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A classification of some Finsler connections
and their applications

By BEHROZ BIDABAD (Tehran) and AKBAR TAYEBI (Tehran)

Abstract. Some general Finsler connections are defined. Emphasis is being made

on the Cartan tensor and its derivatives. Vanishing of the hv-curvature tensors of these

connections characterizes Landsbergian, Berwaldian as well as Riemannian structures.

This viewpoint makes it possible to give a smart representation of connection theory

in Finsler geometry and yields a classification of Finsler connections. Some practical

applications of these connections are also considered.

1. Introduction

There is always a hope of finding a solution to some of the unsolved problems
of Finsler geometry by developing a connection theory. This hope justifies the
introduction of new connections [2]. The study of the hv-curvature of Finsler con-
nections is by some authors thought to be rather urgent for theoretical physics, see
for instance [7], [8] and [10]. Vanishing hv-curvatures of Berwald and Cartan

connections characterize Berwaldian and Landsbergian structures respectively [4],
[5]. The discovery of the Shen connection whose hv-curvature characterizes the
Riemannian structure, seems to complete their work and permits the classification
of Finsler connections into three different categories [9].

In this paper, using the vanishing property of hv-curvatures, we define three
general kinds of Finsler connections and extend the above property to a general
family of Finsler connections. This point of view enables us to define a more
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general family of Finsler connections which contains some known Finsler connec-
tions as special cases. This characterization gives rise to the classification of some
Finsler connections with respect to the Cartan tensor and its derivatives, which is
a smart representation of Finsler connections (see table of Section 5). The distin-
guishing property of this connection is the flexibility of its reduced hv-curvature,
which makes it very useful. In fact its reduced hv-curvature may be chosen to be
equal to any linear differential equation formed in terms of the Cartan tensor and
its derivatives. The above property makes the geometric interpretation of the so-
lutions of these differential equations easy. As application of this connection, we
consider some examples, especially those in which the flag curvature is constant.

2. Preliminaries

Let M be an n-dimensional C∞ manifold. TxM denotes the tangent space
of M at x. The tangent bundle of M is the union of tangent spaces TM :=
∪x∈MTxM . We will denote the elements of TM by (x, y) where y ∈ TxM . Let
TM0 = TM \ {0}. The natural projection π : TM0 → M is given by π(x, y) := x.

A Finsler structure on M is a function F : TM → [0,∞) with the following
properties: (i) F is C∞ on TM0, (ii) F is positively 1-homogeneous on the fibers
of the tangent bundle TM , and (iii) the Hessian of F 2 with elements gij(x, y) :=
1
2 [F 2(x, y)]yiyj is positively defined on TM0. The pair (M,F ) is then called a
Finsler manifold. F is Riemannian if the gij(x, y) are independent of y 6= 0.

Let us consider the pull-back tangent bundle π∗TM over TM0 defined by
π∗TM = {(u, v) ∈ TM0 × TM0 | π(u) = π(v)}. Take a local coordinate sys-
tem (xi) in M , then the local natural frame

{
∂

∂xi

}
of TxM determines a local

natural frame ∂i|v for π∗vTM the fibers of π∗TM , where ∂i|v =
(
v, ∂

∂xi |x
)
, and

v = yi ∂
∂xi |x ∈ TM0. The fiber π∗vTM is isomorphic to Tπ(v)M where π(v) = x.

There is a canonical section ` of π∗TM defined by `v = (v, v)/F (v).
Let TTM be the tangent bundle of TM and ρ the canonical linear mapping

ρ : TTM0 → π∗TM defined by ρ(X̂) = (z, π∗(X̂)) where X̂ ∈ TzTM0 and
z ∈ TM0. The bundle map ρ satisfies ρ

(
∂

∂xi

)
= ∂i and ρ

(
∂

∂yi

)
= 0. Let VzTM

be the set of vertical vectors at z, that is, the set of vectors tangent to the fiber
through z, or equivalently VzTM = kerρ, called the vertical space.

Let ∇ be a linear connection on π∗TM , that is ∇ : TzTM0×π∗TM → π∗TM

such that ∇ : (X̂, Y ) → ∇X̂Y . Consider the linear mapping µz : TzTM0 → TπzM

defined by µz(X̂) = ∇X̂F`, where X̂ ∈ TzTM0. The connection ∇ is called a
Finsler connection if for every z ∈ TM0, µz defines an isomorphism of VzTM0
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onto TπzM . Therefore, the tangent space TTM0 in z is decomposed as TzTM0 =
HzTM ⊕ VzTM , where HzTM = ker µz is called the horizontal space defined by
∇. Indeed, any tangent vector X̂ ∈ TzTM0 in z decomposes to X̂ = HX̂ + V X̂

where HX̂ ∈ HzTM and V X̂ ∈ VzTM . The structural equations of the Finsler
connection ∇ are

T∇(X̂, Ŷ ) = ∇X̂Y −∇Ŷ X − ρ[X̂, Ŷ ], (1)

Ω(X̂, Ŷ )Z = ∇X̂∇Ŷ Z −∇Ŷ∇X̂Z −∇[X̂,Ŷ ]Z, (2)

where X = ρ(X̂), Y = ρ(Ŷ ) and Z = ρ(Ẑ). The tensors T∇ and Ω are called
respectively the Torsion and Curvature tensors of ∇. They determine two tor-
sion tensors defined by S(X, Y ) := T∇(HX̂, HŶ ) and T (Ẋ, Y ) := T∇(V X̂, HŶ )
and three curvature tensors defined by R(X, Y ) := Ω(HX̂, HŶ ), P (X, Ẏ ) :=
Ω(HX̂, V Ŷ ) and Q(Ẋ, Ẏ ) := Ω(V X̂, V Ŷ ), where Ẋ = µ(X̂) and Ẏ = µ(X̂).

Given a Finsler structure F on M , at each point x ∈ M , F (v) = F
(
yi ∂

∂xi |x
)

is a function of (yi) ∈ Rn. The fundamental tensor g is defined by g : π∗TM ⊗
π∗TM → [0,∞) with the components g(∂i|v, ∂j |v) = gij(x, y). Thus (π∗TM, g)
becomes a Riemannian vector bundle over TM0. The Cartan tensor A : π∗TM ⊗
π∗TM ⊗ π∗TM → R is defined by A(∂i|v, ∂j |v, ∂k|v) = Aijk(x, y), where
Aijk(x, y) = 1

2F (x, y)[F 2(x, y)]yiyjyk . If A = 0 then F is Riemannian.

Flag curvature. A flag curvature is a geometrical invariant that generalizes
what in Riemannian geometry is called the sectional curvature. For all x ∈ M

and 0 6= y ∈ TxM , V := V i ∂
∂xi is called the transverse edge. Flag curvature is

obtained by carrying out the following computation at the point (x, y) ∈ TM0,
and viewing y and V as sections of π∗TM :

K(y, V ) :=
V i(yj Rjikl yl)V k

g(y, y)g(V, V )− [g(y, V )]2
.

If K is independent of the transverse edge V , then (M, F ) is called the scalar flag
curvature. Denoting this scalar by λ = λ(x, y), if it has no dependence on either
x or y, then the Finsler manifold is said to be of constant flag curvature.

3. General-type Finsler connection

In this section we define a general family of Finsler connections which contains
some known Finsler connections as special cases.
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Definition 3.1. A tensor S : π∗TM ⊗ π∗TM ⊗ π∗TM → R is called “com-
patible” if it has the following properties:

(1) S(X, Y, Z) is symmetric with respect to X, Y , Z.

(2) S(X, Y, `) = 0.

(3) S is homogeneous, i.e., Sijk(x, ty) = Sijk(x, y), ∀ t ∈ R, where Sijk(x, y) =
S(∂i, ∂j , ∂k).

Definition 3.2. Consider a Finsler connection D on (M,F ). Let S and T be
two compatible tensors on π∗TM .

(i) The torsion tensor TD of D, defined by (1), should satisfy

TD(X̂, Ŷ ) = F−1T
(
µ(X̂), ρ(Ŷ ))

)− F−1T (µ(Ŷ ), ρ(X̂)), (3)

where T (X, Y ) is defined by g(T (X, Y ), Z) := T (X, Y, Z), X̂, Ŷ ∈ TzTM0.

(ii) Let (DẐg)(X, Y ) := Ẑg(X, Y ) − g(DẐX,Y ) − g(X, DẐY ). Then the con-
nection D is called almost-compatible with the Finsler structure if for all
X,Y ∈ π∗TM and Ẑ ∈ TzTM0,

(DẐg)(X,Y ) = 2A(ρ(Ẑ), X, Y ) + 2F−1A(µ(Ẑ), X, Y )

− 2S(ρ(Ẑ), X, Y )− 2F−1T (µ(Ẑ), X, Y ). (4)

(iii) D is called metric-compatible with the Finsler structure if (DẐg)(X, Y ) = 0.

For torsion-free connections the bundle map µ satisfies µ
(

∂
∂yi

)
= ∂i and

µ
(

∂
∂xi

)
= Nk

i ∂k, where Nk
i = FΓk

ij`
j and Γk

ij are Christoffel symbols of the
torsion-free Finsler connection D.

We have the following general theorem of existence and uniqueness of linear
connections in different versions.

Theorem A ([9]). Let (M,F ) be a Finsler manifold. Suppose S and T are

two compatible tensors in π∗TM . Then there exists a unique almost-compatible

linear connection D with torsion TD on π∗TM satisfying (i) and (ii).

Let ¯̀ denote the unique vector field in HTM such that ρ(¯̀) = `. We define

Ȧ, . . . ,
m+1

A from π∗TM ⊗ π∗TM ⊗ π∗TM to R as follows:

Ȧ(X, Y, Z) := ¯̀A(X,Y, Z)−A(D¯̀X, Y, Z)−A(X, D¯̀Y, Z)−A(X, Y, D¯̀Z),

m+1

A (X, Y, Z) := ¯̀
m

A(X,Y, Z)−
m

A(D¯̀X, Y, Z)−
m

A(X, D¯̀Y, Z)

−
m

A(X, Y,D¯̀Z), (5)
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where
0

A := A,
1

A := Ȧ,
2

A := Ä, . . . and m ∈ N. Obviously, ∀m ∈ N, the tensors
m

A are symmetric with respect to X,Y and Z. Moreover, using D¯̀ ` = 0 we have
m

A (X,Y, `) = 0. A Finsler metric is called a Berwald metric if for any standard
local coordinate system (xi, yi) in TM0, the Christoffel symbols Γk

ij = Γk
ij(x) are

functions of x ∈ M alone. A Finsler metric is called a Landsberg metric if Ȧ = 0.
By means of Theorem A, we can define the general Finsler connection.

Definition 3.3. Let (M, F ) be a Finsler manifold. A general-type Finsler
connection is defined as a Finsler connection D on π∗TM such that its compatible
tensors S and T can be defined as follows:

S := κ0A + κ1Ȧ + κ2Ä + · · ·+ κm

m

A and T := rA, (6)

where the coefficients κi, i = 1, . . . ,m and r are real constants.

4. Curvature tensors

Let D be a Finsler connection defined on M . Let {ei}n
i=1 be a local (with

respect to g) orthonormal frame field for the vector bundle π∗TM such that
g(ei, en) = 0, i = 1, . . . , n − 1 and en = `i ∂

∂xi . Let {ωi}n
i=1 be its dual co-frame

field. One readily finds that ωn := ∂F
∂yi dxi = ω, which is called a Hilbert form,

and ω(`) = 1. Let ρ = ωi ⊗ ei, Dei = ωi
j ⊗ ej and Ωei = 2Ωi

j ⊗ ej , where {Ωi
j}

and {ωi
j} are called, respectively, the curvature forms and connection forms of

D with respect to {ei}. We have µ := DF` = F{ωn
i + d(log F )δi

n} ⊗ ei. Put
ωn+i := ωn

i + d(log F )δi
n. It is easy to show that {ωi, ωn+i}n

i=1 is a local basis
for T ∗(TM0). The equation (2) is equivalent to

dωi
j − ωi

k ∧ ωk
j = Ωi

j . (7)

Since the Ωj
i are 2-forms on TM0, they can be expanded as

Ωi
j =

1
2
Ri

j
klω

k ∧ ωl + Pi
j
klω

k ∧ ωn+l +
1
2
Qi

j
klω

n+k ∧ ωn+l. (8)

Let {ēi, ėi}n
i=1 be the local basis for T (TM0), which is dual to {ωi, ωn+i}n

i=1,
i.e., ēi ∈ HTM, ėi ∈ V TM such that ρ(ēi) = ei, µ(ėi) = Fei. The objects R,
P and Q are called, respectively, the hh-, hv- and vv-curvature tensors of the
connection D with the components R(ēk, ēl)ei = Ri

j
klej , P (ēk, ėl)ei = Pi

j
klej
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and Q(ėk, ėl)ei = Qi
j
klej . From (8) we see that Ri

j
kl = −Ri

j
kl and Qi

j
kl =

−Qi
j
kl. Let us put

dgij − gkjωi
k − gikωj

kgij|kωk + gij.kωn+k, (9)

dAijk −Aljkωi
l −Ailkωj

l −Aijlωk
l = Aijk|lωl + Aijk.lω

n+l, (10)

where the slash “ | ” and point “ . ” are horizontal and vertical covariant deriv-
atives with respect to the Finsler connection. In a similar way, for ∀m ∈ N we
have

d
m

Aijk −
m

Aljkωi
l −

m

Ailkωj
l −

m

Aijlωk
l =

m

Aijk|lωl +
m

Aijk.lω
n+l, (11)

where
m

Aijk =
m

A(ei, ej , ek) and
m

Ak
ij = gkl

m

Aijk. From (10) and (11) we see that

Aijk|l, Aijk.l,
m

Aijk|l and
m

Aijk.l, (∀m, l ∈ N) are all symmetric with respect to i,
j and k. By definition of the Landsberg tensor, we have Aijk|n = Ȧijk. Here we

use the notation
m

Aijk|n =
m

Aijk|s`s and
m

Aijk|n =
m+1

A ijk. From (10) and (11) we get

Anjk|l = 0, Anjk.l = −Ajkl,
m

Anjk|l = 0 and
m

Anjk.l = −
m

Ajkl. (12)

Remark 4.1. In general-type connection, the horizontal and vertical covariant
derivatives of the metric tensor are given by

gij|k = 2
(
(1− κ0)Aijk − κ1Ȧijk + · · ·+ κm

m

Aijk

)
and gij.k = 2(1− r)Aijk.

5. A classification of some Finsler connections

The following results due to Berwald, Cartan and Shen determine the rela-
tion between hv-curvature and special Finsler spaces. These results enable us to
classify some non-Riemannian Finsler connections and distinguish three different
categories.

Theorem B ([4], [6]). Let (M, F ) be a Finsler manifold. Then for the

Berwald connection (or Chern connection), hv-curvature vanishes if and only if F

is a Berwald metric.

Theorem C ([5]). Let (M, F ) be a Finsler manifold. Then for the Cartan

connection (or Hashiguchi connection), hv-curvature vanishes if and only if F is

a Landsberg metric.
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Theorem D ([9]). Let (M,F ) be a Finsler manifold. Then for the Shen

connection hv-curvature vanishes if and only if F is Riemannian.

The remarkable property of Shen connection, proved by Theorem D, comes
from the fact that vanishing of its hv-curvature singles out Riemannian metric. In
contrast, Cartan, Berwald, Chern and Hashiguchi connections do not possess this
property. Thus we have three different types of Finsler connections. Theorems 5.1,
5.2 and 5.3 of this paper deal with a more general case and give rise to new
families of Finsler connections that we call Berwald-type, Cartan-type and Shen-
type connections and which are defined according to the behavior of their hv-
curvature.

Definition 5.1. Let (M, F ) be a Finsler manifold. A Finsler connection is
called of Berwald-type (resp. of Cartan-type or Shen-type) if and only if vanishing
of its hv-curvature reduces the Finsler structure to the Berwaldian (resp. Lands-
bergian or Riemannian) one.

From this viewpoint one can compare some of the non-Riemannian Finsler
connections according to the compatibility of the tensors S and T .

A classification of Finsler connections according
to their compatible tensors S and T

Compatible tensors

Connection S T Metric compatibility Torsion

1. Berwald A +
•
A 0 almost compatible free

2. Chern–Rund A 0 almost compatible free

3. Berwald-type A + κ1

•
A + · · ·+ κm

m
A 0 almost compatible free

4. Cartan A A metric compatible not free

5. Hashiguchi A +
•
A A almost compatible not free

6. Cartan-type A + κ1

•
A + · · ·+ κm

m
A A depends on κi not free

7. Shen 0 0 almost compatible free

8. Shen-type κ1

•
A + · · ·+ κm

m
A 0 almost compatible free

9. General-type κ0A + κ1

•
A + · · ·+ κm

m
A rA depends on κi and r depends on r

In this table A, Ȧ, Ä,. . . ,
m

A are Cartan tensors and their covariant derivatives,
κi and r are arbitrary real constants. The connections 1, 2 and 3 belong to the
Berwald-type category. The connections 4, 5 and 6 are Cartan-type connections.
The connections 7 and 8 belong to the Shen-type Category. The connection 9
contains all other connections. From at the freeness of torsion point of view, the
Shen connection is the one most similar to the Levi–Civita connection. But from
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the metric compatibility viewpoint, it is the Cartan connection which is closest
to the Levi–Civita connection.

Now we extend Theorem C to Cartan-type connections and show that the hv-
curvature tensor of this type of connections characterizes Landsbergian structures.

Theorem 5.1. Let (M,F ) be a Finsler manifold. Then for Cartan-type

connections hv-curvature vanishes if and only if F is Landsbergian.

To prove Theorem 5.1, we need the following

Lemma 5.1. Let (M, F ) be a Finsler manifold. Then for Cartan-type con-

nections we have

1) Rj
i
kl + Rk

i
lj + Rl

i
jkCi

jmRn
m

kl + Ci
kmRn

m
lj + Ci

lmRn
m

jk,

2) Pj
i
kl = Pk

i
jl + Ci

kl|j − Ci
jl|k + Ci

jrPn
r
kl − Ci

krPn
r
jl,

3) Qj
i
kl = Qj

i
lk+2(Ci

jk.l−Ci
jl.k)+2(Ci

mkCm
jl −Ci

mlC
m
jk)+Ci

jm(Qn
m

kl−Qn
m

k),

where Rijkl = gsjRi
s
kl, Pijkl = gsjPi

s
kl, Qijkl = gsjQi

s
kl, Ci

jk = F−1gimAmjk.

Proof. Let us consider the Cartan-type connection with compatible tensors

S = A + κ1Ȧ + · · · + κm

m

A and T = A. By (3) and (4), there exist connection
1-forms {ωi

j} satisfying the following torsion and almost compatibility conditions:

dωi = ωj ∧ ωj
i − Ci

kl ωk ∧ ωn+l, (13)

dgij = gkjωi
k + gikωj

k − 2κ1Ȧijkωk − · · · − 2κm

m

Aijkωk. (14)

Differentiating (13) and using (7) and (10), we get:

ωj∧Ωi
j = (Ci

kl|jω
j +Ci

kl.jω
n+j)∧ωk∧ωn+l−Ci

lmCm
jkωj∧ωn+k∧ωn+l−Ci

klω
k∧Ωl

n.

Replacing Ωi
j by (8), we prove the Lemma. ¤

Proof of Theorem 5.1. Let (M, F ) be a Finsler manifold with Cartan-
type connection and compatible tensors S = A + S̃ and T = A, where S̃ =

κ1Ȧ + · · ·+ κm

m

A. Then the almost compatibility condition (14) becomes

dgij = gkjωi
k + gikωj

k − 2S̃ijkωk. (15)

Differentiating this relation leads to

gkjΩi
k + gikΩj

k = 2(S̃ijk|sωs + S̃ijk.sω
n+s) ∧ ωk + 2Ci

uvS̃ijkωu ∧ ωn+v.
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From this relation and (8) we have

Rijkl + Rjikl = 2(S̃ijl|k − S̃ijk|l), (16)

Pijkl + Pjikl = −2(S̃ijk.l − Cu
klS̃uij), (17)

Qijkl + Qjikl = 0. (18)

Permuting i, j and k in (17) and using Lemma 1 yields

Pijkl = −S̃ijk.l + (Cu
klS̃uij + Cu

ilS̃ujk − Cu
jlS̃uki) + (Ckjl|i − Cijl|j)

+ (CkivP v
njl − CjkvP v

nil). (19)

Multiplying this relation by yi and replacing S̃ = κ1Ȧ + · · ·+ κm

m

A, we get

Pnjkl = Ċijk + {κ1Ȧijk + · · ·+ κm

m

Aijk}. (20)

If F is a Landsbergian manifold, then from the above relation we have Pnjkl = 0.
Therefore by replacing this value in (19) we find Pijkl = Ckjl|i−Ckil|j . In the case
of Landsbergian manifolds, Cijk|l is totally symmetric in all of its four indices and
we have Pijkl = 0. Conversely, let the hv-curvature be zero. Then by Lemma 1
we have Ci

kl|j = Ci
jl|k, therefore M is Landsbergian. ¤

Theorem 5.2. Let (M,F ) be a Finsler manifold. Then for Berwald-type

connections the hv-curvature vanishes if and only if F is a Berwaldian metric.

Proof. The complete proof of this theorem will not be given, only a sketch
of the proof will be presented. For a Berwald-type connection, the hv-curvature is

Pijkl = −{κ1Ȧijk.l + · · ·+ κm

m

Aijk.l} − (Aijl|k + Ajkl|i −Akil|j)

+ AkisPn
s
jl −AjksPn

s
il −AijsPn

s
kl. (21)

Therefore, we have

Pnjkl = {κ1Ȧjkl + · · ·+ κm

m

Ajkl} − Ȧjkl. (22)

Using these relations, the theorem will follow. ¤
Theorem 5.3. Let (M, F ) be a Finsler manifold. Then for Shen-type con-

nections, the hv-curvature vanishes if and only if F is Riemannian.

Proof. The proof of this theorem is analogous to that of Theorem 5.1 and
is not presented here. ¤

Theorem 5.4. Let (M, F ) be a Finsler manifold. Then the hv-curvature of

general-type (respectively Berwald-type, Cartan-type or Shen-type) connections

vanishes if and only if F is Berwaldian, Landsbergian or Riemannian.
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6. Some applications of general-type connections

Much of the practical importance of this kind of connections results from
the fact that it is adaptable, in the sense that it is useful for getting a geometric
interpretation for a given system of differential equations formed by the Cartan
tensor and its derivatives. Suppose that we are given a differential equation of
this kind and we want to find a geometric meaning for its solutions. It would
suffice to consider a Finsler connection – by fixing the compatible tensors S and
T – for which the reduced hv-curvature coincides with the differential equation
in question. We then apply one of the Theorems 5.1, 5.2 or 5.3 as applicable.
6.1. Application of Shen-type connections. Here we define Shen-type con-
nection D as Sijk = (1 − k)Aijk + kȦijk − Äijk and Tijk = 0 for which the
reduced hv-curvature Pjkl := `i Pijkl is equal to the given differential equation
Pjkl = Äjkl + kAjkl.

Theorem 6.1. Let (M,F) be a Finsler manifold with constant flag curvature

λ such that Pjkl = 0. Then F is Riemannian.

Proof. Let us consider the Shen-type connection D with Sijk=(1−k)Aijk+
kȦijk − Äijk, k 6= λ and T = 0. Replacing S and T in (4) and by an argument
similar to the one used in the proof of Theorem 1, we get

Pijkl + Pjikl = −2{Ȧijk.l + Äijk.l} − 2k{Aijk.l −Aijl|k} − 2AijmPn
m

kl. (23)

From (23) we have

Pijkl = −{Ȧijk.l + Äijk.l} − kAijk.l + k{−Aijl|k + Ajkl|i −Akil|j}
− 2AijmPn

m
kl + 2AkimPn

m
jl − 2AjkmPn

m
il . (24)

Therefore Pjkl = Äjkl + kAjkl. The equation Pjkl = 0 holds, from which we have

Ä + kA = 0. (25)

Since (M, F ) is a Finsler manifold with constant flag curvature λ,

Ä + λA = 0. (26)

From (25) and (26) one has (λ− k)A = 0, which means that F is a Riemannian
metric. ¤

Using the above special Shen-type connection again together with a hypoth-
esis on the topology of M , we have the following
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Theorem 6.2. Let (M,F) be a complete Finsler manifold with bounded

Cartan tensor. Then (M,F ) is a Riemannian manifold if and only if Pjkl = 0.

Proof. Let us consider the above Shen-type connection on the complete
Finsler manifold (M, F ). Then from the last theorem we have that the hv-
curvature of this connection reduces to Pjkl = Äjkl + kAjkl. Fix any X, Y, Z ∈
π∗TM at v ∈ IxM = {w ∈ TxM, F (w) = 1}. Let c : R→ M be the unit speed ge-
odesic in (M,F ) with dc

dt (0) = v and ĉ := dc
dt be the canonical lift of c to TM0. Let

X(t), Y (t) and Z(t) denote the parallel sections along ĉ with X(0) = X, Y (0) = Y

and Z(0) = Z. Put A(t) = A(X(t), Y (t), Z(t)), Ȧ(t) = Ȧ(X(t), Y (t), Z(t)) and
Ä(t) = Ä(X(t), Y (t), Z(t)). Now along geodesics we have dȦ

dt = Ä and from
Äjkl + kAjkl = 0 we get

A(t) =
(
c1 sinh

√
kt + c2 cosh

√
kt

)
A(0). (27)

For v ∈ TM0, let us define ‖A‖v := sup A(X, Y, Z) where the supremum is
taken over all unit vectors of π∗vTM . Let us put ‖A‖ = supv∈IM ‖A‖v where
IM =

⋃
x∈M IxM . Since M is complete and ‖A‖ < ∞, by letting t → +∞ and

t → −∞, we have c1 = 0 and c2 = 0. Therefore A = 0, and F is Riemannian. ¤

6.2. Application of Berwald-type connections. Here we consider a special
Berwald-type connection for which the hv-curvature is equal to the given differ-
ential equation.

Theorem 6.3. Let (M,F ) be a complete Finsler manifold with bounded

Landsberg tensor. Then F is a Landsberg metric if and only if Pjkl = 0.

Proof. If we put κ1 = κ3 = · · · = κm = 0 and κ2 6= 0 in (22), then
we find a special Berwald-type connection for which the hv-curvature is equal to
Pjkl = κ2Äjkl−Ȧjkl. Let F be a Landsberg metric, then from the above equation
we get Pjkl = 0. Conversely, if Pjkl = 0 we will have

κ2Äjkl − Ȧjkl = 0. (28)

By an argument like the one presented in the proof of the last theorem, we have
along the geodesics

Ȧ(t) = ek2tȦ(0). (29)

For v ∈ TM0, let us define ‖Ȧ‖v := sup Ȧ(X, Y, Z) and ‖Ȧ‖ = supv∈IM ‖Ȧ‖v.
Using completeness of M , ‖Ȧ‖ < ∞ and letting t → +∞ we have Ȧ(0) =
Ȧ(X, Y, Z) = 0. From (29) we get Ȧ = 0, that is, F is a Landsberg metric. ¤
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Corollary 6.1. Every compact Finsler manifold is Landsbergian if and only

if Pjkl vanishes.

Next we consider another special Berwald-type connection and give a proof
of the following well-known result due to Akbar-Zadeh [1].

Corollary 6.2. Let (M, F ) be a complete Finsler manifold with negative

constant flag curvature λ and bounded Cartan tensor. Then F is Riemannian.

Proof. Let us put κ2 = κ4 = · · · = κm = 0, κ1 = 2 and κ3 = 1
λ 6= 0 in (21).

We obtain a connection for which the hv-curvature becomes

Pijkl = −
{

2Ȧijk.l +
1
λ

...
Aijk.l

}
− (Aijl|k + Ajkl|i −Akil|j)

+ AkisPn
s
jl −AjksPn

s
il −AijsPn

s
kl. (30)

From this Pnjkl = 1
λ

...
Ajkl + Ȧjkl. As M has constant flag curvature we have

Ä + λA = 0. So by the same argument as in the above theorem we find

A(t) =
(
c1 + c2e

√−λt + c3e
−√−λt

)
A(0). (31)

Using the boundary assumption on the Cartan tensor and letting t → ∞ and
t → −∞, we get c2 = c3 = 0. Therefore A = c1 and Ȧ = 0. It is easy to see that
A = 0. ¤

7. Relation between some connections

There is a well-known result which can be used as a definition for Landsberg
spaces, see for example [3].

Theorem E. Let (M,F ) be a Finsler manifold. Then M is a Landsberg

manifold if and only if the Berwald connection coincides with the Chern connec-

tion.

In this context we prove the following

Theorem 7.1. Let (M,F ) be a complete Finsler manifold with bounded

Cartan tensor. Then M is a Riemannian manifold if and only if the Berwald

connection coincides with the Shen connection.
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Proof. Simple calculation shows that bΓi
jk = sΓi

jk + Ai
jk + Ȧi

jk, where bΓi
jk

and sΓi
jk are the Christoffel coefficients of the Berwald and Shen connections

respectively. If bΓi
jk = sΓi

jk, then Ai
jk + Ȧi

jk = 0. By the same argument as
in the above theorems, we find A + Ȧ = 0 whose solution is A(t) = e−tA(0).
Completeness of M and the bounded Cartan tensor hypothesis imply that A=0.

¤

Lemma 7.1. The Christoffel symbols for Berwald-type, Cartan-type and

Shen-type connections denoted by BΓ, CΓ and SΓ respectively, are given by:

BΓi
jk =

gis

2

{
δgsj

δxk
− δgjk

δxs
+

δgks

δxj

}
+ Ai

jk +
(
κ1Ȧ

i
jk + · · ·+ κm

m

Ai
jk

)
,

CΓi
jk =

gis

2

{
δgsj

δxk
− δgjk

δxs
+

δgks

δxj

}
+ Ci

jsN
s
k +

(
κ1Ȧ

i
jk + · · ·+ κm

m

Ai
jk

)
,

SΓi
jk =

gis

2

{
δgsj

δxk
− δgjk

δxs
+

δgks

δxj

}
+

(
κ1Ȧ

i
jk + · · ·+ κm

m

Ai
jk),

where δ
δxj := ∂

∂xj −N i
j

∂
∂yi .

Proof. We prove this lemma for Cartan-type connections only. In local
coordinates (xi, yi) for TM0, we write D ∂

∂xi
∂j = CΓk

ij∂k and D ∂
∂yi

∂j = F k
ij∂k.

Put Nk
i = CΓk

ijy
j = F{γk

ij`
j − Ak

ilγ
l
ab`

a`b} where γk
ij = 1

2gkl
{∂gjl

∂xi + ∂gil

∂xj − ∂gij

∂xl

}
.

For Cartan-type connections we consider the compatible tensors S and T defined

by S = A+ S̃ and T = A, where S̃ = κ1Ȧ+ · · ·+κm

m

A. From (3) and (4) we have

CΓk
ij = CΓk

ji + Ns
i Ck

sj −Ns
j Ck

si, (32)

F k
ij = Ck

ij + ylF s
jlC

k
si, (33)

∂

∂xk
(gij) = gli

CΓl
kj − glj

CΓl
ki + 2S̃ijk, (34)

∂

∂yk
(gij) = gjlF

l
ik − gliF

l
kj . (35)

Permuting i, j and k in (34) and using (32), one obtains

CΓk
ij = γk

ij + Ns
j Ck

is − gkmNs
mCijs + S̃k

ij . (36)

Since gis

2

{ δgsj

δxk − δgjk

δxs + δgks

δxj

}
= γi

jk − gimNs
mCjks, we get the desired Christoffel

symbols. For other connections the same method can be used. ¤



266 B. Bidabad and A. Tayebi : A classification of some Finsler connections. . .

Corollary 7.1. Let (M, F ) be a Finsler manifold. The Berwald-type con-

nection coincides with the Shen-type connection if and only if F is Riemannian.
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