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Oscillation and nonoscillation of perturbed half-linear Euler

differential equations

By ONDŘEJ DOŠLÝ (Brno) and JANA ŘEZNÍČKOVÁ (Zĺın)

Abstract. Using general results for (non)oscillation of the second order half-linear

differential equation�
r(t)Φ(x′)

�
′

+ c(t)Φ(x) = 0, Φ(x) := |x|p−2
x, p > 1, (∗)

we establish new oscillation and nonoscillation criteria for the perturbed half-linear Euler

differential equation

(Φ(x′))′ +
h
γp

tp
+ c(t)

i
Φ(x) = 0, γp :=

�
p − 1

p

�
p

.

1. Introduction and preliminaries

The aim of this paper is to investigate oscillatory properties of solutions of

the half-linear second order differential equation

(r(t)Φ(x′))
′

+ c(t)Φ(x) = 0, Φ(x) := |x|p−2x, p > 1, (1)
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where r, c are continuous functions, r(t) > 0, and its special case, the perturbed

half-linear Euler differential equation

(Φ(x′))′ +
[γp

tp
+ c(t)

]

Φ(x) = 0, γp :=

(

p − 1

p

)p

. (2)

Recently, several papers (see [5], [6], [7], [4], [12], [13]) appeared, where equation

(1) is viewed as a perturbation of the nonoscillatory equation of the same form

(r(t)Φ(x′))
′

+ c̃(t)Φ(x) = 0 (3)

and (non)oscillation criteria are formulated in terms of the asymptotic behavior

of the integrals

∫ t

[c(s) − c̃(s)]hp(s) ds, or

∫

∞

t

[c(s) − c̃(s)]hp(s) ds,

where h is a solution of (3).

Here we follow a slightly more general idea which is motivated by the fact

that the exact solution of (3) is not known in many cases and only its asymptotic

estimate is available. A typical example is the Euler equation with the critical

coefficient

(Φ(x′))′ +
γp

tp
Φ(x) = 0, (4)

whose one solution is x(t) = t
p−1

p and any linearly independent solution is known

only asymptotically x(t) ∼ t
p−1

p log
2

p t as t → ∞. We are particularly motivated

by the oscillation criterion given in [13], where it was shown that equation (2) is

oscillatory provided

lim inf
t→∞

1

log t

∫ t

c(s)sp−1 log2 s ds > 2

(

p − 1

p

)p−1

, (5)

and it was conjectured that the constant 2
(

p−1
p

)p−1
in (5) can be replaced by the

better constant 1
2

(

p−1
p

)p−1
. At the same time it was conjectured (based on [5,

Theorem 3]) that (2) is nonoscillatory provided

lim sup
t→∞

1

log t

∫ t

c(s)sp−1 log2 s ds <
1

2

(

p − 1

p

)p−1

(6)

and

lim inf
t→∞

1

log t

∫ t

c(s)sp−1 log2 s ds > −
3

2

(

p − 1

p

)p−1

. (7)
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The aim of this paper is to prove both these conjectures. We use first an

extension of [5, Theorem 2] to the situation when h is not a solution of (3)

and then we apply the recently established oscillation criterion for the perturbed

Euler–Weber half-linear differential equation

(Φ(x′))′ +

[

γp

tp
+

µp

tp log2 t
+ c(t)

]

Φ(x) = 0, µp :=
1

2

(

p − 1

p

)p−1

(8)

coupled with the “oscillation constant improvement procedure” introduced for

higher order linear differential equation in [2].

It is well known that the oscillation theory of half-linear equation (1) is very

similar to that of the linear Sturm–Liouville differential equation (which is the

special case p = 2 in (1))

(r(t)x′)′ + c(t)x = 0

even if the additivity of the solution space of (1) is lost and only homogeneity

remains. In particular, similarly to the linear case, equation (1) can be classified

as oscillatory or nonoscillatory according to whether every nontrivial solution

has/does not have infinitely many zeros on every interval of the form [T,∞). For

general background of the half-linear oscillation theory we refer to [1, Chap. 3],

[3] or to [8].

The basic tools of the half-linear oscillation theory are the so-called varia-

tional principle and Riccati technique. The first one consists in the fact that (1)

is oscillatory if and only if for every T ∈ R there exists a nontrivial function

y ∈ W 1,p
0 (T,∞) such that

F(y; T,∞) =

∫

∞

T

[r(t)|y′|p − c(t)|y|p] dt ≤ 0.

The Riccati technique is based on the fact that if x(t) 6= 0 in an interval I

is a solution of (1) then w = rΦ(x′/x) solves in I the Riccati type first order

differential equation

w′ + c(t) + (p − 1)r1−q(t)|w|q = 0, (9)

where q is the conjugate number of p, i.e. 1
p

+ 1
q

= 1. Actually, according to

the Sturm comparison theory for half-linear equations, solvability of (9) can be

replaced by the associated inequality as shows the following statement which can

be found e.g. in [1, Theorem 3.7.1] or [8, Theorem 2.2.1].
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Lemma 1. Equation (1) is nonoscillatory if and only if there exists a differ-

entiable function w such that

R[w](t) := w′(t) + c(t) + (p − 1)r1−q(t)|w(t)|q ≤ 0 (10)

for large t.

We finish this section with an oscillation criterion for (8) which is proved in [4]

using the variational principle and which we will need in the proof of Theorem 1

of the next section.

Proposition 1. If
∫

∞

c(t)tp−1 log t dt = ∞, (11)

then equation (8) is oscillatory.

2. Oscillation and nonoscillation criteria

We start with a technical result concerning the function

h(t) = t
p−1

p log
2

p t which is asymptotically equivalent (in a certain sense) to the

so-called nonprincipal solution of Euler equation (4). For more details concerning

principal and nonprincipal solutions of (4) and of related equations we refer to [10].

Lemma 2. Let h(t) = t
p−1

p log
2

p t, denote R̃[w] := w′ + γp/tp+

(p− 1)|w|q the Riccati operator associated with (4), and let wh = Φ(h′/h). Then

hp(t)R̃[wh](t) =
K

t log t
(1 + o(1)) , as t → ∞, (12)

where K is a real constant.

Proof. By a direct computation we have

h′(t) =

(

p − 1

p

)

t−
1

p log
2

p t

(

1 +
2

(p − 1) log t

)

and hence (using the formula (1 + x)p = 1 + px + p(p−1)
2 x2 + p(p−1)(p−2)

6 x3 + . . . )

|wh|
q

=

(

p − 1

p

)p
1

tp

(

1 +
2

(p − 1) log t

)p

=

(

p− 1

p

)p
1

tp

(

1 +
2p

(p − 1) log t
+

2p

(p − 1) log2 t
+

4p(p−2)

3(p − 1)2 log3 t
+ . . .

)

,
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(p − 1)|wh|
qhp = (p − 1)

(

p − 1

p

)p
1

t
log2 t

×

(

1 +
2p

(p − 1) log t
+

2p

(p − 1) log2 t
+

4p(p − 2)

3(p − 1)2 log3 t
+ . . .

)

,

and

hpw′

h = −p

(

p − 1

p

)p
1

t
log2 t

(

1 +
2

(p − 1) log t

)p−2

×

(

1 +
2

(p − 1) log t
+

2

(p − 1) log2 t

)

= −p

(

p − 1

p

)p
1

t
log2 t

(

1 +
2 (p − 2)

(p − 1) log t
+

2 (p − 2) (p − 3)

(p − 1)
2
log2 t

+
4 (p − 2) (p − 3) (p − 4)

3 (p − 1)3 log3 t
+ . . .

)

×

(

1 +
2

(p − 1) log t
+

2

(p − 1) log2 t

)

= −p

(

p − 1

p

)p
1

t
log2 t

(

1 +
2

log t
+

2

log2 t
+

4p (p − 2)

3 (p − 1)
2
log3 t

+ . . .

)

.

Summarizing the previous computations,

hpR̃[wh] = K
1

t log t
(1 + o(1)), as t → ∞, K := −

(

p − 1

p

)p
4p (p − 2)

3 (p − 1)
2 ,

�

Using the previous lemma and Proposition 1 coupled with the “oscillation

constant improvement procedure” introduced in [2], we obtain the following os-

cillation criterion.

Theorem 1. If

lim inf
t→∞

1

log t

∫ t

T

c(s)sp−1 log2 s ds >
1

2

(

p − 1

p

)p−1

(13)

for some (and hence every) T ∈ R sufficiently large, then equation (2) is oscilla-

tory.

Proof. We rewrite (2) into the form

(Φ(x′))′ +

[

γp

tp
+

µp

tp log2 t
+

(

c(t) −
µp

tp log2 t

)]

Φ(x) = 0
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and we regard this equation as a perturbation of the so-called half-linear Euler–

Weber differential equation

(Φ(x′))′ +

[

γp

tp
+

µp

tp log2 t

]

Φ(x) = 0. (14)

According to Proposition 1, it is sufficient to show that

∫

∞

T

[

c(t) −
µp

tp log2 t

]

tp−1 log t dt = ∞. (15)

To this end, we proceed as follows. According to (13) there exists ε > 0 such that

still

lim inf
t→∞

1

log t

∫ t

T

c(s)sp−1 log2 s ds > µp + ε (16)

for t sufficiently large, say t > T̃ . From (16) we have that

1

t

∫ t

T

c(s)sp−1 log2 s ds > (µp + ε)
log t

t
(17)

for t > T̃ . At the same time, using integration by parts and (17)

∫ b

T

[

c(t) −
µp

tp log2 t

]

tp−1 log t dt =

∫ b

T

c(t)tp−1 log t dt − µp

∫ b

T

1

t log t
dt

=

[

1

log t

∫ t

T

c(s)sp−1 log2 s ds

]b

T

+

∫ b

T

1

log2 t

∫ t

T
c(s)sp−1 log2 s ds

t
dt − µp log

(

log b

log T

)

=

[

1

log t

∫ t

T

c(s)sp−1 log2 s ds

]b

T

+

∫ T̃

T

1

log2 t

∫ t

T
c(s)sp−1 log2 s ds

t
dt

+

∫ b

T̃

1

log2 t

∫ t

T
c(s)sp−1 log2 s ds

t
dt − µp log

(

log b

log T

)

≥
1

log b

∫ b

T

c(s)sp−1 log2 s ds +K + (µp + ε)

∫ b

T

1

t log t
dt−µp log

(

log b

log T

)

> (µp + ε) + K + ε log

(

log b

log T

)

→ ∞

as b → ∞, where K =
∫ T̃

T
t−1 log−2 t

( ∫ t

T
c(s)sp−1 log2 s ds

)

dt. Consequently, (2)

is oscillatory by Proposition 1. �
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Next we prove a general nonoscillation criterion for (1) where this equation is

viewed as a perturbation of (3). In contrast to [5, Theorem 3], we do not suppose

that h is a solution of (3).

Theorem 2. Let h ∈ C1 be a positive function such that h′(t) > 0 for

large t, say t > T ,
∫

∞

r−1(t)h−2(t)(h′(t))2−p dt < ∞, and denote

G(t) :=

∫

∞

t

ds

r(s)h2(s)(h′(s))p−2
. (18)

Suppose that

lim
t→∞

G(t)r(t)h(t)Φ(h′(t)) = ∞ (19)

and

lim
t→∞

G2(t)r(t)h3(t)(h′(t))p−2 [(r(t)Φ(h′(t)))′ + c̃(t)Φ(h(t))] = 0. (20)

If

lim sup
t→∞

G(t)

∫ t

T

[c(s) − c̃(s)]hp(s) ds <
1

2q
, (21)

and

lim inf
t→∞

G(t)

∫ t

T

[c(s) − c̃(s)]hp(s) ds > −
3

2q
(22)

for some T ∈ R sufficiently large, then (1) is nonoscillatory.

Proof. Denote

v(t) = r(t)h(t)Φ(h′(t)) −
1

2qG(t)
, C(t) =

∫ t

T

[c(s) − c̃(s)]hp(s) ds

and let w(t) = h−p(t)[v(t) − C(t)]. To prove that (1) is nonoscillatory, according

to Lemma 1 it suffices to show that w satisfies (10) and this happens if v satisfies

the inequality (suppressing the argument t)

v′ − rh′p + c̃hp + prh′pQ

(

v − C

rhΦ(h′)

)

≤ 0, Q(s) :=
|s|q

q
− s +

1

p
. (23)

Indeed, suppose that (23) holds, then

w′ = h−p(v′ − chp + c̃hp) − p(v − C)h′h−p−1

≤ h−p

[

rh′p− chp− prh′p

(

1

q

∣

∣

∣

∣

v−C

rhΦ(h′)

∣

∣

∣

∣

q

−
v −C

rhΦ(h′)
+

1

p

)

− p
h′(v−C)

h

]

= −c − (p − 1)r1−q|w|q .
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To verify (23) let us first estimate (again suppressing the argument t)

v − C

rhΦ(h′)
=

rhΦ(h′) − 1
2qG

− C

rhΦ(h′)

= 1 −
1 + 2qGC

2qGrhΦ(h′)
→ 1 as t → ∞

since the numerator of the last fraction is bounded by (21) and (22), while the

denominator tends to ∞ by (19). Now, let ε > 0 be such limsup in (21) is less

than 1
2q

− 2ε and liminf in (22) is greater than − 3
2q

+ 2ε. This means that the

expression in these limits satisfies

−
3

2q
+ ε < G(t)C(t) <

1

2q
− ε ⇐⇒ |1 + 2qG(t)C(t)| < 2 − ε

for large t, i.e.,

(1 + 2qG(t)C(t))2 < (2 − ε)2 (24)

for large t. Now, since (v − C)/(rhΦ(h′)) → 1 as t → ∞ and Q(1) = 0 = Q′(1),

by the second degree Taylor formula, to ε(q − 1)/4 > 0 there exists T̂ , such that

Q

(

v(t) − C(t)

r(t)h(t)Φ(h′))

)

≤

(

q − 1

2
+

(q − 1)ε

4

)(

v(t) − C(t)

r(t)h(t)Φ(h′)
− 1

)2

=
q − 1

2

(

1 +
ε

2

) (1 + 2qG(t)C(t))2

4q2G2(t)r2(t)h2(t)(h′(t))2p−2

<
q − 1

2

(

1 +
ε

2

) (2 − ε)2

4q2G2(t)r2(t)h2(t)(h′(t))2p−2

for t > T̂ . Using these estimate we have

v′ − rh′p + c̃hp + prh′pQ

(

v − C

rhΦ(h′)

)

= (rΦ(h′))′h + rh′p +
G′

2qG2
− rh′p + c̃hp + prh′pQ

(

v − C

rhΦ(h′)

)

≤ (rΦ(h′))′h + c̃hp −
1

2qG2rh2(h′)p−2
+

q

2

(

1 +
ε

2

)

rh′p

(

v − C

rhΦ(h′)
− 1

)2

≤ h[(rΦ(h′))′ + c̃Φ(h)] +
1

2qG2rh2(h′)p−2

[

−1 +
(2 − ε)2

4

(

1 +
ε

2

)

]

<
1

2qG2rh2(h′)p−2

{

2qG2rh3(h′)p−2[(rΦ(h′))′ + c̃Φ(h)] −
ε

2

}

< 0

for large t since the first term in braces tends to zero according to (20) and

−1 + (2−ε)2

4

(

1 + ε
2

)

< − ε
2 , if ε > 0 is sufficiently small. �
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The previous theorem and Lemma 2 applied to (2) prove the conjecture

mentioned at the beginning of the paper.

Corollary 1. Suppose that (6) and (7) hold, then (2) is nonoscillatory.

Proof. We will use the previous theorem where equation (4) plays the role

of (3). We take h(t) = t
p−1

p log
2

p t. Then

G(t) =

∫

∞

t

ds

h2(s)(h′(s))p−2
∼

(

p

p − 1

)p−2∫ ∞

t

ds

s log2 s
=

(

p

p − 1

)p−2
1

log t
,

G(t)h(t)Φ(h′(t)) ∼
p − 1

p
log t → ∞ as t → ∞.

and using the the fact that hp(t)R̃[wh](t) = h(t)[(Φ(h′(t)))′ +
γp

tp Φ(h(t))], from

Lemma 2 we have

G2(t)h3(t)(h′(t))p−2
[

(Φ(h′(t)))′ +
γp

tp
Φ(h(t))

]

∼
const

t
→ 0, as t → ∞.

Consequently, all assumptions of Theorem 2 are satisfied and we have the required

statement. �
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[3] O. Došlý, Half-Linear Differential Equations, Handbook of Differential Equations: Ordi-
nary Differential Equations, Vol. I, (A. Cañada, P. Drábek and A. Fonda, eds.), Elsevier,
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[12] J. Řezńıčková, Half-linear Hartman–Wintner theorems, Stud. Univ. Žilina Math. Ser. 15
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