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Isometric actions of compact connected Lie groups
on globally hyperbolic Lorentz manifolds

By DÁVID SZEGHY (Budapest)

Abstract. Let G be a compact connected Lie group acting isometrically on a

globally hyperbolic Lorentz manifold L. We will show that there are no isolated singular

orbits in L. We will also show that if there is an orbit of co-dimension 1 then every

orbit is principal moreover L is diffeomorphic to G/Gx× (α, β) where x ∈ L is arbitrary

and Gx is the isotropy subgroup of x, and α, β ∈ R ∪ {±∞} furthermore every orbit

is a Cauchy hypersurface. Moreover a Lorentzian analogue of a theorem of J. Szenthe

is given, namely we prove that: If L and G are as above and G(x) is a principal orbit

for which along the causal rays orthogonal to G(x) a curvature property holds, then the

singular orbits in the causal future of G(x) correspond to first focal points along some

causal geodesics orthogonal to G(x). Finally the correspondence between the singular

orbits and the focal points of maximal dimensional orbits is considered in a special

situation.

1. Definitions, low dimensional cases

There are several well-known results about isometric actions of compact con-
nected Lie groups on compact Riemannian manifolds, e.g. see S. Kobayashi [K].
Isometric actions of compact Lie groups on Lorentz manifolds were also studied
by S. Adams [A]. In a compact time oriented Lorentz manifold the causality
relations are not well-defined since there is always a time-like geodesic loop. Yet,
in a globally hyperbolic Lorentz manifold the future and the past of a point are
separated; moreover there is a compactness property included in the definition
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of global hyperbolicity which helps to get results analogous to the compact Rie-
mannian case.

We will consider a Lorentzian manifold (L, 〈, 〉) which will be always time-
oriented and a compact Lie group G acting isometrically on L, where we assume
that the action G×L → L is smooth. It is well known that in this case the orbits
are smooth compact submanifolds of L. The following definitions will be used:

• I+(x), J+(x) (respectively I−(x), J−(x)) will denote the time-like, causal
future (respectively past) of the point x, see [B-E-E] p. 5.;

• L is globally hyperbolic if for every x, y ∈ L the set J+(x) ∩ J−(y) is com-
pact and L is strongly causal, i.e. every point has an arbitrary small open
neighbourhood U such that there is no causal curve intersecting U in a dis-
connected set.

The above definition and concerning facts about global hyperbolicity can be
found in [B-E-E] p. 65. By a neighbourhood we will mean always an open one.
The following notations and definitions will be used throughout this paper:

• G(x) is the orbit of the point x under the action of the group G;

• Gx is the isotropy subgroup of x that is Gx = {g ∈ G | g · x = x};
• NzG(x) is the normal space of z ∈ G(x) i.e.

NzG(x) = {v ∈ TzL | g(v, w) = 0, ∀w ∈ TzG(x)};
• NG(x) is the normal bundle of G(x) that is

NG(x) =
⋃{NzG(x) | z ∈ G(x)};

• Î+(NzG(x)), Ĵ+(NzG(x)) will denote the set of future time-like, respectively
causal vectors in NzG(x) ⊂ TzL

• Î+(NG(x)) is the time-like future of the zero section in the normal bundle
that is Î+(NG(x)) =

⋃ {
Î+(NzG(x)) | z ∈ G(x)

}

• ε is the exponential map, exp : TL∩D → L, restricted to NG(x)∩D, where
D is the domain of the exponential map. For the sake of simplicity ε|NxG(x)

will mean ε|NxG(x)∩D;

• rv : [0, α) → TxL, v ∈ TxL, x ∈ L is the ray in the direction of v that is
rv(t) = t · v;

• cv : [0, α) → L, v ∈ TxL, x ∈ L is the geodesic in the direction of v i.e.
cv(t) = exp ◦rv(t);

• L : Ω → R is the length function on the set of piecewise smooth curves, i.e.
if σ : [0, α] → R is such a curve then L(σ) =

∫ α

0
|〈σ′(t), σ′(t)〉| 12 dt;
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• d : L × L → R ∪ {∞} is the Lorentzian distance function, also called time
separation, i.e. if Ωy

x is the set of picewise smooth future directed causal
curves from x to y then d(x, y) = sup{L(σ) | σ ∈ Ωy

x}, where we define
sup ∅ := 0;

• if γ : [0, α] → L is a geodesic between γ(0) and γ(α) which is causal and
d(γ(0), γ(α)) = L(γ) holds then γ is called maximal.

• v ∈ NG(x) is a focal point if Tε is not injective on TvNG(x), thus
kerTε|TvNG(x) 6= {0v}. This definition is equivalent to the following: v ∈
NG(x) is a focal point if in every neighbourhood of v the mapping ε fails to
be a diffeomorphism. The focal locus is the set of the focal points in NG(x).
The image of a focal point under the mapping ε will be called focal point
also.

Lemma 1. Let L be a globally hyperbolic Lorentz manifold and G×L → L

a smooth isometric action of the compact connected Lie group G then every orbit

G(x), x ∈ L is a compact connected Riemannian submanifold of L.

Proof. Let us take an orbit G(x). First we prove that there are no causally
related points in the orbit. If there are y1, y2 ∈ G(x), such that y1 � y2, where
y1 � y2 means that there is a future directed non trivial causal geodesic from
y1 to y2, then for every g ∈ G , g · y1 � g · y2. The transitivity of G on G(x)
gives that for every y ∈ G(x) we have a z ∈ G(x) such that y � z, by the global
hyperbolicity y = z is not allowed, because there can not be causal loops in the
manifold. The manifold L is globally hyperbolic so we have a partial ordering on
G(x) where every chain has an upper bound, because let y1 � y2 � y3 � . . . be a
chain. Since G acts transitively on G(x) we can write this chain in the following
form: y1 � g1 · y1 � g2 · y1 � . . . . Then the compactness of G yields that there is
a subsequence ni →∞ such that gni → g ∈ G. This yields that gni · y1 → g · y1.
Since

J+(y1) ⊃ J+(gn1 · y1) ⊃ J+(gn2 · y1) ⊃ · · ·
are closed sets in L, by the global hyperbolicity, and for every i ∈ Z+ there is a
k ∈ Z+ such that

J+(gnk
· y1) ⊃ J+(yi) ⊃ J+(gnk+1 · y1)

this gives with the fact gni ·y1 → g·y1 that g·y1 ∈ J+(yi) for every i ∈ Z+, because
if g · y1 is not in the closed set

⋂∞
i=1 J+(yni) then g · y1 must be in the open set

L−{⋂∞
i=1 J+(yni)}. But since gni ·y1 → g ·y1, for every point p ∈ I+(g ·y1) which

is suitably near to g · y1 there is an index nl such that p ∈ J+ (gni · y1) for every
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nl ≤ nk. This gives that p ∈ ⋂∞
i=1 J+(yni

), but p can be chosen arbitrary near
to g · y1 which contradicts to that g · y1 is in the open set L − {⋂∞

i=1 J+(yni)}.
So every chain has an upper bound and the Zorn lemma gives that there is a
maximal element w of G(x) at this partial ordering. But such an element can
not exist, because as we showed at the beginning of this proof, by the assumption
that there are causally related points in G(x), there is an element v ∈ G(x) such
that w � v, v 6= w which contradicts the maximality of w.

Now we prove that the space TxG(x) is space-like. If there would be a time-
like vector in the tangent space TxG(x) then there would be a point y ∈ G(x)
near to x for which x � y but this can not be as we have seen. Otherwise there
is a unique light-like vector in TxG(x), up to multiplying by a non-zero constant.
So only one light-like line can be in the tangent space in this case. Then by the
transitivity of G on G(x), in every TyG(x), y ∈ G(x) there is a unique light-
like line. The smoothness yields that we can take a light-like curve in G(x), an
“integral curve”, which would give causal related points in G(x) but such points
can not exist. So we have that for every point y ∈ G(x) the tangent space of the
orbit TyG(x) is space-like which proves the lemma. ¤

The above lemma can be proved without the axiom of choise.
The assumption of global hyperbolicity in the above lemma is necessary as

the following not globally hyperbolic example shows.

Example 2. Let L = R × S1
1 be the product of the the real line R, as a

Riemannian manifold, and the 1-dimensional Lorentz space S1
1. If we take the

canonical action of the Lie group S1 on S1
1 we get an action on L for which the

orbits are time-like circles.

Corollary 3. Let L be as in Lemma 1 and let G be a compact Lie group

which acts isometrically on L then every orbit is a finite union of compact con-

nected Riemannian submanifolds of L.

Proof. We use the proof of the above lemma for each connected component
of G. Since G is compact the number of the components of G is finite. ¤

Next we will prove the following geometric fact: To every point y in the time-
like, (causal) future of an orbit we can find a time-like, (causal) curve starting
orthogonally to the orbit and ending at y.

Lemma 4. If G and L are as above then ε(Î+(NG(x))) = I+(G(x)) and

ε(Ĵ+(NG(x))) = J+(G(x)).
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Proof. It is clear that

ε(Î+(NG(x))) = ε
(⋃ {

Î+(NzG(x)) | z ∈ G(x)
})

⊂ I+(G(x)).

For the inclusion ε(Î+(NG(x))) ⊃ I+(G(x)) let y ∈ I+(G(x)) then there is a
time-like curve from a point in G(x) to y, we can assume that this is from x to y.
The global hyperbolicity of L gives a maximal future directed time-like geodesic
from x to y, see [B-E-E], Theorem 6.1 p. 200. If this is also a maximal time-like
geodesic from G(x) to y then this must start orthogonally to G(x), otherwise it
cannot be a maximal one. If there is a sequence of time-like geodesics, γ1, γ2, . . .

from G(x) to y whose Lorentzian length is increasing and

L(γi) → sup{d(z, y) | z ∈ G(x)}

then by the compactness of G(x) we can assume that G(x) 3 γi(0) → w ∈ G(x).
This yields with the fact that J−(y) is closed that w ∈ J−(y). So we have a
causal geodesic γ from w to y such that γni → γ holds, for a suitable subsequence
n1 < n2 < . . ., (see [B-E-E] Corollary 3.32) for which L(γni) → L(γ). But then

L(γni) ≤ L(γni+1) ≤ . . . ≤ L(γ)

and this would give a maximal causal geodesic from G(x) to y. So we proved the
first equality of this lemma since γ1, γ2, . . . are time-like geodesics so, by

0 < L(γ1) ≤ L(γ2) ≤ · · · ≤ L(γ),

γ is also time-like. In order to prove the second one consider an element y ∈
J+(G(x)) − I+(G(x)). Then there is a light-like geodesic γ : [0, 1] → L, with
γ(0) ∈ G(x), γ(1) = y. If γ is not orthogonal to L then by taking a sufficiently
small geodesically convex neighbourhood U of γ(0), the orbit G(x) would intersect
I−(γ(ε))∩U for a suitable small ε ∈ [0, 1], which shows that we can replace γ by
such a causal curve from y to G(x) which is not geodesic. But this contradicts
y ∈ J+(G(x)) − I+(G(x)). So γ is orthogonal to G(x) but then this shows that
y ∈ ε(

⋃{Ĵ+(NzG(x)) | z ∈ G(x)}). This proves J+(G(x)) ⊂ ε(Ĵ+(NG(x))).
Since the inclusion J+(G(x)) ⊃ ε(Ĵ+(NG(x))) is trivial the equality follows. ¤

Definition 5. A subset S ⊂ L is called Cauchy hypersurface if every inex-
tendible causal curve intersects it exactly once.

The above definition can be found in [B-E-E] p. 65.
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Corollary 6. If G and L are as above moreover L and G are connected and

there exists an orbit G(x) of co-dimension 1 then G(x) is a Cauchy hypersurface

and every orbit is a Cauchy hypersurface.

Proof. Since G(x) is of co-dimension 1 the normal space NzG(x) is a time-
like line for every z ∈ G(x) thus Î+(NzG(x)) = Ĵ+(NzG(x)) holds for every
z ∈ G(x). Moreover I+(G(x)) = J+(G(x)) ∪G(x). So we have

ε(NG(x)) = ε(Î+(NG(x))) ∪ ε(Î−(NG(x)))

= I+(G(x)) ∪ I−(G(x)) = J+(G(x)) ∪ J−(G(x)) ∪G(x)

= ε
(⋃ {

Ĵ+(NzG(x)) | z ∈G(x)
})
∪ ε

(⋃ {
Ĵ−(NzG(x)) | z ∈ G(x)

})
∪G(x)

= ε
(⋃ {

Î+(NzG(x)) | z ∈ G(x)
})
∪ ε

(⋃ {
Î−(NzG(x)) | z ∈ G(x)

})
∪G(x)

= ε
(
Î+(NG(x))

) ∪ ε
(
Î−(NG(x))

) ∪G(x) = ε(NG(x)).

But here the left hand side is closed and the right hand side is open so
ε(NG(x)) = L.

Since the orbit G(x) is of co-dimension 1 the future set Î+(NzG(x)) is a
time-like line for every z ∈ G(x). But by our first lemma Gz acts trivial on this
line. So if we take the unique future time-like unit vector in Î+(NzG(x)) then by
the action of G this extends to a unique future time-like unit vector field W on
G(x) which is G-invariant.

By our first lemma follows that from a point y ∈ L there can be only future
or only past directed causal curves to G(x). The first two steps in this proof
give that for every point y ∈ L there is, let us assume, a past directed time-like
geodesic γ1 : [0, α] → L, γ1(0) = y, γ1(α) ∈ G(x) in unit speed parametrization
which is orthogonal to G(x). If there is an other one γ2 : [0, β] → L, γ2(0) = y,
γ2(β) ∈ G(x) in unit speed parametrization which is orthogonal to G(x) then
α = β; In fact, let us assume that α < β then there is an element g ∈ G such
that g · γ1(α) = γ2(β). By the second step of this proof g · γ1|[0,α] = γ2|[β−α,β],
for the above g ∈ G. But then γ2|[0,β−α] would be a past directed non-trivial
time-like geodesic from y to y which is a contradiction. So for every t ∈ R the set
ε(t ·W ) is an orbit and for every orbit there is a unique t ∈ R such that the orbit
is ε(t ·W ). We can say we have constructed a time function fG(x) : L → R such
that the orbits are the constant levels of this function. And this function gives
the maximal Lorentzian distance between a point and G(x).

If there is an orbit G(y) = ε(t0 ·W ) then by our function fG(x) it is easy to
see that the sets {y ∈ L | fG(x)(y) < t0} and {y ∈ L | fG(x)(y) > t0} are disjoint
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and {
y ∈ L | fG(x)(y) < t0

} ∪ {
y ∈ L | fG(x)(y) > t0

}
= L−G(y).

But if dim G(y) < dim L − 1 then L − G(y) is connected. So every orbit is a
hypersurface.

Let us take an inextendible causal curve ϕ : (α, β) → L. By our first lemma
fG(x) ◦ ϕ : (α, β) → fG(x)(L) ⊂ R is injective. So we can assume that fG(x) ◦ ϕ

is a strictly monotone increasing function. We must only show that fG(x) ◦ ϕ is
surjective this gives that ϕ intersects every orbit exactly once. If limt→β fG(x) ◦
ϕ(t) = t0 ∈ fG(x)(L), i.e. limt→β fG(x) ◦ ϕ(t) 6= sup fG(x)(L), then since the orbit
f−1

G(x)(t0) is a hypersurface which is a smooth compact Riemannian submanifold
it is easy to see that limt→β ϕ(t) exists, because ϕ is causal and L is globally
hyperbolic. But then we can continue the curve ϕ from the point limt→β ϕ(t)
which contradicts to the inextandiblity of ϕ. The same argument shows that
inf fG(x) ◦ ϕ((α, β)) = inf fG(x)(L). ¤

Corollary 7. Let G and L be as above. If there is an orbit of co-dimension 2
then this is a maximal dimensional orbit.

The above two corollaries show that there is a difference between the Rie-
mannian and the Lorentz case. Because if we take the unit sphere, S2, in R3 and
the rotations around an axis which goes through the origin we get an action of
the Lie group S1 on the compact Riemannian manifold S2. In this example there
are orbits with co-dimension 1 and 2.

There is a canonical partial ordering on the set of the orbits of a compact
Lie group action. The orbit G(x) has greater orbit type than the orbit G(y),
in notation G(x) º G(y), iff Gx ≤ g · Gy · g−1 for some g ∈ G. According
to the Principal orbit type theorem there is a unique maximal orbit type under
this partial ordering which is called principal orbit. An orbit which has maximal
dimension but which is not principal is called exceptional orbit and an orbit which
is not of maximal dimension is called singular. (see [B])

It is known that a globally hyperbolic space-time is diffeomorphic to R× S,
where S is a Cauchy hypersurface, see [B-S]. But the proof in our case is much
more simpler, as the following short outlined proof shows.

Proposition 8. Let G, L be as above if there is an orbit G(x) of co-

dimension 1 then L is diffeomorphic to G/Gx × (α, β), where x ∈ L is arbitrary

and −∞ ≤ α < β ≤ ∞.

Proof. From Corollary 6 we know that every orbit is a Cauchy hypersurface,
so there are no singular orbits, and that the orbits are the level sets of the time
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function fG(x), for this function see also Corollary 6. From the properties of fG(x)

it can be shown that ε : NG(x) → L is a homeomorphism. Since it can be proved
that in our case the images by ε of the focal points in NG(x) correspond to singular
orbits, we have that there are no focal points in NG(x) thus ε : NG(x) → L is
the desired diffeomorphism. ¤

From the above proof it is easy to see that every curve (a, b) 3 t 7→ z × t,
z ∈ G/Gx is a time-like geodesic on which the metric is the canonical metric
multiplied by (−1) of (a, b). If an isometric action of a compact connected Lie
group has an orbit of co-dimension 1 then in the Riemannian case the structure
of the manifold can be more complicated, see [A-A].

2. Singular orbits

Definition 9. Let (Mn, 〈, 〉) be the n-dimensional Minkowski space and 0Mn

be its origin. Then the semi-orthogonal group of this space is:

MO (n) := {φ ∈ Iso (Mn, 〈, 〉) | φ (0Mn) = 0Mn} ,

where Iso (Mn, 〈, 〉) is the group of isometries of the Minkowski space. The group
of those orthogonal isometries which preserve the time orientation is denoted by
MSO (n) and it is called the special semi-orthogonal group.

Lemma 10. For every compact Lie group G ⊂ MSO (n) there is a non-zero

time-like vector v ∈Mn which is fixed under the action of G.

Proof. Let us consider the submanifold H ⊂ Mn, given by the end points
of the future directed timelike vectors w defined by 〈w, w〉 = −1. The compact
group G acts isometrically on the Riemannian manifold H ⊂ Mn. Moreover it
is well-known that H is a model of the hyperbolic space so it has non-positive
curvature. According to a theorem of E. Cartan (see [K-N] p. 111.) H has a
fixed point v under the action of G which yields that v ∈ H ⊂ Mn remains fixed
under the action of G. ¤

In the following lemma the Lorentz manifold is not necessary globally hyper-
bolic.

Lemma 11. Let L be a Lorentz manifold and G a compact Lie group which

acts isometrically on L. Assume that G(x) is a singular orbit which is space-

like, that is its tangent space TxG(x) is space-like. Then the orbit G(x) is not

an isolated singular orbit, i.e. in every neighbourhood of G(x) there is an other

singular orbit.
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Proof. Consider the isotropy subgroup Gx of the point x and let G0
x be its

unit component. The group G0
x acts isometrically on the normal space NxG (x)

which dimension n ≥ 2, because G(x) is a singular orbit. Since the orbit G (x)
is space-like the normal space NxG (x) can be considered as a Minkowski space
where the metric on NxG (x) is the metric induced by the semi-Euclidean metric
〈, 〉|NxG(x) in the following way: Let Az : TzNxG (x) → NxG (x) be the canon-
ical isomorphism where z ∈ NxG (x); this extends the semi-Euclidean metric
〈, 〉|NxG(x) to a semi-Riemannian metric 〈̃, 〉 on NxG (x) such that

(
NxG (x) , 〈̃, 〉

)

is a Minkowski space. On this Minkowski space the compact connected Lie group
G0

x acts isometrically so G0
x ⊂ MSO (n). By the above lemma we have a non-zero

future directed time-like vector v ∈ NxG (x) which is fixed under the action of
G0

x. Since NxG (x) ⊂ NG(x) and the exponential mapping ε on NG (x) is a
diffeomorphism in a neighbourhood of the zero section G (x) ⊂ NG (x) we have
that the geodesic cv is fixed under the action of G0

x. This means that for every
δ ∈ R we have G0

x ≤ Gcv(δ) for the isotropy subgroups. Since G (x) ≈ G/Gx and
G (cv (δ)) ≈ G/Gcv(δ) we have that

dim (G (x)) = dim (G/Gx)

= dim
(
G/G0

x

) ≥ dim
(
G/Gcv(δ)

)
= dim (G (cv (δ))) .

So the orbit G (cv (δ)) is singular. ¤

The lemma is not necessarily true for exceptional orbits as the following
example shows.

Example 12. Let S1 := {α ∈ C | ‖α‖ = 1} be the unit circle endowed with the
canonical Riemannian metric and R1

1 the real line with the canonical Riemannian
metric multiplied by −1. Furthermore let G = S1

I ∪ S1
II be the disjoint union of

two unit circles, the elements of the unit circles are labelled by αI and αII . Let
consider the product manifold

L := S1 × R1
1

which is a globally hyperbolcic Lorentz manifold on which the action of the group
θ : G × L → L is the following: αI × (α, x) 7→ (αI · α, x) and αII × (α, x) 7→
(αII · α,−x). Here the principal orbits are S1×{x}∪S1×{−x} where x ∈ R1

1−{0}
and the only exceptional orbit is the isolated S1 × {0}.

Theorem 13. Let L be a globally hyperbolic Lorentz manifold and G a

compact connected Lie group which acts isometrically on L. Then there are no

isolated singular orbits.



238 Dávid Szeghy

Proof. Since in a globally hyperbolic Lorentz manifolds all the orbits are
space-like we can apply the above lemma. ¤

3. Singular orbits and focal points
of maximal dimensional orbits

If we want to prove the Lorentzian analogue of Riemannian Theorem 1 in [Sz]
we have to define the Lorentzian analogues of the cut points and of a special set in
NG(x) which were used in the Riemannian case in the above paper of Szenthe.

Let us fix an orbit G(x). By the definition of the global hyperbolicity and the
fact that the mapping ε : NG(x) → L is a diffeomorphism in a neighbourhood of
the zero section it is easy to prove, that if we take a causal ray rv, v ∈ NG(x)
then its image is locally maximal, that is there is a t0 > 0 for which the geodesic
segment cv|[0,t0] is maximal. For every future directed ray there is also a maximal
value tv such that the geodesic cv|[0,tv ] is maximal, where tv = ∞ is also allowed.
The point rv(tv) is a future causal cut point. More precisely we have the following
definition, which is a natural generalization of Definition 9.9 [B-E-E], p. 302, see
also [B-E-E], Definition 9.3 p. 299. and p. 305.

Definition 14. Let TL(−1) be the set of time-like vectors in TL which have
length −1. We define the function sG(x) : TL(−1) ∩NG(x) → R ∪ {∞} as

sG(x)(v) := sup{t ≥ 0 | d(G(x), cv(t)) = t}.

A point v ∈ NG(x) is a future time-like cut point if sG(x)

(
v
‖v‖

)
= ‖v‖ and v is

future directed, where ‖v‖ = |〈v, v〉| 12 .
Let TL(0) be the set of the light-like vectors in TL. Moreover let lG(x) :

TL(0) ∩NG(x) → R ∪ {∞} be defined for a light-like vector v ∈ NG(x) as

lG(x)(v) := sup{t ≥ 0 | d(G(x), ε(t · v)) = 0}.

A point v ∈ NG(x) is a future light-like cut point if lG(x)(v) = 1 and v is future
directed.

So if the meaning of tv is such as above, that is for a point v ∈ NG(x) the
geodesic cv([0, tv]) is maximal and if t > tv then the geodesic cv([0, t]) is not
maximal, where tv = ∞ is also allowed, then we can consider the following set:

⋃{
rv([0, tv)) | v ∈ Î+(NG(x))

}
.
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The image of this set under the mapping ε roughly covers the timelike future of
the orbit G(x), see Lemma 17, so we will call this set, the regular time-like future
of the orbit G(x). This set can be given by the above functions in the following
form:

Definition 15. The regular time-like future is

T+
reg(G(x)) :=

{
v ∈ Î+(NG(x)) | sG(x)

(
v

‖v‖
)

> ‖v‖
}

.

The regular light-like future is

N+
reg(G(x)) :=

{
v ∈ Ĵ+(NzG(x))− Î+(NzG(x)) | z ∈ G(x), lG(x)(v) > 1

}
,

and the regular causal future is

TN+
reg(G(x)) := T+

reg(G(x)) ∪N+
reg(G(x)).

First let us show some elementary properties of the regular future and cut
points of an orbit G (x).

Lemma 16. If L is a globally hyperbolic Lorentz manifold and the compact

connected Lie group G is acting on it isometrically, then for every orbit G(x)
there is a future (and a past) directed inextendible causal geodesic γ : [0, α) → L,

with γ(0) ∈ G(x) such that d(γ(t), G(x)) = L(γ|[0,t]), for every t ∈ [0, α)

Proof. The proof goes along the lines of the proof of Theorem 8.10 [B-E-E]
which is a special case of this lemma considering the trivial action of G on L, thus
G(x) = {x}. In the proof of Theorem 8.10 [B-E-E] it was shown that we can take
such a sequence of causal geodesics for which the length of their maximal segments
is monotone increasing, and this sequence is converging to an inextedible maximal
geodesic. Now the difference is only that there the initial points of the geodesics
were fixed, but now, if we use the technique of [B-E-E] for choosing a geodesic
sequence as above, with monotone increasing length of maximal segments, then
the initial point can vary, but it remains on G(x) which is compact. So by the
compactness this sequence will also converge to a maximal inextendible geodesic
which starts from G(x). We will also need in this analogous proof that if q ∈
I+(G(x)) then there is a geodesic c : [0, 1] → L, with c(0) ∈ G(x), c(1) = q such
that L(c) = d(c(0), c(1)). ¤

The above lemma gives that there is a causal ray in NxG(x) for every x ∈ L

which does not have cut points, because there is such a ray in NG(x) and by the
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transitivity of G on G(x) and by the isometry, we can assume that this ray is
starting at 0x ∈ NxG(x), thus it is in NxG(x). The following lemma yields that
for every point in the causal future of an orbit there is a maximal causal geodesic
joining the orbit and the point.

Lemma 17. The following equalities are true

I+(G(x)) = ε
(
Î+(NG(x))

)
= ε

(
T+

reg(G(x)) ∩ Î+(NG(x))
)
,

J+(G(x)) ∪G(x) = ε
(
Ĵ+(NG(x))

) ∪G(x) = ε
(
TN+

reg(G(x))
)
.

Proof. The first equality is Lemma 4. For the second one we must only
prove that ε(Î+(NG(x))) ⊂ ε(T+

reg(G(x)) ∩ Î+(NG(x))). If we take an element
y ∈ ε(Î+(NG(x))) then there is a geodesic γ : [0, α] → L, such that γ(0) ∈
G(x), γ(α) = y, γ′ (0) ⊥ Tγ(0)G(x),L(γ) = d(y, G(x)). This gives that rγ′(0)(α) ∈
T+

reg(G(x)). The equalities for J+ can be proved the same way. ¤
Theorem 18. Let L be a globally hyperbolic Lorentz manifold with non-

positive sectional curvature along the non-space-like geodesics, that is

〈R(Z, γ′(t))γ′(t), Z〉 ≤ 0 for every γ non-space-like geodesic and for every (non-

time-like) vector Z ∈ T⊥γ (t) orthogonal to γ at γ (t). Moreover let G be a

compact connected Lie group whose elements are isometries of L and such that

its action is smooth. Let G(x) be a principal orbit such that the isotropy subgroup

Gx is of maximal rank. Then the orbit G(z) of a point z ∈ J+(G(x)) is singular

if and only if z is a first focal point of G(x) along a causal geodesic.

Proof. The proof goes along the lines of the proof of [Sz] Theorem 1, where
the preparatory propositions can be proved for J+(G(x)). ¤

In a special situation we can prove something similar without assuming that
the isotropy subgroup Gx is of maximal rank.

Theorem 19. Let L be a globally hyperbolic Lorentz manifold and G a

compact connected Lie group. Moreover let G(x) be an orbit with co-dimension 2.

Furthermore let cv : [0, α) → L, v ∈ NG(x), be a light-like geodesic for which

cv(0) = x. If cv(t0) is a focal point along cv then the orbit G(cv(t0)) is singular.

Proof. Let v ∈ NG(x) then the geodesic cv starts orthogonal to the orbit
G(x). First we prove that this geodesic remains orthogonal to the other orbits,
that is c′v(t) ⊥ G(cv(t)). Let X ∈ g be a Lie algebra element and Xψ the vector
field along cv generated by the infinitesimal isometry of X. This vector field is a
G(x)-Jacobi field. From the well-known equality for Jacobi fields

〈(γ′)′, Xψ〉 − 〈γ′, X ′
ψ〉 ≡ const
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we have that −〈γ′, X ′
ψ〉 ≡ const since (γ′)′ = 0. But

const ≡ −〈γ′, X ′
ψ〉 = 〈γ′, AXψ

(γ′)〉,

where AXψ
is the constant tensor field of Xψ. Since the vector field Xψ was gener-

ated by an infinitesimal isometry this is a Killing field, but then the constant ten-
sor field AXψ

is antisymmetric with respect to the metric, that is 〈γ′, AXψ
(γ′)〉 =

−〈AXψ
(γ′), γ′〉 which gives that the constant in the above equality is zero. So we

have that

0 = 〈γ′, X ′
ψ〉 =

d

dt
〈γ′, Xψ〉,

which yields that 〈γ′, Xψ〉 ≡ const. Since 〈γ′(0), Xψ(0)〉 = 0 this constant is 0.
But {Xψ(t), | X ∈ g} = Tcv(t)G(cv(t)) gives that the geodesic cv is orthogonal to
the orbits.

Assume that cv(t0) is a focal point of G(x). In this case there is a vector
w ∈ Tt0·vNG(x), w 6= 0 for which Tε(w) = 0. Note that on the normal bundle
NG(x) there is an action of the group G, and since the orbit G(x) has maximal
dimension all the orbits in NG(x) are of maximal dimension under the action of
G. So the space Tt0·vNG(x) has a canonical decomposition

Tt0·vNG(x) = Tt0·vNxG(x)⊕ Tt0·vG(t0 · v).

So we can write w = wN + wG, where wN ∈ Tt0·vNxG(x), wG ∈ Tt0·vG(t0 · v). If
wN = const · r′v(t0) then Tε(wN ) = const · c′v(t0). If wN 6= const · r′v(t0) then by
applying the Gauss lemma, (see [B-E-E] p. 338,) to r′v(t0) and wN we have that
〈c′v(t0), T ε(wN )〉 6= 0 because the space NxG(x) is of dimension 2 which gives that
the lightlike vector r′v(t0) is not orthogonal to any wN 6= const · r′v(t0), also note
that if wN 6= const · r′v(t0) then Tε(wN ) 6= 0 so Tε(wN ) = 0 iff wN = 0. Since
Tcv(t0)G(cv(t0)) ⊥ c′v(t0) we have that Tε(wN ) /∈ Tcv(t0)G(cv(t0)) if wN 6= 0.
Since ε is G equivariant we have Tε(wG) ∈ Tγ(t0)G(γ(t0)) which yields that if
Tε(w) = 0 then wN = 0. So there is an element A of the Lie algebra g such that
the vector w = wG is generated by the infinitesimal isometry corresponding to A.
This gives that A /∈ gx, A ∈ gcv(t0) holds because w 6= 0 but Tε(w) = 0. Since
gx ⊂ gcv(t0) in our case this involves that the dimension of G(x) is greater than
that of G(cv(t0)) which proves the theorem. ¤

Corollary 20. If the terms L,G,G(x) are as above then an orbit G(z) in

J+(G(x))−I+(G(x)) is singular if and only if z is a first focal point of G(x) along

a light-like geodesic which is orthogonal to G(x).
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Proof. If z is a first focal point along a light-like geodesic which is orthog-
onal to G(x) then G(z) is singular, by the above theorem.

If G(z) is a singular orbit in J+(G(x))− I+(G(x)) then using Lemma 14 we
have that there is a light-like geodesic γ : [0, 1] → L such that γ(0) ∈ G(x),
γ(1) = z, γ ⊥ G(x), moreover let rγ′(0) be the ray defined by γ′ (0) then
rγ‘(0)[0, 1) ⊂ N+

reg(G(x)), where N+
reg(G(x)) is the regular light-like future. As

we have seen in the proof of Theorem 29, γ|[0,1] is orthogonal to each of the orbits
G(γ(t)), t ∈ [0, 1] and the orbit G(γ(1)) is singular. In this case since G(x) is max-
imal and G(γ(t0)) is singular, there is an element A ∈ gγ(t0), A /∈ gγ(0) for which
the infinitesimal deformation corresponding to this element gives vector fields
X(t) along rv(t) in TNG(x) and Y (t) along γ(t) in TL such that Tε(X(t)) = Y (t)
and Y is a G(x)-Jacobi-field along γ. Moreover the properties of G and the maxi-
mality of the dimension of G(x) show that X(t0) 6= 0 but Tε(X(t0)) = Y (t0) = 0.

Thus γ(t0) is a focal point of G(x) since rγ′(0)|[0,1) ∈ N+
reg(G(x)) there are no

focal points on ε(rγ′(0)|[0,1)). ¤

The following example shows that if the isotropy subgroup Gx of a principal
orbit is not of maximal rank then the first focal point along a time-like or light-
like geodesic, corresponding to a time-like or light-like ray in NxG(x), does not
give necessarily a singular orbit.

Example 21. We take the unit sphere S2 in R3 and the unit circle S1 in R2

endowed with the canonical Riemannian metric. We also take the real line R1
1

with the canonical Riemannian metric multiplied by −1. If we take the product
space

S2 × S1 × R1
1,

where we take the canonical action of S1 on itself then all the orbits are principal
but for each orbit there are time-like and light-like rays in the normal bundle on
which there are focal points, also conjugate points.

The next example shows that a cut point is not necessarily corresponding to
a singular orbit, it can correspond to an exceptional orbit.

Example 22. Let us take R1× [0, 1] endowed with the canonical Riemannian
metric and glue R1 × {0} and R1 × {1} together such that we get a Mobius strip
and {0}×[0, 1] is a closed circle. This Riemannian manifold will be denoted by M .
If we take the real line R1

1 with the canonical Riemannian metric multiplied by
−1 and the product space

M × R1
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we have the wanted manifold. The Lie group will be S1 and the action will be the
canonical action on M . In M the principal orbits are {a}×[0, 1]∪{−a}×[0, 1], a ∈
R1 − {0} and there is only one exceptional orbit {0} × [0, 1]. If we take a past
directed light-like geodesic in R1 × {0} × R1

1 from 0 × 0 × 0 and a point x on it
different from {0} × {0} × {0} this will correspond to a principal orbit for which
on a future directed light-like geodesic, the above light-like geodesic in the other
direction, there will be a cut point, {0} × {0} × {0}, which corresponds to an
exceptional orbit. It is easy to see that there will be time-like rays in NxG(x) on
which there is a cut point which corresponds to an exceptional orbit.
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