)$ on \mathbf{U} is projectively flat if and only if the following PDE's hold:

$$
\begin{equation*}
F_{x^{m} y^{i}} y^{m}=F_{x^{i}} . \tag{1}
\end{equation*}
$$

It is one of the important problems in Finsler geometry to characterize projectively flat metrics. According to Beltrami's Theorem, a Riemannian metric is projectively flat if and only if it is of constant sectional curvature[7], [8]. Further, it is known that a Randers metric $F=\alpha+\beta$ is projectively flat if and only if α is projectively flat and β is closed [1], where $\alpha=\sqrt{a_{i j}(x) y^{i} y^{j}}$ is a Riemannian metric and $\beta=b_{i} y^{i}$ is a 1 -form with $b:=\left\|\beta_{x}\right\|<1$ for $x \in M$.

Mathematics Subject Classification: 53B40, 53C60.
Key words and phrases: projectively flat metric, (α, β)-metric, power series, covariant derivative. Supported by the National Natural Science Foundation of China (10671214) and by Natural Science Foundation Project of CQ CSTC.

In this paper, we are going to consider a class of Finsler metrics on a manifold M which are expressed in the following form:

$$
F=\alpha \phi(s), \quad s=\frac{\beta}{\alpha}
$$

where $\phi=\phi(s)$ is a C^{∞} function on $\left(-b_{0}, b_{0}\right)$ satisfying

$$
\begin{equation*}
\phi(0)=1, \quad \phi(s)>0, \quad \phi(s)-s \phi^{\prime}(s)+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}(s)>0 \tag{2}
\end{equation*}
$$

where s and b are arbitrary numbers with $|s| \leq b<b_{0}$. It is known that $F=$ $\alpha \phi(s), s=\beta / \alpha$ is a Finsler metric if and only if the condition (2) holds. Finsler metrics in the above form are called (α, β)-metrics. The class of (α, β)-metrics contains all Riemannian metrics $(\phi=1)$ and all Randers metrics $(\phi=1+s)$. In the past several years, various curvatures in Finsler geometry have been studied and their geometric meaning is better understood. This is partially due to the study of (α, β)-metrics. Thus, this motivates people to study (α, β)-metrics more deeply.

From now on, we are going to consider a special class of (α, β)-metrics $F=$ $\alpha \phi(s)$, where $\phi=\phi(s)$ is a function satisfying (2) and

$$
\begin{equation*}
\phi-s \phi^{\prime}=\left(p+r s^{2}\right) \phi^{\prime \prime}(s), \tag{3}
\end{equation*}
$$

where p, r are constants. Recently, Z. Shen has proved the following
Theorem 1.1. ([11]) Assume that $\phi=\phi(s)$ satisfies (2) and (3). Let $F=$ $\alpha \phi(\beta / \alpha)$ be an (α, β)-metric on a manifold M. If

$$
\begin{equation*}
b_{i \mid j}=2 \tau\left\{\left(p+b^{2}\right) a_{i j}+(r-1) b_{i} b_{j}\right\} \tag{4}
\end{equation*}
$$

and the spray coefficients G_{α}^{i} of α are of the form:

$$
\begin{equation*}
G_{\alpha}^{i}=\xi y^{i}-\tau \alpha^{2} b^{i}, \tag{5}
\end{equation*}
$$

where $b:=\sqrt{a^{i j} b_{i} b_{j}}, b_{i \mid j}$ denote the coefficients of the covariant derivative of β with respect to $\alpha, \tau=\tau(x)$ is a scalar function and $\xi=\xi_{i}(x) y^{i}$ is a 1-form on M, then F is locally projectively flat.

Unfortunately, we are not sure that the conditions (4) and (5) are necessary. A key step is to prove that β is closed. However, some progress has been made for certain types of functions ϕ recently. In [12], Z. Shen and G. C. Yildirim first showed that $F=(\alpha+\beta)^{2} / \alpha$ is projectively flat if and only if the conditions
(4) and (5) hold with $p=1 / 2$ and $r=-1 / 2$. Then they proved that the (α, β) metrics $F=\alpha+\varepsilon \beta+k \beta^{2} / \alpha$ are projectively flat if and only if the conditions (4) and (5) hold with $p=1 /(2 k)$ and $r=-1 / 2$, where ε and $k \neq 0$ are constants. Further, Y. Shen and L. Zhao have shown that $\phi=1+\varepsilon s+2 k s^{2}-\frac{k^{2}}{3} s^{4}$ satisfies (2) and (3) with $p=1 /(4 k)$ and $r=-1 / 4$, and the Finsler metrics in the form $F=\alpha \phi(\beta / \alpha)$ are projectively flat if and only if (4) and (5) hold [6]. In this paper we will show that, for a larger class of Finsler metrics $F=\alpha \phi(s)$ satisfying (2) and (3), they are projectively flat if and only if (4) and (5) hold.

We will firstly show that, if $p=0$ then the solutions of (3) will not satisfy (2). Hence, we always assume that $p \neq 0$ in this paper. In this case, the solutions of (3) are analytic near the origin and the power series of the solutions are of the form

$$
\begin{equation*}
\phi(s)=C_{0}+C_{1} s+C_{2} s^{2}+C_{4} s^{4}+\cdots+C_{2 n} s^{2 n}+\cdots \tag{6}
\end{equation*}
$$

where C_{0} and C_{1} are arbitrary constants and the coefficients of ϕ satisfy

$$
C_{2 n+2}=\left(-\frac{1}{p}\right) \frac{(2 n-1)(2 n r+1)}{(2 n+2)(2 n+1)} C_{2 n} .
$$

By a simple analysis, we can see that $\phi(s)$ satisfies (2) and (3) if and only if $C_{0}=1$ and $b \in(0, \sqrt{|p|})$ is sufficiently small. In particular, if we take $r=-\frac{1}{2 k}$ and k is a positive integer, then the $\phi(s)$ in (6) are polynomials of the following form

$$
\begin{equation*}
\phi(s)=C_{0}+C_{1} s+C_{2} s^{2}+C_{4} s^{4}+\cdots+C_{2 k} s^{2 k} \tag{7}
\end{equation*}
$$

Furthermore, if we take $k=1$ and then $k=2$, then the (α, β)-metrics $F=\alpha \phi(s)$, $s=\beta / \alpha$, given by (7) have the form

$$
\begin{equation*}
F=\alpha+C_{1} \beta+\frac{1}{2 p} \frac{\beta^{2}}{\alpha} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
F=\alpha+C_{1} \beta+\frac{1}{2 p} \frac{\beta^{2}}{\alpha}-\frac{1}{48 p^{2}} \frac{\beta^{4}}{\alpha^{3}} \tag{9}
\end{equation*}
$$

respectively. These are just the (α, β)-metrics discussed in [12] and [6] respectively.

By using the form (6) of ϕ, we have the following main
Theorem 1.2. Assume that $\phi=\phi(s)$ is a function in the form (6) satisfying (2) and (3). If $C_{1} \neq 0$ and $r \neq 1$ or $C_{1}=0$ but $r=-1 /(2 k)$, where k is any positive integer, then the (α, β)-metric $F=\alpha \phi(\beta / \alpha)$ is projectively flat if and only if (4) and (5) hold.

According to the discussion above, Theorem 1.2 generalizes the results in [12] and [6].

2. The analysis of the solutions

In this section, we will study the second order linear ODE (3) by the power series method. If $p=0$, then equation (3) has explicit solutions as follows:

$$
\phi(s)= \begin{cases}C s & \text { if } r=0 \\ C s+\widetilde{C} s \ln s & \text { if } r=-1 \\ C s+\widetilde{C} s^{-\frac{1}{r}} & \text { if } r \neq 0,-1\end{cases}
$$

In this case, $\phi(0) \neq 1$. Now, the resulting $\phi(s)$ does not satisfy (2) and the $F=\alpha \phi(\beta / \alpha)$ defined by these $\phi(s)$ are not Finsler metrics. Therefore, we always assume that $p \neq 0$.

By a theorem on the power series method of ODE, we know that the solutions of (3) are analytic near the origin. Let the power series expressions of $\phi(s)$ be

$$
\phi(s)=\sum_{n=0}^{\infty} C_{n} s^{n}
$$

The first and the second order derivatives of $\phi(s)$ are

$$
\phi^{\prime}(s)=\sum_{n=0}^{\infty}(n+1) C_{n+1} s^{n}, \quad \phi^{\prime \prime}(s)=\sum_{n=0}^{\infty}(n+2)(n+1) C_{n+2} s^{n} .
$$

Plugging them into (3) yields

$$
\begin{align*}
\left(2 p C_{2}-C_{0}\right)+6 p C_{3} s+\sum_{n=0}^{\infty}\{p(n & +4)(n+3) C_{n+4} \\
& \left.+(n+1)[r(n+2)+1] C_{n+2}\right\} s^{n+2}=0 \tag{10}
\end{align*}
$$

From (10) we know that the coefficients of $\phi(s)$ must satisfy

$$
\begin{gather*}
C_{2 n+1}=0, \quad n \geq 1 \tag{11}\\
C_{2 n+2}=\left(-\frac{1}{p}\right) \frac{(2 n-1)(2 n r+1)}{(2 n+2)(2 n+1)} C_{2 n}, \quad n \geq 0 . \tag{12}
\end{gather*}
$$

Hence the power series expression of $\phi(s)$ is

$$
\begin{equation*}
\phi(s)=C_{0}+C_{1} s+C_{2} s^{2}+C_{4} s^{4}+\cdots+C_{2 n} s^{2 n}+\cdots \tag{13}
\end{equation*}
$$

We assert that the $F=\alpha \phi(\beta / \alpha)$ defined by $\phi(s)$ in the form (13) are Finsler metrics if and only if $C_{0}=1$ and $b \in(0, \sqrt{|p|})$ is sufficiently small. Because of $\phi(0)=C_{0}$ and (2), we know that $C_{0}=1$. Then $\phi(s)>0$ in a sufficiently small neighborhood of the origin. Note that

$$
\left[\phi(s)-s \phi^{\prime}(s)+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}(s)\right]_{s=0}=\frac{p+b^{2}}{p}
$$

Thus, if $b \in(0, \sqrt{|p|})$ is sufficiently small and $|s| \leq b$, then

$$
\phi(s)-s \phi^{\prime}(s)+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}(s)>0
$$

This proves our assertion. In this case,

$$
\begin{equation*}
C_{2}=\frac{1}{2 p} \neq 0 \tag{14}
\end{equation*}
$$

3. (α, β)-metrics

In this section, for a function $\phi=\phi(s)$ satisfying (2), we will recall some well-known properties of an (α, β)-metric $F=\alpha \phi(\beta / \alpha)$. Let $b_{i \mid j} d x^{i} \otimes d x^{j}$ denote covariant derivatives of β with respect to α. Let

$$
\begin{aligned}
r_{i j} & :=\frac{1}{2}\left(b_{i \mid j}+b_{j \mid i}\right), & s_{i j} & :=\frac{1}{2}\left(b_{i \mid j}-b_{j \mid i}\right), \\
s_{j}^{i} & :=a^{i l} s_{l j}, & s_{j} & :=b^{i} s_{i j}
\end{aligned}
$$

and

$$
r_{00}:=r_{i j} y^{i} y^{j}, \quad s_{0}:=s_{i} y^{i}, \quad s^{i}{ }_{0}:=s^{i}{ }_{j} y^{j}, \quad s_{l 0}:=s_{l j} y^{j} .
$$

Clearly, β is closed if and only if $s_{i j}=0$.
The geodesic coefficients G^{i} of $F=\alpha \phi(\beta / \alpha)$ are given by

$$
\begin{equation*}
G^{i}=G_{\alpha}^{i}+\alpha Q s^{i}{ }_{0}+H\left(-2 \alpha Q s_{0}+r_{00}\right)\left\{\chi \frac{y^{i}}{\alpha}+b^{i}\right\}, \tag{15}
\end{equation*}
$$

where

$$
\begin{aligned}
\chi & :=\frac{\left(\phi-s \phi^{\prime}\right) \phi^{\prime}}{\phi \phi^{\prime \prime}}-s, \\
Q & :=\frac{\phi^{\prime}}{\phi-s \phi^{\prime}}, \\
H & :=\frac{\phi^{\prime \prime}}{2\left[\left(\phi-s \phi^{\prime}\right)+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}\right]} .
\end{aligned}
$$

The formula (15) is given in [2], [10], [11]. Further, by (1) and (15) we have the following

Lemma 3.1 ([12]). An (α, β)-metric $F=\alpha \phi(\beta / \alpha)$ is projectively flat on an open domain $\mathbf{U} \subset R^{n}$ if and only if

$$
\begin{equation*}
\left(a_{m l} \alpha^{2}-y_{m} y_{l}\right) G_{\alpha}^{m}+\alpha^{3} Q s_{l 0}+H\left(-2 \alpha Q s_{0}+r_{00}\right)\left(b_{l} \alpha^{2}-\beta y_{l}\right)=0 \tag{16}
\end{equation*}
$$

where $y_{l}:=a_{i l} y^{i}$.

4. Proof of Theorem 1.2

In this section, we are going to prove Theorem 1.2 using Lemma 3.1.
From (3) and (15) we have

$$
\begin{equation*}
Q=\frac{\phi^{\prime}}{\left(p+r s^{2}\right) \phi^{\prime \prime}}, \quad H=\frac{1}{2\left[\left(p+b^{2}\right)+(r-1) s^{2}\right]} \tag{17}
\end{equation*}
$$

If (4) holds, then β is closed and $r_{00}=2 \tau\left\{\left(p+b^{2}\right) \alpha^{2}+(r-1) \beta^{2}\right\}$. Hence (15) reduces to

$$
G^{i}=G_{\alpha}^{i}+\tau\left\{\chi \frac{y^{i}}{\alpha}+b^{i}\right\} \alpha^{2}
$$

In addition, if (5) holds, we may obtain

$$
G^{i}=(\xi+\tau \chi \alpha) y^{i} .
$$

Therefore F is projectively flat.
Conversely, assume that $\phi=\phi(s)$ is a function satisfying (2) and (3) and the (α, β)-metric $F=\alpha \phi(\beta / \alpha)$ is projectively flat.

If β is closed, i.e. $s_{i j}=0,(16)$ reduces to

$$
\left(a_{m l} \alpha^{2}-y_{m} y_{l}\right) G_{\alpha}^{m}+\frac{\alpha^{2} r_{00}}{2\left[\left(p+b^{2}\right) \alpha^{2}+(r-1) \beta^{2}\right]}\left(b_{l} \alpha^{2}-\beta y_{l}\right)=0
$$

that is,

$$
\begin{equation*}
2\left(a_{m l} \alpha^{2}-y_{m} y_{l}\right)\left[\left(p+b^{2}\right) \alpha^{2}+(r-1) \beta^{2}\right] G_{\alpha}^{m}=-\alpha^{2} r_{00}\left(b_{l} \alpha^{2}-\beta y_{l}\right) . \tag{18}
\end{equation*}
$$

Contracting (18) with b^{l}, we get

$$
2\left[\left(p+b^{2}\right) \alpha^{2}+(r-1) \beta^{2}\right]\left(b_{m} \alpha^{2}-y_{m} \beta\right) G_{\alpha}^{m}=-\alpha^{2}\left(b^{2} \alpha^{2}-\beta^{2}\right) r_{00} .
$$

Note that the polynomial $\left(p+b^{2}\right) \alpha^{2}+(r-1) \beta^{2}$ is not divisible by α^{2} and $b^{2} \alpha^{2}-\beta^{2}$ as $r \neq 1$. Thus $\left(b_{m} \alpha^{2}-y_{m} \beta\right) G_{\alpha}^{m}$ is divisible by $\alpha^{2}\left(b^{2} \alpha^{2}-\beta^{2}\right)$. Therefore, there is a function $\tau=\tau(x)$ such that

$$
\begin{equation*}
r_{00}=2 \tau\left\{\left(p+b^{2}\right) \alpha^{2}+(r-1) \beta^{2}\right\} \tag{19}
\end{equation*}
$$

Note that (19) is equivalent to (4) since $s_{i j}=0$. Now the formula (15) for G^{i} can be simplified to

$$
\begin{equation*}
G^{i}=G_{\alpha}^{i}+\tau \chi \alpha y^{i}+\tau \alpha^{2} b^{i} . \tag{20}
\end{equation*}
$$

On the other hand, it is well-known that F is projectively flat if and only if there is a scalar function $P(x, y)$ satisfying $P(x, \lambda y)=\lambda P(x, y)$ for $\lambda>0$, such that $G^{i}=P y^{i}$. Thus, by (20), we have

$$
G_{\alpha}^{i}=(P-\tau \chi \alpha) y^{i}-\tau \alpha^{2} b^{i} .
$$

Because both of G_{α}^{i} and $\tau \alpha^{2} b^{i}$ are quadratic forms of $\left(y^{i}\right)$, we assert that $\xi:=$ $P-\tau \chi \alpha y^{i}$ must be a 1 -form and we get (5). Thus the key step of the proof is to prove that β is closed.

It is easy to see by (17) that (16) can be rewritten as

$$
\begin{align*}
& 2\left[\left(p+b^{2}\right)+(r-1) s^{2}\right]\left(p+r s^{2}\right)\left(a_{m l} \alpha^{2}-y_{m} y_{l}\right) G_{\alpha}^{m} \phi^{\prime \prime} \\
& \quad+2\left[\left(p+b^{2}\right)+(r-1) s^{2}\right] \alpha^{3} s_{l 0} \phi^{\prime}-2 \alpha s_{0}\left(b_{l} \alpha^{2}-\beta y_{l}\right) \phi^{\prime} \\
& \quad+r_{00}\left(p+r s^{2}\right)\left(b_{l} \alpha^{2}-\beta y_{l}\right) \phi^{\prime \prime}=0 \tag{21}
\end{align*}
$$

Contracting (21) with b^{l} yields

$$
\begin{align*}
& 2\left[\left(p+b^{2}\right)+(r-1) s^{2}\right]\left(p+r s^{2}\right)\left(b_{m} \alpha^{2}-y_{m} \beta\right) G_{\alpha}^{m} \phi^{\prime \prime} \\
& \quad+2\left[\left(p+b^{2}\right)+(r-1) s^{2}\right] \alpha^{3} s_{0} \phi^{\prime}-2 \alpha s_{0}\left(b^{2} \alpha^{2}-\beta^{2}\right) \phi^{\prime} \\
& \quad+r_{00}\left(p+r s^{2}\right)\left(b^{2} \alpha^{2}-\beta^{2}\right) \phi^{\prime \prime}=0 \tag{22}
\end{align*}
$$

Then we have

$$
\begin{align*}
&\left\{2\left[\left(p+b^{2}\right)+(r-1) s^{2}\right]\left(b_{m} \alpha^{2}-y_{m} \beta\right) G_{\alpha}^{m}+r_{00}\left(b^{2} \alpha^{2}-\beta^{2}\right)\right\}\left(p+r s^{2}\right) \phi^{\prime \prime} \\
&+2 \alpha s_{0}\left(p \alpha^{2}+r \beta^{2}\right) \phi^{\prime}=0 . \tag{23}
\end{align*}
$$

Case 1: $\quad C_{1} \neq 0$ and $r \neq 1$. In this case, we have

$$
\begin{aligned}
\phi(s) & =1+C_{1} s+C_{2} s^{2}+C_{4} s^{4}+\cdots+C_{2 n} s^{2 n}+\cdots, \\
\phi^{\prime}(s) & =C_{1}+2 C_{2} s+4 C_{4} s^{3}+\cdots+2 n C_{2 n} s^{2 n-1}+\cdots, \\
\phi^{\prime \prime}(s) & =2 C_{2}+4 \cdot 3 C_{4} s^{2}+\cdots+2 n \cdot(2 n-1) C_{2 n} s^{2 n-2}+\cdots
\end{aligned}
$$

Let

$$
\psi(s)=2 C_{2}+4 C_{4} s^{2}+\cdots+2 n C_{2 n} s^{2 n-2}+\cdots
$$

Then $\phi^{\prime}(s)=C_{1}+s \psi(s)$ and (23) becomes

$$
\begin{align*}
& \left\{2\left[\left(p+b^{2}\right)+(r-1) s^{2}\right]\left(p+r s^{2}\right)\left(b_{m} \alpha^{2}-y_{m} \beta\right) G_{\alpha}^{m}\right. \\
& \left.\quad \quad+r_{00}\left(p+r s^{2}\right)\left(b^{2} \alpha^{2}-\beta^{2}\right)\right\} \phi^{\prime \prime}+2 \beta s_{0}\left(p \alpha^{2}+r \beta^{2}\right) \psi \\
& \quad+2 \alpha s_{0}\left(p \alpha^{2}+r \beta^{2}\right) C_{1}=0 \tag{24}
\end{align*}
$$

Note that, when we change y into $-y$ in (24), only $2 \alpha s_{0}\left(p \alpha^{2}+r \beta^{2}\right) C_{1}$ changes its sign. Hence

$$
\begin{equation*}
2 \alpha s_{0}\left(p \alpha^{2}+r \beta^{2}\right) C_{1}=0 \tag{25}
\end{equation*}
$$

Because of $p \neq 0$, we assert that $p \alpha^{2}+r \beta^{2} \neq 0$. Thus

$$
s_{0}=0
$$

Substituting it back into (21), by a similar discussion and by paying attention to $\phi^{\prime}(-s)=C_{1}-s \psi(s)$, we get $C_{1} s_{l 0}=0$. By assumption, we obtain

$$
s_{l 0}=0
$$

That is, β is closed.
Case 2: $C_{1}=0$ but $r=-\frac{1}{2 k}$, where k is a positive integer.
When $k=1$, the metrics are just those of the form (8). In [12], Z. Shen and G. C. Yidirim have proved that such metrics are projectively flat if and only if (4) and (5) hold. So, in the following, we will always assume that $k \geq 2$. In this case, we have

$$
\begin{aligned}
\phi(s) & =1+C_{2} s^{2}+C_{4} s^{4}+\cdots+C_{2 k} s^{2 k} \\
\phi^{\prime}(s) & =2 C_{2} s+4 C_{4} s^{3}+\cdots+2 k C_{2 k} s^{2 k-1} \\
\phi^{\prime \prime}(s) & =2 C_{2}+4 \cdot 3 C_{4} s^{2}+\cdots+2 k \cdot(2 k-1) C_{2 k} s^{2 k-2}
\end{aligned}
$$

Let

$$
\psi(s)=2 C_{2}+4 C_{4} s^{2}+\cdots+2 k C_{2 k} s^{2 k-2}
$$

Then $\phi^{\prime}(s)=s \psi(s)$ and (23) can be rewritten as

$$
\begin{array}{r}
\left\{2\left[\left(p+b^{2}\right)+(r-1) s^{2}\right]\left(b_{m} \alpha^{2}-y_{m} \beta\right) G_{\alpha}^{m}+r_{00}\left(b^{2} \alpha^{2}-\beta^{2}\right)\right\}\left(p+r s^{2}\right) \phi^{\prime \prime} \\
+2 \beta s_{0}\left(p \alpha^{2}+r \beta^{2}\right) \psi=0 . \tag{26}
\end{array}
$$

Multiplying (26) by $\alpha^{2 k+2}$ yields

$$
\begin{align*}
&\left\{2\left[\left(p+b^{2}\right) \alpha^{2}+(r-1) \beta^{2}\right]\left(b_{m} \alpha^{2}-y_{m} \beta\right) G_{\alpha}^{m}+r_{00} \alpha^{2}\left(b^{2} \alpha^{2}-\beta^{2}\right)\right\} \eta \\
&+2 \alpha^{4} \beta s_{0} \theta=0 \tag{27}
\end{align*}
$$

where

$$
\begin{aligned}
& \eta=2 C_{2} \alpha^{2 k-2}+4 \cdot 3 C_{4} \alpha^{2 k-4} \beta^{2}+\cdots+2 k \cdot(2 k-1) C_{2 k} \beta^{2 k-2}, \\
& \theta=2 C_{2} \alpha^{2 k-2}+4 C_{4} \alpha^{2 k-4} \beta^{2}+\cdots+2 k C_{2 k} \beta^{2 k-2} .
\end{aligned}
$$

When $k \geq 2$, it is clear that θ and η are relatively prime polynomials of $\left(y^{i}\right)$. Hence $\alpha^{4} \beta s_{0}$ must be divisible by η. Because both of α^{2} and β are irreducible polynomials of $\left(y^{i}\right), \alpha^{4} \beta$ and η are obviously relatively prime polynomials of $\left(y^{i}\right)$. Then s_{0} must be divisible by η, which implies that

$$
s_{0}=0
$$

Substituting this back into (21) yields that

$$
\begin{aligned}
\left\{2\left[\left(p+b^{2}\right)+(r-1) s^{2}\right]\left(a_{m l} \alpha^{2}-y_{m} y_{l}\right)\right. & \left.G_{\alpha}^{m}+r_{00}\left(b_{l} \alpha^{2}-\beta y_{l}\right)\right\}\left(p+r s^{2}\right) \phi^{\prime \prime} \\
& +2\left[\left(p+b^{2}\right)+(r-1) s^{2}\right] \alpha^{3} s_{l 0} \phi^{\prime}=0
\end{aligned}
$$

that is,

$$
\begin{array}{r}
\left\{2\left[\left(p+b^{2}\right)+(r-1) s^{2}\right]\left(a_{m l} \alpha^{2}-y_{m} y_{l}\right) G_{\alpha}^{m}+r_{00}\left(b_{l} \alpha^{2}-\beta y_{l}\right)\right\}\left(p+r s^{2}\right) \phi^{\prime \prime} \\
+2\left[\left(p+b^{2}\right)+(r-1) s^{2}\right] \alpha^{2} \beta s_{l 0} \psi=0 \tag{28}
\end{array}
$$

Multiplying (28) by $\alpha^{2 k+2}$ yields

$$
\begin{align*}
\{2 & {\left[\left(p+b^{2}\right) \alpha^{2}+(r-1) \beta^{2}\right]\left(a_{m l} \alpha^{2}-y_{m} y_{l}\right) G_{\alpha}^{m} } \\
& \left.+r_{00} \alpha^{2}\left(b_{l} \alpha^{2}-\beta y_{l}\right)\right\}\left(p \alpha^{2}+r \beta^{2}\right) \eta \\
& +2\left[\left(p+b^{2}\right) \alpha^{2}+(r-1) \beta^{2}\right] \alpha^{4} \beta s_{l 0} \theta=0 . \tag{29}
\end{align*}
$$

Hence $\left[\left(p+b^{2}\right) \alpha^{2}+(r-1) \beta^{2}\right] s_{l 0}$ must be divisible by η.
If $k=2$, we know from (12) and (14) that

$$
\begin{gathered}
\eta=\frac{1}{p^{2}}\left(p \alpha^{2}-\frac{1}{12} \beta^{2}\right) \\
\left(p+b^{2}\right) \alpha^{2}+(r-1) \beta^{2}=15\left[\left(\frac{p+b^{2}}{15}\right) \alpha^{2}-\frac{1}{12} \beta^{2}\right]
\end{gathered}
$$

It is clear that $\left(p+b^{2}\right) \alpha^{2}+(r-1) \beta^{2}$ and η are relatively prime polynomials of $\left(y^{i}\right)$. Hence $s_{l 0}$ must be divisible by η. This yields that $s_{l 0}=0$.

If $k \geq 3$, the degrees of $\left[\left(p+b^{2}\right) \alpha^{2}+(r-1) \beta^{2}\right] s_{l 0}$ and η show that $s_{l 0}=0$.
Thus we may conclude that β is closed when $k \geq 2$. This completes the proof of Theorem 1.2.

From Theorem 1.2 and (12), (14) and the discussion in section 2, we have the following

Corollary 4.1. Assume that

$$
\phi(s)=1+C_{1} s+\frac{1}{2 p} s^{2}+\cdots+C_{2 n} s^{2 n}+\cdots
$$

and $b \in(0, \sqrt{|p|})$ is sufficiently small, where

$$
C_{2 n+2}=(-1)^{n} \frac{(2 n-1)!!}{(2 n+2)!p^{n+1}} \prod_{i=1}^{n}(2 i r+1), \quad n \geq 1
$$

If $C_{1} \neq 0$ and $r \neq 1$ or $C_{1}=0$ but $r=-1 /(2 k)$ where k is any positive integer, then the (α, β)-metric $F=\alpha \phi(\beta / \alpha)$ is projectively flat if and only if (4) and (5) hold.

Acknowledgments. The authors would like to thank Professor Zhongmin SHEN for his great help and valuable discussions.

References

[1] S. BÁcsó and M. Matsumoto, On Finsler spaces of Douglas type, A generalization of the notion of Berwald space, Publ. Math. Debrecen 51 (1997), 385-406.
[2] S. S. Chern and Z. Shen, Riemann-Finsler geometry, World Scientific, 2005.
[3] G. Hamel, Über die Geometrien in denen die Geraden die Kürzesten sind, Math. Ann. 57 (1903), 231-264.
[4] D. Hilbert, Mathematical Problems, Bull. of Amer. Math. Soc. 37 (2001), 407-436, Reprinted from Bull. Amer. Math. Soc. 8 (July 1902), 437-479.
[5] M. Matsumoto, Finsler spaces with (α, β)-metric of Douglas type, Tensor, N. S. 60 (1998), 123-134.
[6] Y. B. Shen and L. Zhao, Some Projectively Flat (α, β)-Metrics, Science in China (Ser.A) (to appear).
[7] Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, 2001.
[8] Z. Shen, Lectures on Finsler Geometry, World Scientific, 2001.
[9] Z. Shen, Projectively flat Finsler metrics of constant flag curvature, Trans. Amer. Math. Soc. 355(4) (2003), 1713-1728.
[10] Z. Shen, Landsberg curvature, S-curvature and Riemann curvature, in: A Sampler of Riemann-Finsler Geometry, Vol. 50, MSRI Series, Cambridge University Press, 2004.
[11] Z. Shen, On some projectively flat Finsler metrics, Manuscripta Math. (to appear).
[12] Z. Shen and G. C. Yidirim, On a class of projectively flat metrics with constant flag curvature, Canadian J. Math. (to appear).

XINYUE CHENG
SCHOOL OF MATHEMATICS AND PHYSICS
CHONGQING INSTITUTE OF TECHNOLOGY
CHONGQING 400050
P.R. CHINA

E-mail: chengxy@cqit.edu.cn
MING LI
SCHOOL OF MATHEMATICS AND STATISTICS
SOUTHWEST UNIVERSITY
CHONGQING 400715
P.R.CHINA

E-mail: sphere@swu.edu.cn
(Received March 6, 2006; revised June 21, 2006)

