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On a family of connections in Finsler geometry

By AKBAR TAYEBI (Tehran), ESMAEIL AZIZPOUR (Rasht)
and EBRAHIM ESRAFILIAN (Tehran)

Abstract. In this paper, we introduce a new family of linear torsion-free connec-
tions for Finsler metrics. This family of connections defines a Riemannian curvature
tensor R and a non-Riemannian quantity P. We show that P contains all the non-
Riemannian information, namely, P = 0 if and only if the Finsler metric is Riemannian.
In fact, this family of connections makes a systematical analysis of connections that
characterize Riemannian metrics.

1. Introduction

A Finsler space is a manifold M equipped with a family of smoothly varying
Minkowski norms; one on each tangent space. Riemannian metrics are examples
of Finsler norms that arise from an inner-product. After Einstein’s formulation
of general relativity, Riemannian geometry became fashionable and one of the
connections, namely that due to Christoffel (Levi-Civita), came to the forefront.
This connection is both torsion-free and metric-compatible. Likewise, connec-
tions in Finsler geometry can be prescribed on 7#*T'M and its tensor products.
Examples of such connections were proposed by J. L. SYNGE (1925), J. H. TAy-
LOR (1925), L. BERWALD (1928) [9], but most important of all is ELIE CARTAN’s
connection (1934) [10]. There is also such a connection given by CHERN [11] in
1948. It is torsion-free but not completely compatible with the inner product
(on 7*TM) defined by the g;;’s. Incidentally, in the generic Finslerian setting,
it is not possible to have a connection on 7*T'M which is both torsion-free and
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compatible with the said inner product. The Chern connection, like many other
connections, solves the equivalence problem for Finsler structures [7]. Namely, it
gives rise to a list of criteria which decide when two such structures differ only
by a change of coordinates. For a treatment of this connection using moving
frames, see CHERN’s article [12]. The Chern connection coincides with the Rund
connection, as pointed out by ANASTASIEI [4]. ASANOV [5], MIRON and ANAS-
TASIEI [17], BEJANCU [6], IKEDA [14], KozMA [25] and TAMASSY [23], [24] have
worked on connection theory. Recently Z. SHEN [20] has found a new torsion-
free connection in Finsler geometry. He proved that P = 0 if and only if F is
Riemannian.

In this paper we will give a new family of torsion-free linear connections
in 7T M, which are torsion-free and compatible with the Finsler structure in a
certain sense, where as torsion-free connections, in our connection we define two
curvature tensors R and P. The R-term is the so-called Riemannian curvature
tensor which is a natural extension of the usual Riemannian curvature tensor of
Riemannian metrics, while the P-term is a purely non-Riemannian quantity. The
main result of this paper states that P = 0 if and only if the Finsler metric is
Riemannian. This is the second torsion-free linear connection with such property
ever discovered since SHEN‘s work [20]. We know there are already several well-
known linear connections in Finsler geometry which are introduced from various
points of view, in particular the connection constructed by CHERN and Bao [7],
that shows its extraordinary usefulness in treating global problems in Finsler
geometry. However, the non-Riemannian quantity of our connections as well as
the Shen connection seems to capture all non-Riemannian information on the
Finsler metric.

2. Preliminaries

Let M be nn n-dimensional C'*° manifold. Denote by T, M the tangent space
at x € M, and by TM := U,y T M the tangent bundle of M. Each element of
T M has the form (x,y), where € M and y € T, M. Let TMy =TM\ {0}. The
natural projection 7 : TM — M is given by 7 (x,y) := .

The pull-back tangent bundle 7*T M is a vector bundle over T'M, whose fiber
7 TM at v € TMy is T, M, where 7(v) = z. Then

7 TM = {(z,y,v) |y € TuMy, ve T, M}

Some authors prefer to define connections in the pull-back tangent bundle
7m*TM. From a geometrical point of view the construction of these connections
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on m*TM seems to be simple because here the fibers are n-dimensional (i.e.,
7 (T M)y = TryM, Yu € T M) thus torsions and curvatures are obtained quickly
from the structure equations. When the construction is done on T'(T'M) many
geometrical objects appear twice and one needs to split T'(7T'M) into the vertical
and horizontal parts where the later is called horizontal distribution or non-linear
connection. Nevertheless we do not need to split 7#*T' M. Indeed, the connection
on 7 (TM) is the most natural connection for Physicists.! In order to define
curvatures, it is more convenient to consider the pull-back tangent bundle than
the tangent bundle, because our geometric quantities depend on directions.
m)}z;l the natural
basis for 7T M. In Finsler geometry, we study connections and curvatures in
(7*TM, g), rather than in (TM, F). The pull-back tangent bundle 7*TM is a
very special tangent bundle.

For the sake of simplicity, we denote by {6¢|v = (v, %)

Throughout this paper, we use the FEinstein summation convention for ex-

pressions with indices.?

Finsler structure
A (globally defined) Finsler structure on a manifold M is a function

F:TM — [0,00)
with the following properties:

(i) F is a differentiable function on the manifold T'My and F is continuous on
the null section of the projection 7 : TM — M.

(ii) F is a positive function on T M.
(iii) F is positively 1-homogeneous on the fibers of the tangent bundle TM.

(iv) The Hessian of F? with elements

(9:5) = (BF} )

is positive definite on T'Mj.

Given a manifold M and a Finsler structure F' on M, the pair (M, F) is
called a Finsler manifold. F' is called Riemannian if ¢;;(z,y) are independent of

y # 0.

Every Finsler metric on a manifold defines a length structure on oriented
piecewise C'*° curves. Let C' be an oriented piecewise C'*° curve from p to ¢ in

LFor more details on the structure of 7*(T'M) see [19] and [8].
2That is, if an index appears twice, namely as a subscript as well as a superscript, then that
term is assumed to be summed over all values of that index.
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a Finsler manifold (M, F'). Let C : [a,b] — M be a parameterization of C' with
C(a) = p and C(b) = q. Then the length of C' is defined by

ImeZL%(amdﬂ”>ﬁ (%)

The homogeneity of F implies that Lr(C) is independent of the choice of the
particular parameterization of C.
The Finsler structure F' defines a fundamental tensor g : 7*TM Q@ 7*TM —
[0, 00) by the formula g(9;|v, dj|v) = gi;(2,y), where v = y'52|,. Let
9ij (l‘, y) = FFyiyj + Fyz‘Fy]‘,
where F,i = g;‘;. Then (7*TM, g) becomes a Riemannian vector bundle over
TMQ. Let

1 6gi~
Aiji(z,y) = 5 F(x,y) 3y,ﬁ (,y).

Clearly, A;j;i, is symmetric with respect to 4, j, k. The Cartan? tensor A : T*TM ®
' TM ® m*TM — R is defined by

A(ai|va aj|117 81{:‘1}) = Aijk(xay)a

where v = yi%h. The homogeneity condition (iii) holds in particular for posi-
tive A. Therefore, by Euler’s theorem we see that

iagij - jagij - kagij B
Y 8yk (x,y) =Y 8yk (x,y) =Y 8yk (xvy) = 0.

We recall that the canonical section ¢ is defined by

yo0  y o 0
F(z,y)0xt  Foxt " — Oxt’

t=1{(z,y) =
Put ¢; .= gijﬂj = F,i. Thus the canonical section £ satisfies

vy
g(eag) _gsz F - 1
and
Ay =0 Ay, = (" Ayj = 0.

Thus A(X,Y,¢) =0.

. Ak . . . . .
3In some literature Cijk = — k is called Cartan tensor. Riemannian manifolds are characterized
by A=0.
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3. Existence and uniqueness of a new Finsler connection on 7w*T M

In this section we introduce a new Finsler connection which is torsion-free
and almost compatible with Finsler metric.

Bundle Maps p and p.
The bundle map p : T(TMy) — 7m*TM is defined by

(&)-n o)

Put VI'M := kerp = span{a%i}?:l. VTM is an n-dimensional subbundle of
T(T My), whose fiber V,TM at v is just the tangent space T\, (T, M) C T,,(T Mp).
VT M is called the vertical tangent bundle of T M.

The bundle map u : T(TMy) — 7*TM is defined by u(%) = 0;.

Put HTM := Ker u. HT'M is called the horizontal tangent bundle of T M.

We have the direct decomposition T'(T'My) = HTM @ VT M. Tangent vec-
tors in HT M are called horizontal and vectors in VI'M are called vertical. We
summarize: Kerp = VI'M, Kerpy = HT M, p restricted to HT'M is an isomor-
phism onto #*T'M, and pu restricted to VI'M is the bundle isomorphism onto
T TM.

Definition 3.1. A tensor T : m*TMm*TM@m*TM — R is called compatible
if it has the following properties:

(i) T(X,Y, Z) is symmetric with respect to X, Y, Z.
(ii) T(X,Y,¢) =0.
(iii) T is homogeneous, i.e., Tjjx(z, ty) = Tijk(z,y), ¥Vt € R, where
Tiji(z,y) = T(0;, 0, Ok).

Let (M, F') be a Finsler n-manifold. Let g, A and T denote the fundamental
tensor, the Cartan tensor and a compatible tensor in 7*T M, respectively.

Definition 3.2. Let D be a Finsler connection on M. Then we say that
(i) D is torsion-free, if
Tp(X,7) i= Dgp(V)~ Dy p(X)~p([X,7]) =0, VX,¥ € CX(T(TMy)). (2)
(ii) D is almost compatible with the Finsler structure in the following sense: for
all X,Y € C®(n*TM) and Z € T,(T M),
(Dz9)(X,Y) = Zg(X,Y) = 9(DzX,Y) = g(X, DY)
= A(p(Z), X, Y) - 2T(p(2)a X, Y) + 2F71A(‘LL(Z), X, Y)a (3)
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where p(2) = (v,7.(2)), p(Z) = D,F¢, and T is the given compatible
tensor.

Theorem 3.1. Let (M, F') be a Finsler n-manifold and T' an arbitrary com-
patible tensor in 7*T M. Then there is a unique linear torsion-free connection D
in #*T M, which is almost compatible with the above Finsler structure.*

We define the Landsberg tensor A = 7*TM @ n*TM @ n*TM — R by

It is obvious that
C Ay =0 A, = (" Agj = 0.

Then A(X7 Y, ¢) = 0. It is easy to check that T' = aA+ BA is a compatible tensor
Va, 8 € R.

4. Nonlinear connections and Finsler connections

Let M be a real n-dimensional connected manifold of C'°°-class and
(TM,m, M) its tangent bundle with the zero section removed. Every local chart
(U, = () on M induces a local chart (¢~1(U), p = (2%, y%)) on TM. The ker-
nel of the linear map 7, : TTM — TM is called the vertical distribution and is
denoted by VI'M. For every u € TM, Ker ., = V,,TM is spanned by {% ul-
By a nonlinear connection on T M we mean a regular n-dimensional distribution
H:ueTM — H,TM which is supplementary to the vertical distribution i.e.

T (TM)=H,TM & V,TM, Yu e TM.

A basis for T,,TM adapted to the above direct sum is (% us a%i u), where N}

are the coefficients of the nonlinear connection and %h = azi - N/ (u)%h

The dual basis of (52, Biyi) is given by (dz’, 8y’ + Njda’). These are the Berwald

bases.

Let M be a real n-dimensional C'**° manifold and VI'M = Uyery Vo, TM
its vertical vector bundle. Suppose that HT'M = U,cra H,TM is a nonlinear
connection on TM and V a linear connection on VT'M; then the pair (HT M, V)
is called a Finsler connection on the manifold M.

41n the sequel we will refer to this connection as “New connection”.
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PROOF OF THEOREM 3.1. In a standard local coordinate system (z¢,y%) in
T My, we write
_ 1k .k
Do 0;=Thdh, D0, =Flo.

Clearly, (2) and (3) are equivalent to the following:

k _ 1k

Iy =15 (4)
ko
Fi:=0 (5)
8 ! l ! m
5 (9i3) = ~Thigus + Tiygi + 245k = 2Tigne + 24550 o€ (6)
8 m m

3k (9i5) = —F} 01 + Firgji + 2Cij6 — 2Tijn Fppl™ + 2Ai51 )1 0 (7)

where gi; = gij(2,y), Aijk = Aijr(z,y) and Tjj = Tijk(z,y) is the given com-
patible tensor. Notice that (5) and (7) are just the definition of A;;,. We must
compute Ffj from (4) and (6). Then permuting i, j, k in (6), and using (4), one
obtains

Ffj = %kj - A?j + TZE + g" { ATy — Ajim Tl — A U3 } e, (8)
where we have put

w_ L) 0 0 0
Yii =39\ op (g51) + @(Qil) - %(gij)

and Afj = g A;j. Multiplying (8) by /¢, yields

| A L AT A (9)

m
Multiplying (9) by ¢¢ gives
Tk e =~k et (10)
By substituting (10) into (9) one obtains

ThE" =7 l" — Al e, (11)

(3

By substituting (11) into (8) one obtains

L5 =7l — Al + T + 9" { Aijmly — Ajimity — Auim iy } €
+ { AL AT + AL AT — AL AT L ys 00 (12)

im*js J

This proves the uniqueness of D. The set {I'};, F}; = 0}, where {T'};} are given

by (12), satisfy a linear connection D with properties (2) and (3). O
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The bundle map p : T(T'My) — 7*TM defined in Section 3 can be expressed
in the following form:

5 o
8 (aw) v <8y1> Y
where 1
NF = YT =l — 59" A"y’

The above N; are known in the literature as the nonlinear connection coeffi-
citents on T'My. The Berwald connection is most directly related to the nonlinear

connection N ;, and is most amenable to the study of path geometry.

oG?
are curves in M which obey the equation y* + G* = 0. Thus, if the geodesic

Defining G? := W;kyj y¥, one can prove that =N J’ Finslerian geodesics
equation is once known, the nonlinear connection N, ]Z can be computed without
having to calculate first the Cartan tensor A;;;, and the formal Christoffel symbols
vijk- The formula (12) in terms of the coefficients N]’f is given by

TF =f — AL+ Tf — g*{NSCori + Nf Cyji, — NiCyij}. (14)
It is obvious that
. ) NJ’?
ki _ ki _
Lt =15l = ik (15)

Let us express the Christoffel coefficients of the Berwald, Chern and Shen con-

nections and of the New connection, by bffj, CI‘fj, SI‘Z and I‘fj respectively; then

we see that:

k ._ bk k _ k k
Iy =" — A — Al + 155, (16)
Ih =T — AN + 1), (17)
k . stk k

It is clear that in a locally Minkowski space, Fi—“j = —Afj + TZ; and N} = 0. The
reader can consult [24] and [15].

5. Curvatures of the New connection

In this section we study the curvature tensor of the “new Finsler connection”
introduced in the above section, which is torsion-free and almost compatible with
the Finsler metric. As a torsion-free connection, it defines two curvatures R
and P. The R-term is the so-called Riemannian curvature tensor, which is a
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natural extension of the usual Riemannian curvature tensor of a Riemannian
metric, while the P-term is a purely non-Riemannian quantity. We prove also
that the hv-curvature P of this connection vanishes if and only if the Finsler
structure is Riemannian. The curvature tensor {2 of D is defined by

O(X,Y)Z =DyDyZ — DyDgZ — Dix 37, (19)

where X,Y € C°(T(TMy)) and Z € C®(x*TM).
Let {e;}"_; be a local orthonormal frame field (with respect to g) for the
vector bundle 7*T'M, such that g(e;,e,) =0,i=1,...,n—1 and

y y' 0
€n -

Let {w'}" , be its dual co-frame field. These are local sections of the dual bundle
7T M. One readily finds that

13 ) .
w" = 0 dx' = lidx' = w,

oy’

which is the Hilbert form. It is obvious that

w(?) =1.

da?

‘> Buler’s theorem allows us

We observe that for a curve z° = z%(t) with y* =
to rewrite the integral (*) as fab w".
Put

p=w'®e;, De;=uw’® ej, e = 20,7 ® ej.
{Q;7} and {w;’} are called the curvature forms and connection forms of D with
respect to {e;}. We have u := DF{ = F{w,' + d(log F)6,'} ® e;. Put w"™ :=
wy+d(log F)d'n. Tt is easy to see that {w®,w™ ™}, is a local basis for T*(T'My).
By definition
p=w'®e;, p=Fu"t"Qe,.

Use the above formula for Theorem 3.1, then it will re-express the structure

equation of the New connection

dw' = W A w; (20)

dgi; = grjwi® + gikw;® + 24, 550" — 2Ty 0" 4 24, 550" TR (21)
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Define g;;.5 and Gij|k by
dgij — gejwi® — girw;" = gijpw® + gijrw" T, (22)

where g;;.x and g;;; are the vertical and horizontal covariant derivative respec-
tively of g;; with respect to the New connection. This gives

9isik = 2(Aije — Tiji), (23)
Gijk = 2Aijk. (24)
It can be shown that 5;‘\5 =0and &, =0, thus (9" g;1);s = 0 and (g g;x).s = 0.
So
g = 2Ty = AY) (25)
and

Y= _9AY, (26)

.8

Moreover, torsion freeness is equivalent to the absence of dy* in {w;'}, namely

wji = F;k(:r7 y)da:k. (27)
(19) is equivalent to
dwij — wik A wkj = Qij. (28)

Since the ;% are 2-forms on the manifold 7'My, they can be expanded as
1 . 1 .
Q7 = §Rz‘jklwk Aw! 4 Plgw® nw™ §Qi3kzwn+k Aw™t (29)

The objects R, P and @ are the hh-, hv- and vv-curvature tensors respectively
of the connection D. Let {&;,¢é;}? ; be a local basis for T(T'My), which is dual
to {wi Wt} | e, & € HTM, é; € VT M such that p(é;) = e;, u(é;) = Fe;.
We have put R(eg,é;)e; = Rijklej, P(eg,é1)e; = Piyej and Q(éx, €)e; = Qijklej.
Since the New connection is torsion-free we have ([21] and [22]) that

Q=0.
The first Bianchi identities for R are

R’y + Ry + Ri%i, = 0 (30)

d . .

an Pl = Py (31)
Exterior differentiation of (28) gives the Second Bianchi identities:

dQZ7 — wik A ij + ij A Qik =0. (32)
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We decompose the covariant derivative of the Cartan tensor on T'M
dAij — Apjrwi’ — Apw;' — Aoy = Az‘jkuwl + Ajjr ™t (33)
and so for Aijk we have
dAji, — Ayjrwi' — Ajgw;' — Ao’ = Ay’ + Agjraw™™ (34)

Clearly, in the above relations the tensors Ajjxi, Aijk.i, Aijku and Aijk,l are
symmetric with respect to the indices i, j, k.

Put Al-jk = A(ei,ej,ek), Afj = gklAijl. The quantity A;jz, plays a some-
what privileged role in Finsler geometry so much that it deserves perhaps a special
notation:

Aijkin = Aijk~ (35)
It follows from (33) and (34) that

Anjk|l = 0, and Anjk.l = *Ajkl- (36)

Anjk|l =0, and Anjk.l = _Ajkl- (37)

Theorem 5.1. Let (M, F) be a Finsler manifold and D be a torsion-free

connection defined in theorem (1) with the condition Tjji = klA(l)jki 4+t
m times

k:mA;-zl) . where Am Aijk |nln -+ |n, m € N. Then F is Riemannian if and

ijk
only if P = 0.

PROOF. Let (M, F) be a Finsler manifold. Differentiating (21) and using
(20)5 (21)7(33)7 (36) and (37) leads to

gkaik + gikﬂjk = 72Aijkﬂﬁ — 2Aijk\lwk A wl + 2Aijk_lwn+k A wn+l
— 2{Ayjri — Aijrptwt AWt

Fhy (A o+ AL Gy Ak 4

ijk|l i
+ km(Al(,;Z)llwl + Agﬂ).lwnﬂ) A WP, (38)

Using (29), we get

_ (1) (1) (m) (m)
Rijri + Rjir = 2k1{Aijl|k - Aijk;u} +t 2km{Aijl\k: o Aijk|l}

—2Ais Ry + 2{ Aijip — Aijii b (39)
Pijpa + Piog = —2{k1 AL+ + kAT )
+2{Aijr0 — Aijir} — 24455 Pn’ii, (40)
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Aijkt = Aijik. (41)

Permuting 4, j, k in (40) yields

Piji = {k1 gkl +--+k A”k o Aijrea — (Aijie + Ajrii — Arargy)

+ Akis n jl - Ajke n 1l Avjspn kl (42)
and
P = {k‘1A§}€)l -+ kmA_g'Z;)} — Ajr — Ajp, (43)

because of Py, jn; = 0.

Now if F' is Riemannian, then from (42) and (43) we conclude that P = 0.

Conversely let P = 0. It follows from (43) that

By (42) one has k/’lAgk)l -t kmAE'ZLl) = Ajri + Aj- (44)
/ﬁAUk ! +k Aljkl Aijrea + Ari)y — Aijike — Ajriji-

Permuting ¢, j, k in the above identity leads to

1 m
1€1A§],)C p o+ kmAﬁjk)l Aijea + Ajrapi — Arityy — Aijilks

and then
Aijik = Ajkiji-
Letting kK = n, we can conclude
A, = 0. (45)
It is obvious that
AT =0, ¥meN. (46)
Therefore we conclude that A;j, = 0, and thus F' is Riemannian. O

6. Complete Finsler manifolds

Let ¢ denote the unique vector field in HT'M such that p(¢) = £. We call £
the geodesic field on T My, because it determines all geodesics and it is called a

spray.
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Let ¢ : [a,b] — (M, F) be a unit speed C* curve. The canonical lift of ¢ to
T My is defined by ¢ := % € TMy. 1t is easy to see that

dc
() -

The curve c is called a geodesic if its canonical lift ¢ satisfies

dé -
i Le,
where / is the geodesic field on T My, i.e., £ € HTM, p(f) = {.

Let I,.M ={veT,M,F(v)=1} and IM = UpeM I, M. The I,M is called
indicatriz, and it is a compact set. We can show that the projection of the integral
curve ¢(t) of £ with ¢(0) € IM is a unit speed geodesics ¢, whose canonical lift
is é(t) = p(t). A Finsler manifold (M, F) is called complete if any unit speed
geodesic ¢ : [a,b] — M can be extended to a geodesic defined on R. This is
equivalent to requiring that the geodesic field £ restricted to IM is complete.

If we put k1 = k3 =--- =k, =0 and k; = —1, then we have a connection
and we obtain

A+ A+ A=0,

where A := A® is defined in Theorem 5.1.

Let (M, F') be a Finsler manifold and ¢ a unit speed geodesic in M. A section
X = X(t) of #*TM along ¢ is said to be parallel if Da: X = 0. For v € TMy
we define ||A||, :=sup A(X,Y, Z). Then we put ||A| = sup,cra [|All» where the
supremum is taken over all unit vectors of 7T M.

Theorem 6.1. Let (M, F) be complete with bounded ||A||. If k1=kz=---
=k, =0 and ko = —1, then F is Riemannian, whenever

A+ A+A=0. (47)

PRrROOF. If F is Riemannian, then (47) is true. Conversely, let the above
condition be true. Fix any XY, Z € n*TM at v € I, M. Let c: M — R be
the unit speed geodesic with 4(0) = v. Let X(t), Y(¢) and Z(t) denote the
parallel sections along ¢ with X (0) = X, Y(0) =Y, Z(0) = Z. Putting A(t) =
A(X(5), Y (5, Z(1)), A(t) = A(X (), Y (1), Z(1)), and A(t) = A(X (), Y (1), Z(1)),
one has

dA . dA .
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Therefore by (47) and (48) we have

d’A  dA

— + —+A=0. 49

dit? + dt + (49)
Now

—t 3 3

A(t)=e=2 | ¢jcos gt + ¢osin gt

Using ||A]] < oo and letting ¢ — —oo, we get ¢ = c2 = 0, and A(0) =
A(X,Y, Z) = 0, which completes the proof. a
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