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Weak compactness of vector measures on topological spaces

By SURJIT SINGH KHURANA (Iowa)

Abstract. Let X be a completely regular Hausdorff space, E a quasi-complete

locally convex space, Cb(X) the space of all bounded, scalar-valued continuous functions

on X, and B(X) and B0(X) be the classes of Borel and Baire subsets of X. We study the

subsets of the spaces Mt(X, E), Mτ (X, E), Mσ(X, E) of respectively tight, τ -smooth,

and σ-smooth, E-valued measures on X for weak compactness.

1. Introduction and notations

In this paper K will always denote the field of real or complex numbers
(we will call them scalars), X a completely regular Hausdorff space and E a
quasi-complete locally convex space space over K with topology generated by an
increasing family of semi-norms {‖.‖p, p ∈ P}; E′ will denote the topological dual
of E. For a p ∈ P , Vp = {x ∈ E : ‖x‖p ≤ 1}; polars will be taken in the duality
〈E,E′〉 (for two vector spaces F and G in duality, 〈. , .〉 : F×G → K will denote be
the bilinear mapping). We denote by C(X) the space of all K-valued continuous
functions on X, and by Cb(X) the space of all bounded elements of C(X). The
zero-sets of X are the elements of the class {f−1(0) : f ∈ Cb(X)}; the positive-sets
of X are complements of zero-sets in X. For locally convex spaces, the notations
and results of [18] will be used. For a vector space F , F ∗ will denote its algebraic
dual. N will denote the set of natural numbers. For topological measure theory
notations and results of [19], [20], [12] will be used. All locally convex spaces are
assumed to be Hausdorff. The elements of the smallest σ-algebra, on X, relative
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to which all functions in Cb(X) are measurable, are called Baire sets and the
elements of the σ-algebra generated by open sets are called Borel sets. B(X)and
B0(X) will be the classes of Borel and Baire subsets of X. X̃ will denote the
Stone−Čech compactification of X. Mσ(X), Mτ (X), Mt(X) denote the spaces
of σ-additive, τ -smooth and tight Baire measures on X [21], [20], [19]. The
elements of Mσ(X) are scalar-valued, countably additive measures on B0(X). An
element µ ∈ Mσ(X) is called τ -smooth if for any decreasing net {fα} ⊂ Cb(X),
fα ↓ 0, we have µ(fα) → 0. Every τ -smooth measure has a unique extension
to a Borel measure which is inner regular by closed subsets and outer regular
by open subsets of X; an element µ ∈ Mσ(X) is called tight if for any uniformly
bounded net {fα} ⊂ Cb(X), fα → 0, uniformly on compact subsets of X, we have
µ(fα) → 0. Every tight measure has a unique extension to a Borel measure which
is inner regular by compact subsets and outer regular by open subsets of X [21],
[20]. Also the so-called strict topologies βz, z = σ, τ, t have been defined on Cb(X),
with the result that (Cb(X), βz)′ = Mz(X) (see [20]) (notations like β1, β, β0 are
also used for these topologies in [19]). The topology βt is the finest locally convex
on Cb(X), agreeing with the topology of uniform convergence on the compact
subsets of X, on the norm bounded subsets of Cb(X). To define the topology βσ,
take a zero-set, in X̃, Z ⊂ X̃ \X. The topology βt on Cb(X̃ \ Z), we denote by
βZ . Evidently Cb(X̃ \ Z) can be identified with Cb(X) (there is a natural 1-1,
onto, norm-preserving mapping) and so βZ can be considered a locally convex
topology on Cb(X). The βσ is defined as

∧{βZ : Z a zero-set in X̃, Z ⊂ X̃ \X}.
Similary βτ is defined as

∧{βC : C a compact set in X̃, C ⊂ X̃ \X}.
With norm topology on Cb(X), the dual of Cb(X) is denoted by M(X);

M(X) can also be interpreted as the space of bounded finitely additive measures,
on the algebra generated by zero-sets of X, which are inner regular by zero-sets
and outer regular by positive-sets of X (Alexanderov’s Theorem [21], [20]).

For a topological space Y and a set A, Y A will denote the topological space
of all functions from A → Y with the topology of pointwise convergence on A

(this will be called the product topology on Y A). For a function f ∈ Cb(X),
f̃ will denote its unique continuous extension to X̃. It is easily verified that
B(X̃) ∩X ⊃ B(X) and B0(X̃) ∩X ⊃ B0(X).

Now we come to vector-valued measures. If A is a σ-algebra of subsets of
a set Y , µ : A → E a countably additive vector measure and p ∈ P , we denote
the p-semi-variation of µ by µ̄p, µ̄p(A) = sup{|g ◦ µ|(A) : g ∈ V 0

p } (here V 0
p

is the polar of Vp in the duality 〈E, E′〉) [15]; also we consider the submeasure
µ̇p : A → R+, µ̇p(A) = sup{‖µ(B)‖p : B ∈ A, B ⊂ A} [12], [3]. It is easily
verified that µ̇p is countably sub-additive [3] and µ̇p ≤ µ̄p ≤ 4µ̇p ([4], p. 97,
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Lemma 5). Also there is a control measure for µ̄p; this will be denoted by λp;
this control measure can be taken in the closed convex hull of {|g ◦ µ| : g ∈ V 0

p },
with norm topology on measures ([15], p. 20, proof of Theorem 1). This control
measure also has the properties: (i) |f ◦ µ| ¿ λp for every f in E′ with ‖f‖p ≤ 1
(note ‖f‖p = sup{|f(x)| : x ∈ Vp}); (ii) if λp(A) = 0 then µ̄p(A) = 0; (iii)
limλp(A)→0 µ̄p(A) = 0; (iv) λp ≤ µ̄p. We also have the result that if f : Y → K is
a measurable function, B ∈ A and |f | ≤ c on B, then ‖ ∫

B
fdµ‖p ≤ cµ̄p(B).

L1(µ) will denote the space of µ-integrable functions [15]. For any f ∈ L1(µ),
we take µ̄p(f) = sup{|g ◦ µ|(|f |) : g ∈ V 0

p } ([15], Lemma 2, p. 23).
If X is a compact Hausdorff space then there is 1-1 correspondence between

regular Borel E-valued measures µ and linear weakly compact operators T :
C(X) → E such that T (f) =

∫
fdµ, ∀f ∈ C(X) ([16], Therorem 3.1, p. 163);

regularity means that for any Borel B ⊂ X, p ∈ P , and c > 0, there exists a
compact C and an open V, C ⊂ B ⊂ V such that µ̄p(V \ C) < c. In this case,
for p ∈ P , the control measure λp is positive regular Borel measure in X.

We start with a proposition whose proof is contained in ([14], Theorem 2,
Theorem 3, Theorem 4).

Proposition 1. a) Let Mσ(X,E) = {(µ : B0→E) : g◦µ ∈ Mσ(X) ∀g ∈E′}.
Then:

(i) µ ∈ Mσ(X, E) is countably additive in the original topology of E and µ is

inner regular by zero-sets and outer regular by positive sets (in the original

topology of E);

(ii) A linear, weakly compact (that is bounded sets are mapped into relatively

weakly compact sets) mapping µ : (Cb(X), βσ) → E is continuous if and only

if µ ∈ Mσ(X, E).

b) A Baire measure µ : B0 → E will be called τ -smooth if for every g ∈ E′,
g ◦ µ ∈ Mτ (X). The set of all E-valued τ -smooth measures will be denoted by

Mτ (X, E). Then:

(i) µ ∈ Mτ (X, E) can be uniquely extended to a Borel measure which is inner

regular by closed sets and outer regular by open sets (in the original topology

of E);

(ii) A linear, weakly compact mapping µ : (Cb(X), βτ ) → E is continuous if and

only if µ ∈ Mτ (X, E).

c) A countably additive Baire measure µ : B0 → E will be called tight if for every

g ∈ E′ , g ◦ µ ∈ Mt(X). The set of all E-valued tight measures will be denoted

by Mt(X, E). Then:
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(i) µ ∈ Mt(X,E) can be uniquely extended to a Borel measure which is in-

ner regular by compact sets and outer regular by open sets (in the original

topology of E);

(ii) A linear, weakly compact mapping µ : (Cb(X), βt) → E is continous if and

only if µ ∈ Mt(X, E).

H ⊂ Mt(X, E) is called uniformly tight if for a p ∈ P and c > 0, there is a

compact C ⊂ X such that µ̄p(X \ C) < c, ∀µ ∈ H; H will be called weakly

uniformly tight if g ◦H is uniformly tight in Mt(X), ∀g ∈ E′.

2. Weak compactness in Mz(X, E)

Mz(X, E), (z = σ, τ, t), can be considered as subspaces of ECb(X). If we
take product topology on ECb(X), with weak topology on E, then the topology
induced on Mz(X, E) is called the weak topology [2], [17], [9]. In [10], [11], [17],
some results are proved about weak compactness of vector measures on topological
spaces and mostly the measures in Mt(X, E) are considered. In this paper we
consider σ-smooth, τ -smooth and other measures also and extend some of their
results to more general settings. Several of our proofs use quite different methods.

In the next theorem, we prove some general results about the relative com-
pactness in the weak topology.

Theorem 2. Suppose H ⊂ Mz(X,E) (z = σ, t, τ), S is the closed unit ball

of Cb(X) and C is an absolutely convex, weakly compact subset of E such that

µ(f) ∈ C, for every f ∈ S and for every µ ∈ H.

For z= σ, the following conditions are equivalent:

(i) H is relatively weakly compact.

(ii) For any sequence {fn} ⊂ Cb(X), fn ↓ 0, the sequence µ(fn) → 0, uniformly

for µ ∈ H, with weak topology on E.

(iii) For every g ∈ E′, g ◦H is relatively weakly compact in Mσ(X).

For z = t : H is relatively weakly compact if and only if for every g ∈ E′,
g ◦H is relatively weakly in Mt(X).

If in addition, X is a complete metric space or a paracompact locally compact

space then H is relatively weakly compact if and only if for every g ∈ E′, g ◦H

is uniformly tight in Mt(X).
For z= τ : The following conditions on H are equivalent:

(i) H is relatively weakly compact.
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(ii) for every g ∈ E′, g ◦H is relatively weakly in Mτ (X).

If X is also paracompact then (i) and (ii) are also equivalent to:

(iii) For any net {fα} ⊂ Cb(X), fα ↓ 0, we have µ(fα) → 0, uniformly for µ ∈ H.

Proof. We first consider the case z = σ. H ⊂ CS and CS , with product
topology, is compact when C has the topology induced by σ(E,E′). Suppose (i)
is satisfied. For a fixed g ∈ E′, the mapping µ → g ◦ µ, with weak topologies, is
continuous. Thus (iii) is satisfied. Also by ([21], Theorem 28, p. 203), (ii) and
(iii) are equivalent. Now suppose (ii) is satisfied. Take a net {µα} ⊂ H. There
exists a subnet, which again we denote by {µα}, such that µα → µ ∈ CS , in CS .
Now µ : Cb(X) → E is a linear weakly compact operator and g ◦ µ ∈ Mσ(X), for
every g ∈ E′. By Proposition 1(a), µ ∈ Mσ(X,E). This proves (i).

Now consider the case z = t. If H is relatively weakly compact then trivially
g ◦ H is relatively weakly compact in Mt(X), for every g ∈ E′. Conversely
suppose g ◦H is relatively weakly compact in Mt(X), for every g ∈ E′. Taking a
net {µα} ⊂ H and proceeding as in the case of z = σ, we get a cluster point µ such
that µ : Cb(X) → E is a linear weakly compact operator, and g ◦ µ ∈ Mt(X) for
every g ∈ E′. By Proposition 1(c), µ ∈ Mt(X, E). When X is a complete metric
space or a paracompact locally compact space then (Cb(X), βt) is strongly Mackey
[20] and so the weakly compact subsets of Mt(X) are equicontinuous. Since the
βt-equicontinuous subsets of Mt(X) are uniformly tight, the result follows.

Now the case z = τ . This case is very similar to the case z = t (note, if X

is paracompact then the space (Cb(X), βτ ) is strongly Mackey [20]); details are
omitted. ¤

Now we will establish some additional results with some additional assump-
tions.

Theorem 3. Suppose B is an absolutely convex compact subset of E, S the

closed unit ball of Cb(X) and H ⊂ Mt(X, E) such that µ(S) ⊂ B, ∀µ ∈ H. If H

is weakly uniformly tight then it is uniformly tight.

Proof. Fix a p ∈ P and c > 0. Take {gi} ⊂ E′ (1 ≤ i ≤ n) and an η > 0
such that x ∈ B with |gi(x)| ≤ η, for 1 ≤ i ≤ n, implies ‖x‖p ≤ c

4 (here we are very
much using that the original topology of E and the weak topology of E coincide
on B). Take a compact K ⊂ X such that, for 1 ≤ i ≤ n, |gi ◦ µ|(X \K) ≤ η, for
every µ ∈ H. For any Borel set A ⊂ X \K, |gi ◦ µ(A)| ≤ η and so ‖µ(A)‖p ≤ c

4 .
From this we get µ̇p(X \K) ≤ c

4 and so µ̄p(X \K) ≤ c. This proves the result. ¤
Remark 4. This theorem answers in the positive a conjecture raised in ([9],

Remark 2).



74 Surjit Singh Khurana

A locally convex space is called semi-Montel if every bounded subset is rela-
tively compact ([8], p. 229).

Corollary 5. Suppose E is semi-Montel and H a uniformly bounded subset

of Mt(X,E). Assume further that (Cb(X), βt) is strongly Mackey ([20]; e.g. when

X is a complete metric space or a paracompact locally compact space). Then H

is relatively weakly compact if and only if H is uniformly tight.

Proof. The result is well-known when E is scalars [20]. Using Theorem 3,
we prove this corollary. ¤

In the next theorem we remove the condition that the range of H is contained
in a weakly compact subset of E.

Theorem 6. Suppose H ⊂ Mt(X,E) has the properties:

(i) there is an absolutely convex, bounded and closed subset B ⊂ E such that

µ(S) ⊂ B, ∀µ ∈ H, S being the closed unit ball of Cb(X);

(ii) for every compact C ⊂ X, there is an absolutely convex, weakly compact

KC ⊂ E such that for every f ∈ S,
∫

C
fdµ ⊂ KC , ∀µ ∈ H;

(iii) H is uniformly tight.

Then H is relatively weakly compact.

Proof. As stated in the introduction, for a topological space Y and a set
A, Y A will denote the topological space of all functions from A → Y with the
topology of pointwise convergence on A (this will be called the product topology
on Y A). B0, the closure of B in σ(E′′, E′), is compact. With product topology,
BS

0 is compact and with weak topology, H ⊂ BS
0 . Take a net {µα} ⊂ H and

suppose µα → µ ∈ BS
0 . Now for any g ∈ E′, g ◦H is uniformly tight in Mt(X)

(note H is uniformly tight). Let Ẽ be the completion of E. We first prove that µ

is Ẽ-valued. To prove this we will use Grothendieck completeness theorem [18].
Fix a p ∈ P . Take a p-equicontinuous net {gγ} ⊂ E′ such that |gγ(Vp)| ≤ 1, ∀γ
and gγ → 0, pointwise on Ẽ. Assume that, for some h ∈ S, there is a c > 0 such
that |〈gγ , µ(h)〉| > c, ∀γ. By uniform tightness of H, there is a compact set C ⊂ X

such that ν̄p(X\C) ≤ c
4 , ∀ν ∈ H. Define, for f ∈ Cb(X), να(f) =

∫
C

fdµα. It is a
simple verification that να ∈ Mt(X, E). By hypothesis, να(f) ⊂ KC ,∀f ∈ S and
so by Theorem 2, the net {να} is relatively weakly compact. By taking subnets,
if necessary, we assume that

∫
C

fdµα →
∫

fdν, ∀f ∈ S for some ν ∈ Mt(X, E).
Now, from

∫
fdµα =

∫
C

fdµα +
∫

X\C fdµα, we get ‖ ∫
fdµα −

∫
C

fdµα‖p ≤ c
4 .

This means, for every g ∈ E′, with |g(Vp)| ≤ 1, | ∫ fd(g◦µα)−∫
C

fd(g◦µα)| ≤ c
4 .

Taking limits over α, we get |〈g, µ(f)〉 − ∫
fd(g ◦ ν)| ≤ c

4 . Since ν is E-valued,
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∫
fd(gγ ◦ ν) → 0. So | < gγ , µ(f))| ≤ c, for some γ, a contradiction. This means

µ is Ẽ-valued. Fix an f ∈ S. Thus x = µ(f) ∈ B0 ∩ Ẽ. Take a net {xα} ⊂ B

such that xα → x weakly. This means there is a net {yα} ⊂ B such that yα → x

in Ẽ (note B is convex). Since E is quasi-complete and B is closed, x ∈ B.
Now we will prove µ : Cb(X) → E is weakly compact. Take a sequence

{fn} ⊂ S such that fn · fm = 0 for every n and for every m with n 6= m ([1],
Cor. 17, p. 160 remains valid for quasi-complete locally convex spaces); we have
to prove that µ(fn) → 0. Suppose this is not true. There are p ∈ P , a sequence
{gn} ⊂ E′, with |gn(Vp)| ≤ 1, ∀n, and a c > 0 such that |〈gn, µ(fn)rangle| > c,
∀n. Proceeding as in the proof above that µ is E-valued, we get a ν ∈ Mt(X,E)
such that |〈g, µ(f)〉 − ∫

fd(g ◦ ν)| ≤ c
4 , for all f ∈ S and for all g ∈ E′ with

|g(Vp)| ≤ 1. Thus |〈gn, µ(fn)〉 − ∫
fnd(gn ◦ ν)| ≤ c

4 , for all n. Since ν is a weakly
compact operator,

∫
fnd(gn ◦ν) → 0 and so we get a contradiction. Now H being

weakly uniformly tight, g ◦ H is relatively weakly compact in Mt(X), ∀g ∈ E′.
Since g ◦µα → g ◦µ, ∀g ∈ E′, by Proposition 1(c) µ ∈ Mt(X, E). This completes
the proof. ¤

3. Sequential weak compactness in Mt(X, E)

In this section we prove some results about the sequential compactness of
H ⊂ Mt(X, E). We will use the fact that, in a Fréchet space E, for a subset
B ⊂ E, weak compactness and sequential weak compactness are equivalent.

Theorem 7. Suppose S is the closed unit ball of Cb(X), E a Fréchet locally

convex space and H a weakly compact subset of Mz(X, E) (z = σ, τ, t) such that

µ(S) ⊂ B, ∀µ ∈ H, for some absolutely convex, weakly compact B ⊂ E. Assume

(Cb(X), βz) is separable (this will be the case when X is a separable metric space

and z = t or τ [20]) or there is a countable subset of Cb(X) which separates the

points of H. Then from every net in H converging weakly to a µ ∈ H, one can

extract a sequence which weakly converges to µ (this implies that H is weakly

sequential compact).

Proof. Choose a sequence {fn} ⊂ S such that {fn} is total in (Cb(X), βz).
Put S0 = {fn : n ∈ N}. Now H can be considered as a compact subset of BS0 , a
weakly compact subset of the Fréchet space EN . Since BS0 is angelic ([5], p. 32),
the result follows. ¤

Theorem 8. Suppose X is a metric space, S the closed unit ball of Cb(X),
E a Fréchet locally convex space and H ⊂ Mt(X, E) having the properties:
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(i) there is an absolutely convex, bounded and closed subset B ⊂ E such that

µ(S) ⊂ B, ∀µ ∈ H;

(ii) for every compact C ⊂ X, there is an absolutely convex, weakly compact

KC ⊂ E such that for every f ∈ S,
∫

C
fdµ ⊂ KC , ∀µ ∈ H;

(iii) H is uniformly tight.

Then H is relatively weakly compact and for every net in H converging to a

µ ∈ Mt(X, E), one can extract a sequence, from the net, which converges to µ

(this implies that H is relatively sequential compact).

Proof. Relative weak compactness of H follows from Theorem 6. Let
{pn; n ∈ N} be an increasing sequence of semi-norms on E such that {p−1

n [0, 1]}
is a 0-nbd base for E. Take an increasing sequence {Cn} of compact subsets of
X such that µ̄pn(X \ Cn) ≤ 1

n , ∀n and ∀µ ∈ H. Taking H0 = {χCnH : n ∈ N},
H0 can be considered a subset of Mt(X, EN ), with product topology on EN ( it
is easily verified that the elements of H0 are weakly regular and so regular [16]).
By Theorem 2, H0 is relatively weakly compact. Take a net {µα} ⊂ H. There
is a subnet, which again we denote by {µα}, such that {χCnµα : n ∈ N} ⊂ H0

converges to {νn : n ∈ N} ∈ Mt(X,EN ) and µα → µ ∈ Mt(X, E) (Theorem 7).
Since Cn is a compact metric space, there exists a sequence {fn} ⊂ Cb(X) such
that {(fn)|Ck

} is dense in C(Ck), ∀k. This means the weak closure of H0 satisfies
the conditions of the Theorem 7. By Theorem 7, there is a sequence {µk} ⊂ {µα}
such that {χCnµk : n ∈ N} converges to {νn : n ∈ N}. We claim that µk → µ.
Fix an f ∈ Cb(X), 0 ≤ f ≤ 1, a g ∈ E′ and a c > 0. Fix an n, big enough
that |g(p−1

n [0, 1])| ≤ 1 and cn > 4. Choose a k0 ∈ N big enough such that
| ∫ fd(g◦νn)−∫

Cn
fd(g◦µk)| < 1

n . ∀k ≥ k0. From | ∫ fd(g◦µα)−∫
Cn

fd(g◦µα| ≤
1
n , ∀α, by taking limit over α, we get | ∫ fd(g ◦ µ) − ∫

fd(g ◦ νn)| ≤ 1
n . Now

| ∫ fd(g ◦ µ) − ∫
fd(g ◦ µk)| ≤ | ∫ fd(g ◦ µ) − ∫

fd(g ◦ νn)| + | ∫ fd(g ◦ νn) −∫
Cn

fd(g ◦ µk)|+ | ∫
Cn

fd(g ◦ µk)− ∫
fd(g ◦ µk)| ≤ 1

n + 1
n + 1

n < c, ∀k ≥ k0. This
proves the result. ¤

4. Weak compactness in Mc(X, E)

In this section we assume that K = R. A subset B ⊂ C(X) will be called
order-bounded if there are elements f and g in C(X) such that f ≤ b ≤ g, ∀b ∈ B.
It is well-known that a linear map µ : C(X) → R, which maps order-bounded
sets into bounded sets, gives a unique ν ∈ Mσ(X) such that C(X) ⊂ L1(ν) and
µ(f) =

∫
fdν ([21], Theorem 23; [7]). Also it is well-known that support of
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µ̃ : C(X̃) → R, µ̃(f) = µ(f|X) is contained in υX [7], the real-compactfication
of X. This can be extended to the vector valued case:

Let µ : C(X) → E be a linear map such that order-bounded subsets are
mapped into relatively weakly compact subsets of E. It is proved in ([14], Theo-
rem 7) that:

(i) µ can be considered an element of Mσ(X,E) with C(X) ⊂ L1(ν) and µ(f) =∫
fdµ, ∀f ∈ C(X);

(ii) for every p ∈ P , there is a compact C ⊂ υX (the real-compactification of
X), depending on p, such that ¯̃µp(X̃ \ C) = 0.

The collection of all µ’s satisfying the above conditions will be denoted by
Mc(X, E). Considering Mc(X, E) ⊂ EC(X), the weak topology on Mc(X,E)
is the one induced by the product topology on EC(X) when in E is given the
weak topology.

We prove the following theorem:

Theorem 9. Suppose X is a completely regular Hausdorff space, E a quasi-

complete locally convex space and H ⊂ Mc(X, E). Assume that for every f ∈
C(X), f ≥ 0, there exists a weakly compact set Wf ⊂ E such that µ(h) ∈ Wf ,

for every h ∈ C(X), with |h| ≤ f , and for every µ ∈ H. Then H is relatively

weakly compact.

Proof. Every µ ∈ H gives a mapping φµ : C(X) × E′ → R, φµ(f, g) =
〈µ(f), g〉. For an f ∈ C(X) and g ∈ E′, let C(f,g) = sup |〈W|f |, g〉|; by the given
hypothesis, |φµ(f, g)| ≤ C(f,g), ∀µ ∈ H. This means the collection of mappings
{φµ : µ ∈ H} is pointwise bounded. Now we will prove that H is relatively weakly
compact.

Take a net {µα} ⊂ H; there is a subset, which again we denote by {µα},
such that φµα is pointwise convergent on C(X) × E′. This means the net of
the mappings µα : C(X) → RE′ , with product topology on RE′ , is convergent,
pointwise on C(X). Let µ be its limit. E, with weak topology, is a subspace of
RE′ and so we have to prove that µ is E-valued.

Fix an f ∈ C(X). By hypothesis, there is a weakly compact W|f | ⊂ E

such that µα(f) ∈ W|f | ∀α. It follows that µ(f) ∈ W|f | ⊂ E. This proves µ is
E-valued. Now we want to prove that µ ∈ Mc(X, E).

Take f ∈ C(X), f ≥ 0 and an h ∈ C(X) with |h| ≤ f . We claim that
µ(h) ∈ W|f |:
Now µα(h) ∈ W|f | ∀α and so µ(h) ∈ W|f |. This proves that µ ∈ Mc(X,E). So
the result is proved. ¤
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