Publ. Math. Debrecen **71/3-4** (2007), 479–488

Oscillation and nonoscillation of perturbed half-linear Euler differential equations

By ONDŘEJ DOŠLÝ (Brno) and JANA ŘEZNÍČKOVÁ (Zlín)

Abstract. Using general results for (non)oscillation of the second order half-linear differential equation

$$(r(t)\Phi(x'))' + c(t)\Phi(x) = 0, \quad \Phi(x) := |x|^{p-2}x, \ p > 1, \tag{(*)}$$

we establish new oscillation and nonoscillation criteria for the perturbed half-linear Euler differential equation

$$(\Phi(x'))' + \left[\frac{\gamma_p}{t^p} + c(t)\right] \Phi(x) = 0, \quad \gamma_p := \left(\frac{p-1}{p}\right)^p.$$

1. Introduction and preliminaries

The aim of this paper is to investigate oscillatory properties of solutions of the half-linear second order differential equation

$$(r(t)\Phi(x'))' + c(t)\Phi(x) = 0, \quad \Phi(x) := |x|^{p-2}x, \ p > 1, \tag{1}$$

Mathematics Subject Classification: 34C10.

Key words and phrases: Euler half-linear equation, perturbation principle,

⁽non)principal solution, variational principle, Riccati technique.

Research supported by the grant A1163401/04 of the Grant Agency of the Czech Academy of Sciences and by the Research Project MSM0021622409 of Ministry of Education of the Czech Republic.

where r, c are continuous functions, r(t) > 0, and its special case, the perturbed half-linear Euler differential equation

$$(\Phi(x'))' + \left[\frac{\gamma_p}{t^p} + c(t)\right] \Phi(x) = 0, \quad \gamma_p := \left(\frac{p-1}{p}\right)^p.$$
(2)

Recently, several papers (see [5], [6], [7], [4], [12], [13]) appeared, where equation (1) is viewed as a perturbation of the nonoscillatory equation of the same form

$$(r(t)\Phi(x'))' + \tilde{c}(t)\Phi(x) = 0$$
(3)

and (non)oscillation criteria are formulated in terms of the asymptotic behavior of the integrals

$$\int_{t}^{t} [c(s) - \tilde{c}(s)]h^{p}(s) ds, \quad \text{or} \quad \int_{t}^{\infty} [c(s) - \tilde{c}(s)]h^{p}(s) ds,$$

where h is a solution of (3).

Here we follow a slightly more general idea which is motivated by the fact that the exact solution of (3) is not known in many cases and only its asymptotic estimate is available. A typical example is the Euler equation with the critical coefficient

$$(\Phi(x'))' + \frac{\gamma_p}{t^p} \Phi(x) = 0,$$
(4)

whose one solution is $x(t) = t^{\frac{p-1}{p}}$ and any linearly independent solution is known only asymptotically $x(t) \sim t^{\frac{p-1}{p}} \log^{\frac{2}{p}} t$ as $t \to \infty$. We are particularly motivated by the oscillation criterion given in [13], where it was shown that equation (2) is oscillatory provided

$$\liminf_{t \to \infty} \frac{1}{\log t} \int^t c(s) s^{p-1} \log^2 s \, ds > 2 \left(\frac{p-1}{p}\right)^{p-1},\tag{5}$$

and it was conjectured that the constant $2\left(\frac{p-1}{p}\right)^{p-1}$ in (5) can be replaced by the better constant $\frac{1}{2}\left(\frac{p-1}{p}\right)^{p-1}$. At the same time it was conjectured (based on [5, Theorem 3]) that (2) is nonoscillatory provided

$$\limsup_{t \to \infty} \frac{1}{\log t} \int^t c(s) s^{p-1} \log^2 s \, ds < \frac{1}{2} \left(\frac{p-1}{p}\right)^{p-1} \tag{6}$$

and

$$\liminf_{t \to \infty} \frac{1}{\log t} \int^t c(s) s^{p-1} \log^2 s \, ds > -\frac{3}{2} \left(\frac{p-1}{p}\right)^{p-1}.$$
 (7)

480

The aim of this paper is to prove both these conjectures. We use first an extension of [5, Theorem 2] to the situation when h is not a solution of (3) and then we apply the recently established oscillation criterion for the perturbed Euler–Weber half-linear differential equation

$$(\Phi(x'))' + \left[\frac{\gamma_p}{t^p} + \frac{\mu_p}{t^p \log^2 t} + c(t)\right] \Phi(x) = 0, \quad \mu_p := \frac{1}{2} \left(\frac{p-1}{p}\right)^{p-1} \tag{8}$$

coupled with the "oscillation constant improvement procedure" introduced for higher order linear differential equation in [2].

It is well known that the oscillation theory of half-linear equation (1) is very similar to that of the linear Sturm-Liouville differential equation (which is the special case p = 2 in (1))

$$(r(t)x')' + c(t)x = 0$$

even if the additivity of the solution space of (1) is lost and only homogeneity remains. In particular, similarly to the linear case, equation (1) can be classified as *oscillatory* or *nonoscillatory* according to whether every nontrivial solution has/does not have infinitely many zeros on every interval of the form $[T, \infty)$. For general background of the half-linear oscillation theory we refer to [1, Chap. 3], [3] or to [8].

The basic tools of the half-linear oscillation theory are the so-called *varia*tional principle and Riccati technique. The first one consists in the fact that (1) is oscillatory if and only if for every $T \in \mathbb{R}$ there exists a nontrivial function $y \in W_0^{1,p}(T, \infty)$ such that

$$\mathcal{F}(y;T,\infty) = \int_T^\infty \left[r(t) |y'|^p - c(t) |y|^p \right] dt \le 0.$$

The Riccati technique is based on the fact that if $x(t) \neq 0$ in an interval I is a solution of (1) then $w = r\Phi(x'/x)$ solves in I the Riccati type first order differential equation

$$w' + c(t) + (p-1)r^{1-q}(t)|w|^{q} = 0,$$
(9)

where q is the conjugate number of p, i.e. $\frac{1}{p} + \frac{1}{q} = 1$. Actually, according to the Sturm comparison theory for half-linear equations, solvability of (9) can be replaced by the associated inequality as shows the following statement which can be found e.g. in [1, Theorem 3.7.1] or [8, Theorem 2.2.1].

Lemma 1. Equation (1) is nonoscillatory if and only if there exists a differentiable function w such that

$$R[w](t) := w'(t) + c(t) + (p-1)r^{1-q}(t)|w(t)|^q \le 0$$
(10)

for large t.

We finish this section with an oscillation criterion for (8) which is proved in [4] using the variational principle and which we will need in the proof of Theorem 1 of the next section.

Proposition 1. If

$$\int^{\infty} c(t)t^{p-1}\log t\,dt = \infty,\tag{11}$$

then equation (8) is oscillatory.

2. Oscillation and nonoscillation criteria

We start with a technical result concerning the function $h(t) = t^{\frac{p-1}{p}} \log^{\frac{2}{p}} t$ which is asymptotically equivalent (in a certain sense) to the so-called nonprincipal solution of Euler equation (4). For more details concerning principal and nonprincipal solutions of (4) and of related equations we refer to [10].

Lemma 2. Let $h(t) = t^{\frac{p-1}{p}} \log^{\frac{2}{p}} t$, denote $\tilde{R}[w] := w' + \gamma_p/t^p + (p-1)|w|^q$ the Riccati operator associated with (4), and let $w_h = \Phi(h'/h)$. Then

$$h^{p}(t)\tilde{R}[w_{h}](t) = \frac{K}{t\log t} \left(1 + o(1)\right), \quad \text{as} \ t \to \infty,$$
(12)

where K is a real constant.

PROOF. By a direct computation we have

$$h'(t) = \left(\frac{p-1}{p}\right) t^{-\frac{1}{p}} \log^{\frac{2}{p}} t \left(1 + \frac{2}{(p-1)\log t}\right)$$

and hence (using the formula $(1+x)^p = 1 + px + \frac{p(p-1)}{2}x^2 + \frac{p(p-1)(p-2)}{6}x^3 + \dots$)

$$|w_h|^q = \left(\frac{p-1}{p}\right)^p \frac{1}{t^p} \left(1 + \frac{2}{(p-1)\log t}\right)^p$$
$$= \left(\frac{p-1}{p}\right)^p \frac{1}{t^p} \left(1 + \frac{2p}{(p-1)\log t} + \frac{2p}{(p-1)\log^2 t} + \frac{4p(p-2)}{3(p-1)^2\log^3 t} + \dots\right),$$

482

Perturbed Euler half-linear equations

$$(p-1)|w_h|^q h^p = (p-1)\left(\frac{p-1}{p}\right)^p \frac{1}{t} \log^2 t$$
$$\times \left(1 + \frac{2p}{(p-1)\log t} + \frac{2p}{(p-1)\log^2 t} + \frac{4p(p-2)}{3(p-1)^2\log^3 t} + \dots\right),$$

and

$$\begin{split} h^{p}w'_{h} &= -p\left(\frac{p-1}{p}\right)^{p}\frac{1}{t}\log^{2}t\left(1+\frac{2}{(p-1)\log t}\right)^{p-2} \\ &\times \left(1+\frac{2}{(p-1)\log t}+\frac{2}{(p-1)\log^{2}t}\right) \\ &= -p\left(\frac{p-1}{p}\right)^{p}\frac{1}{t}\log^{2}t\left(1+\frac{2(p-2)}{(p-1)\log t}+\frac{2(p-2)(p-3)}{(p-1)^{2}\log^{2}t}\right) \\ &+\frac{4(p-2)(p-3)(p-4)}{3(p-1)^{3}\log^{3}t}+\dots\right) \times \left(1+\frac{2}{(p-1)\log t}+\frac{2}{(p-1)\log^{2}t}\right) \\ &= -p\left(\frac{p-1}{p}\right)^{p}\frac{1}{t}\log^{2}t\left(1+\frac{2}{\log t}+\frac{2}{\log^{2}t}+\frac{4p(p-2)}{3(p-1)^{2}\log^{3}t}+\dots\right). \end{split}$$

Summarizing the previous computations,

$$h^{p}\tilde{R}[w_{h}] = K \frac{1}{t\log t}(1+o(1)), \quad \text{as } t \to \infty, \quad K := -\left(\frac{p-1}{p}\right)^{p} \frac{4p\left(p-2\right)}{3\left(p-1\right)^{2}},$$

Using the previous lemma and Proposition 1 coupled with the "oscillation constant improvement procedure" introduced in [2], we obtain the following oscillation criterion.

Theorem 1. If

$$\liminf_{t \to \infty} \frac{1}{\log t} \int_{T}^{t} c(s) s^{p-1} \log^2 s \, ds > \frac{1}{2} \left(\frac{p-1}{p}\right)^{p-1} \tag{13}$$

for some (and hence every) $T \in \mathbb{R}$ sufficiently large, then equation (2) is oscillatory.

PROOF. We rewrite (2) into the form

$$(\Phi(x'))' + \left[\frac{\gamma_p}{t^p} + \frac{\mu_p}{t^p \log^2 t} + \left(c(t) - \frac{\mu_p}{t^p \log^2 t}\right)\right] \Phi(x) = 0$$

and we regard this equation as a perturbation of the so-called half-linear Euler–Weber differential equation

$$(\Phi(x'))' + \left[\frac{\gamma_p}{t^p} + \frac{\mu_p}{t^p \log^2 t}\right] \Phi(x) = 0.$$
 (14)

According to Proposition 1, it is sufficient to show that

$$\int_{T}^{\infty} \left[c(t) - \frac{\mu_p}{t^p \log^2 t} \right] t^{p-1} \log t \, dt = \infty.$$
(15)

To this end, we proceed as follows. According to (13) there exists $\varepsilon > 0$ such that still

$$\liminf_{t \to \infty} \frac{1}{\log t} \int_T^t c(s) s^{p-1} \log^2 s \, ds > \mu_p + \varepsilon \tag{16}$$

for t sufficiently large, say $t > \tilde{T}$. From (16) we have that

$$\frac{1}{t} \int_{T}^{t} c(s)s^{p-1}\log^2 s \, ds > (\mu_p + \varepsilon)\frac{\log t}{t} \tag{17}$$

for $t > \tilde{T}$. At the same time, using integration by parts and (17)

$$\begin{split} &\int_{T}^{b} \left[c(t) - \frac{\mu_{p}}{t^{p} \log^{2} t} \right] t^{p-1} \log t \, dt = \int_{T}^{b} c(t) t^{p-1} \log t \, dt - \mu_{p} \int_{T}^{b} \frac{1}{t \log t} \, dt \\ &= \left[\frac{1}{\log t} \int_{T}^{t} c(s) s^{p-1} \log^{2} s \, ds \right]_{T}^{b} \\ &+ \int_{T}^{b} \frac{1}{\log^{2} t} \frac{\int_{T}^{t} c(s) s^{p-1} \log^{2} s \, ds}{t} \, dt - \mu_{p} \log \left(\frac{\log b}{\log T} \right) \\ &= \left[\frac{1}{\log t} \int_{T}^{t} c(s) s^{p-1} \log^{2} s \, ds \right]_{T}^{b} + \int_{T}^{\tilde{T}} \frac{1}{\log^{2} t} \frac{\int_{T}^{t} c(s) s^{p-1} \log^{2} s \, ds}{t} \, dt \\ &+ \int_{\tilde{T}}^{b} \frac{1}{\log^{2} t} \frac{\int_{T}^{t} c(s) s^{p-1} \log^{2} s \, ds}{t} \, dt - \mu_{p} \log \left(\frac{\log b}{\log T} \right) \\ &\geq \frac{1}{\log b} \int_{T}^{b} c(s) s^{p-1} \log^{2} s \, ds + K + (\mu_{p} + \varepsilon) \int_{T}^{b} \frac{1}{t \log t} \, dt - \mu_{p} \log \left(\frac{\log b}{\log T} \right) \\ &> (\mu_{p} + \varepsilon) + K + \varepsilon \log \left(\frac{\log b}{\log T} \right) \to \infty \end{split}$$

as $b \to \infty$, where $K = \int_T^{\tilde{T}} t^{-1} \log^{-2} t \left(\int_T^t c(s) s^{p-1} \log^2 s \, ds \right) dt$. Consequently, (2) is oscillatory by Proposition 1.

Next we prove a general nonoscillation criterion for (1) where this equation is viewed as a perturbation of (3). In contrast to [5, Theorem 3], we do not suppose that h is a solution of (3).

Theorem 2. Let $h \in C^1$ be a positive function such that h'(t) > 0 for large t, say t > T, $\int_{0}^{\infty} r^{-1}(t)h^{-2}(t)(h'(t))^{2-p} dt < \infty$, and denote

$$G(t) := \int_{t}^{\infty} \frac{ds}{r(s)h^{2}(s)(h'(s))^{p-2}}.$$
(18)

Suppose that

$$\lim_{t \to \infty} G(t)r(t)h(t)\Phi(h'(t)) = \infty$$
(19)

and

$$\lim_{t \to \infty} G^2(t)r(t)h^3(t)(h'(t))^{p-2} \left[(r(t)\Phi(h'(t)))' + \tilde{c}(t)\Phi(h(t)) \right] = 0.$$
 (20)

If

$$\limsup_{t \to \infty} G(t) \int_T^t [c(s) - \tilde{c}(s)] h^p(s) \, ds < \frac{1}{2q},\tag{21}$$

and

$$\liminf_{t \to \infty} G(t) \int_T^t [c(s) - \tilde{c}(s)] h^p(s) \, ds > -\frac{3}{2q} \tag{22}$$

for some $T \in \mathbb{R}$ sufficiently large, then (1) is nonoscillatory.

PROOF. Denote

$$v(t) = r(t)h(t)\Phi(h'(t)) - \frac{1}{2qG(t)}, \quad C(t) = \int_T^t [c(s) - \tilde{c}(s)]h^p(s) \, ds$$

and let $w(t) = h^{-p}(t)[v(t) - C(t)]$. To prove that (1) is nonoscillatory, according to Lemma 1 it suffices to show that w satisfies (10) and this happens if v satisfies the inequality (suppressing the argument t)

$$v' - rh'^{p} + \tilde{c}h^{p} + prh'^{p}Q\left(\frac{v - C}{rh\Phi(h')}\right) \le 0, \quad Q(s) := \frac{|s|^{q}}{q} - s + \frac{1}{p}.$$
 (23)

Indeed, suppose that (23) holds, then

$$\begin{split} w' &= h^{-p} (v' - ch^p + \tilde{c}h^p) - p(v - C)h'h^{-p-1} \\ &\leq h^{-p} \left[rh'^p - ch^p - prh'^p \left(\frac{1}{q} \left| \frac{v - C}{rh\Phi(h')} \right|^q - \frac{v - C}{rh\Phi(h')} + \frac{1}{p} \right) - p \frac{h'(v - C)}{h} \right] \\ &= -c - (p - 1)r^{1-q} |w|^q. \end{split}$$

To verify (23) let us first estimate (again suppressing the argument t)

$$\frac{v-C}{rh\Phi(h')} = \frac{rh\Phi(h') - \frac{1}{2qG} - C}{rh\Phi(h')}$$
$$= 1 - \frac{1+2qGC}{2qGrh\Phi(h')} \to 1 \quad \text{as } t \to \infty$$

since the numerator of the last fraction is bounded by (21) and (22), while the denominator tends to ∞ by (19). Now, let $\varepsilon > 0$ be such limsup in (21) is less than $\frac{1}{2q} - 2\varepsilon$ and liminf in (22) is greater than $-\frac{3}{2q} + 2\varepsilon$. This means that the expression in these limits satisfies

$$-\frac{3}{2q} + \varepsilon < G(t)C(t) < \frac{1}{2q} - \varepsilon \quad \iff |1 + 2qG(t)C(t)| < 2 - \varepsilon$$

for large t, i.e.,

$$(1 + 2qG(t)C(t))^2 < (2 - \varepsilon)^2$$
(24)

for large t. Now, since $(v - C)/(rh\Phi(h')) \to 1$ as $t \to \infty$ and Q(1) = 0 = Q'(1), by the second degree Taylor formula, to $\varepsilon(q-1)/4 > 0$ there exists \hat{T} , such that

$$\begin{aligned} Q\left(\frac{v(t) - C(t)}{r(t)h(t)\Phi(h'))}\right) &\leq \left(\frac{q-1}{2} + \frac{(q-1)\varepsilon}{4}\right) \left(\frac{v(t) - C(t)}{r(t)h(t)\Phi(h')} - 1\right)^2 \\ &= \frac{q-1}{2} \left(1 + \frac{\varepsilon}{2}\right) \frac{(1 + 2qG(t)C(t))^2}{4q^2 G^2(t)r^2(t)h^2(t)(h'(t))^{2p-2}} \\ &< \frac{q-1}{2} \left(1 + \frac{\varepsilon}{2}\right) \frac{(2-\varepsilon)^2}{4q^2 G^2(t)r^2(t)h^2(t)(h'(t))^{2p-2}} \end{aligned}$$

for $t > \hat{T}$. Using these estimate we have

$$\begin{split} v' - rh'^{p} + \tilde{c}h^{p} + prh'^{p}Q\left(\frac{v-C}{rh\Phi(h')}\right) \\ &= (r\Phi(h'))'h + rh'^{p} + \frac{G'}{2qG^{2}} - rh'^{p} + \tilde{c}h^{p} + prh'^{p}Q\left(\frac{v-C}{rh\Phi(h')}\right) \\ &\leq (r\Phi(h'))'h + \tilde{c}h^{p} - \frac{1}{2qG^{2}rh^{2}(h')^{p-2}} + \frac{q}{2}\left(1 + \frac{\varepsilon}{2}\right)rh'^{p}\left(\frac{v-C}{rh\Phi(h')} - 1\right)^{2} \\ &\leq h[(r\Phi(h'))' + \tilde{c}\Phi(h)] + \frac{1}{2qG^{2}rh^{2}(h')^{p-2}}\left[-1 + \frac{(2-\varepsilon)^{2}}{4}\left(1 + \frac{\varepsilon}{2}\right)\right] \\ &< \frac{1}{2qG^{2}rh^{2}(h')^{p-2}}\left\{2qG^{2}rh^{3}(h')^{p-2}[(r\Phi(h'))' + \tilde{c}\Phi(h)] - \frac{\varepsilon}{2}\right\} < 0 \end{split}$$

for large t since the first term in braces tends to zero according to (20) and $-1 + \frac{(2-\varepsilon)^2}{4} \left(1 + \frac{\varepsilon}{2}\right) < -\frac{\varepsilon}{2}$, if $\varepsilon > 0$ is sufficiently small.

486

The previous theorem and Lemma 2 applied to (2) prove the conjecture mentioned at the beginning of the paper.

Corollary 1. Suppose that (6) and (7) hold, then (2) is nonoscillatory.

PROOF. We will use the previous theorem where equation (4) plays the role of (3). We take $h(t) = t^{\frac{p-1}{p}} \log^{\frac{2}{p}} t$. Then

$$G(t) = \int_t^\infty \frac{ds}{h^2(s)(h'(s))^{p-2}} \sim \left(\frac{p}{p-1}\right)^{p-2} \int_t^\infty \frac{ds}{s\log^2 s} = \left(\frac{p}{p-1}\right)^{p-2} \frac{1}{\log t},$$
$$G(t)h(t)\Phi(h'(t)) \sim \frac{p-1}{p}\log t \to \infty \quad \text{as} \quad t \to \infty.$$

and using the fact that $h^p(t)\tilde{R}[w_h](t) = h(t)[(\Phi(h'(t)))' + \frac{\gamma_p}{t^p}\Phi(h(t))]$, from Lemma 2 we have

$$G^{2}(t)h^{3}(t)(h'(t))^{p-2}\left[\left(\Phi(h'(t))\right)' + \frac{\gamma_{p}}{t^{p}}\Phi(h(t))\right] \sim \frac{\operatorname{const}}{t} \to 0, \quad \text{as } t \to \infty.$$

Consequently, all assumptions of Theorem 2 are satisfied and we have the required statement. $\hfill \Box$

References

- R. P. AGARWAL, S. R. GRACE and D. O'REGAN, Oscillation Theory of Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations, *Kluwer Academic Publishers*, *Dordrecht/Boston/London*, 2002.
- [2] O. DošLÝ, Constants in the oscillation theory of higher order Sturm-Liouville differential equations, *Electron. J. Differential Equations* 2002, no. 34 (2002), 1–12.
- [3] O. Došlý, Half-Linear Differential Equations, Handbook of Differential Equations: Ordinary Differential Equations, Vol. I, (A. Cañada, P. Drábek and A. Fonda, eds.), *Elsevier*, *Amsterdam*, 2004, 161–357.
- [4] O. Došlý, Perturbed half-linear Euler-Weber differential equation, J. Math. Anal. Appl. 323 (2006), 426-440.
- [5] O. Došlý and A. LOMTATIDZE, Oscillation and nonoscillation criteria for half-linear second order differential equations, *Hiroshima Math. J.* 36 (2006), 203–219.
- [6] O. Došlý and Z. PÁTÍKOVÁ, Hille–Wintner type comparison criteria for half-linear second order differential equations, Arch. Math. (Brno) 42 (2006), 185–194.
- [7] O. DošLý and PEŇA, A linearization method in oscillation theory of half-linear differential equations, J. Inequal. Appl. 2005 (2005), 235–245.
- [8] O. Došlý and P. ŘEHÁK, Half-Linear Differential Equations, North Holland Mathematics Studies 202, Amsterdam, *Elsevier*, 2005.
- [9] Á. ELBERT and T. KUSANO, Principal solutions of nonoscillatory half-linear differential equations, Adv. Math. Sci. Appl. 18 (1998), 745–759.

- 488 O. Došlý and J. Řezníčková : Perturbed Euler half-linear equations
- [10] Á. ELBERT and A. SCHNEIDER, Perturbations of the half-linear Euler differential equation, Result. Math. 37 (2000), 56–83.
- [11] J. D. MIRZOV, Principal and nonprincipal solutions of a nonoscillatory system, *Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy* **31** (1988), 100–117.
- [12] J. ŘEZNÍČKOVÁ, Half-linear Hartman–Wintner theorems, Stud. Univ. Žilina Math. Ser. 15 (2002), 56–66.
- [13] J. ŘEZNÍČKOVÁ, An oscillation criterion for half-linear second order differential equations, Miskolc Math. Notes 5 (2004), 203–212.
- [14] J. SUGIE and N. YAMAOKA, Growth conditions for oscillation of nonlinear differential equations with p-Laplacian, J. Math. Anal. Appl. 305 (2005), 18–34.

ONDŘEJ DOŠLÝ DEPARTMENT OF MATHEMATICS AND STATISTICS MASARYK UNIVERSITY JANÁČKOVO NÁM 2A CZ-602 00 BRNO CZECH REPUBLIC *E-mail:* dosly@math.muni.cz

JANA ŘEZNÍČKOVÁ DEPARTMENT OF MATHEMATICS TOMÁŠ BAŤA UNIVERSITY NAD STRÁNĚMI 4511 760 05 ZLÍN CZECH REPUBLIC

E-mail: reznickova@fai.utb.cz

(Received January 17, 2006)