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A new characterization of the reduced minimum modulus
of an operator on Banach spaces

By YIFENG XUE (Shanghai)

Abstract. Let X, Y be Banach spaces and let B(X, Y ) (resp. C(X, Y )) denote

the set of all bounded (resp. nonzero densely defined and closed) linear operators T

from X (resp. D(T )) to Y . We prove that the reduced minimum modulus γ(T ) of

T ∈ C(X, Y ) is inf{‖A‖ | Ker T $ Ker(T + A), A ∈ B(X, Y )}. Using this result, we

give various estimates of the upper bound of |γ(T + A) − γ(T )| for any T ∈ C(X, Y )

and A ∈ B(X, Y ).

1. Introduction

Throughout this paper, (X, ‖ · ‖), (Y, ‖ · ‖) denote Banach spaces over C and
B(X, Y ) is the Banach space of all bounded linear operators from X to Y . Put
X∗ = B(X,C). Let C(X,Y ) be the set of all nonzero closed linear operators
T from D(T ) to Y with D(T ) dense in X. According to [11], for T ∈ C(X,Y )
the null space Ker T of T is a closed subspace of X and the reduced minimum
modulus γ(T ) of T is given by

γ(T ) = inf{‖Tx‖ | dist(x, KerT ) = 1, x ∈ D(T )}. (1.1)

Let T ∈ B(X, Y ); the adjoint operator T ∗ defined by

(T ∗y∗)(x) = y∗(Tx), ∀x ∈ X, y∗ ∈ Y ∗,
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is in B(Y ∗, X∗) with ‖T‖ = ‖T ∗‖. If T ∈ C(X,Y ), then there is a unique closed
operator T ∗ from D(T ∗) ⊂ Y ∗ to X∗ such that (T ∗y∗)(x) = y∗(Tx), ∀x ∈ D(T ),
y∗ ∈ D(T ∗). We have that Ran(T ) = {Tx | x ∈ D(T )} is closed iff γ(T ) > 0 and
γ(T ∗) = γ(T ). From (1.1), we have

‖Tx‖ ≥ γ(T ) dist(x, Ker T ), ∀T ∈ C(X,Y ) and x ∈ D(T ). (1.2)

The reduced minimum modulus of an operator on Banach spaces plays a very
important role in the study not only of the spectral properties of operators but also
of the generalized inverses of bounded linear operators and in the perturbation
analysis of the solutions of operator equations in Banach spaces. For example, if
T ∈ B(X) = B(X, X) and 0 is in the boundary of σ(T ), then limn→∞γ(Tn)

1
n > 0

implies that 0 is isolated in σ(T ) (cf. [14]). Furthermore, if T is a Fredholm
operator on X with 0 in its generalized resolvent set, then

lim
n→∞

γ(Tn)
1
n = sup

{
1

r(L)

∣∣∣ TLT = T

}
, (1.3)

where r(L) is the spectral radius of L. When X is a Hilbert space, (1.3) is
true even without the condition of Fredholmness for T ([3], [4]). Some other
applications of the reduced minimum modulus can be seen in [5], [6], [7], [8], [12],
[15], [16].

Let M , N be two subspaces of X. Put

δ(M, N) =

{
sup{dist(x,N) | x ∈ M, ‖x‖ = 1} M 6= {0}
0 M = {0}

.

Let V (X) denote the set of all closed linear subspaces of X. For M, N ∈ V (X),
set gap(M,N) = max{δ(M, N), δ(N,M)}. gap(M, N) is called the gap between
the subspaces M and N (cf. [11]).

In [13], A. Markus showed that if S, T ∈ B(X) with Ran(S) and Ran(T )
closed, then

|γ(S)− γ(T )| ≤ 3‖S − T‖
1− 2 gap(Ker S, Ker T )

, gap(KerS, KerT ) <
1
2

|γ(S)− γ(T )| ≤ 3‖S − T‖
1− 2 gap(Ran(S),Ran(T ))

gap(Ran(S), Ran(T )) <
1
2

(cf. [12, Lemma 3.4]). These inequalities may be the earliest estimate pertaining
to the reduced minimum moduli of operators. Of much later date is an alternate
form of the estimate |γ(S)− γ(T )| given by

|γ(S)− γ(T )| ≤ max{γ(S), γ(T )} gap(Ker S, KerT ) + ‖S − T‖ (1.4)
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in case X, Y are Hilbert spaces and S, T ∈ B(X, Y ) (cf. [2] or [5, Lemma 2.3]).
If X, Y are Banach spaces and S, T ∈ B(X, Y ), the above is rewritten as

|γ(S)− γ(T )| ≤ 2max{γ(S), γ(T )} gap(KerS,Ker T ) + ‖S − T‖
(cf. [18]).

In this paper, we first give two new characterizations of the reduced minimum
modulus of a closed operator. These two results improve [6, Theorem 2.3] and
lead us to define a reduced minimum modulus of a nonzero element in a unital
C∗-algebra (see [17]). Then we give some estimates of the bounded operator
perturbation of the reduced minimum modulus of a closed operator. Finally, we
discuss the continuity of the reduced minimum modulus.

2. Some equivalent descriptions of the reduced minimum modulus

We begin with four lemmas.

Lemma 2.1. Let M,N ∈ V (X). Then we have

(1) δ(M,N) = 0 iff M ⊂ N ;

(2) δ(M,N) < 1 implies that dim M ≤ dim N ;

(3) If N $M , then δ(M,N) = 1.

Proof. From the definition of δ(· , ·), we can get (1); (2) comes from [11,
Corollary IV.2.6] and (3) is [11, Lemma III.1.12]. ¤

Lemma 2.2 ([9, Lemma 3.2]). Let M , N be two subspaces of X. Then

δ(M,N) = δ(N, M), where M (resp. N) represents the closure of M (resp. N).

Lemma 2.3. Let T ∈ C(X, Y ) and A ∈ B(X, Y ). Then

γ(T )δ(Ker(T + A),Ker T ) ≤ ‖A‖, γ(T )δ(Ran(T ), Ran(T + A)) ≤ ‖A‖.

Proof. The proof of the statement is the same as in [7, Lemma 2.3]. ¤

Lemma 2.4. Let T ∈ C(X, Y ). Then there is a sequence of operators

{An} ⊂ B(X, Y ) such that

(1) Ker T $ Ker(T + An), Ran(T + An) ⊂ Ran(T ), ∀n ≥ 1;

(2) limn→∞ ‖An‖ = γ(T ).

Moreover, if Ran(T ) is closed, then Ran(T + An) 6= Ran(T ), ∀n ≥ 1.
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Proof. By (1.1), we can find {xn} ⊂ D(T ) such that

lim
n→∞

‖Txn‖ = γ(T ) and dist(xn, KerT ) = 1, ∀n ≥ 1.

Thus there is a sequence {fn} ⊂ X∗ with ‖fn‖ = 1 and

fn(xn) = dist(xn, KerT ) = 1, fn(x) = 0, ∀x ∈ KerT, ∀n ≥ 1.

Put Anx = −(Txn)fn(x), ∀x ∈ X. Then An ∈ B(X, Y ), limn→∞ ‖An‖ = γ(T )
and

KerT ⊂ Ker(T + An), Ran(T + An) ⊂ Ran(T ), ∀n ≥ 1.

Noting that xn ∈ Ker(T + An) and xn 6∈ Ker T , we have Ker T $ Ker(T + An),
∀n ≥ 1. This proves (1) and (2).

Now suppose that Ran(T ) is closed. Let {xn}, {fn} and {An} be as above.
Define linear functionals gn on Ran(T ) by gn(Tx) = fn(x), x ∈ D(T ), n ≥ 1. gn

is well-defined since fn(x) = 0, ∀x ∈ Ker T . Moreover, for any x ∈ D(T ), any
z ∈ Ker T and ∀n ≥ 1, we have |gn(Tx)| = |fn(x− z)| ≤ ‖fn‖‖x− z‖. Thus

|gn(Tx)| ≤ dist(x, KerT ) ≤ 1
γ(T )

‖Tx‖

by (1.2), i.e., gn is bounded on Ran(T ) and hence by the Hahn–Banach theorem,
there is {ĝn}∞1 ⊂ Y ∗ such that

ĝn(y) = gn(y), ∀ y ∈ Ran(T ) and ‖ĝn‖ ≤ 1
γ(T )

for any n≥ 1. Since ĝn((T +An)x) = 0, ∀x ∈ D(T ) = D(T +An) and ĝn(Txn)= 1,
we conclude that Ran(T + An) $ Ran(T ), ∀n ≥ 1. ¤

Let T ∈ C(X, Y ) and set

M1(T ) = {A ∈ B(X, Y ) | Ran(T + A) ⊂ Ran(T ), Ker T $ Ker(T + A)},

M2(T ) = {A ∈ B(X, Y ) | Ran(T + A) $ Ran(T ), Ker T ⊂ Ker(T + A)}.

We now present our main result as follows:

Theorem 2.5. Let T ∈ B(X, Y ) and M1(T ), M2(T ) be as above. Then

γ(T ) = inf{ ‖A‖ | A ∈ M1(T ) }

= inf
{ ‖A‖

δ(Ker(T + A), KerT )

∣∣∣ Ker(T + A) * Ker T, A ∈ B(X,Y )
}

= inf{ ‖A‖ | KerT $ Ker(T + A), A ∈ B(X,Y ) }.
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In addition, if Ran(T ) is closed, then

γ(T ) = inf{ ‖A‖ | A ∈ M2(T ) }

= inf
{ ‖A‖

δ(Ran(T ), Ran(T + A))

∣∣∣ Ran(T ) * Ran(T + A), A ∈ B(X, Y )
}

= inf{ ‖A‖ | Ran(T + A) $ Ran(T ), A ∈ B(X, Y )}.

Proof. Set

S1(T ) = {A ∈ B(X, Y ) | Ker(T + A) * KerT},

S2(T ) = {A ∈ B(X, Y ) | Ran(T ) * Ran(T + A)},
S3(T ) = {A ∈ B(X, Y ) | Ker T $ Ker(T + A)},

S4(T ) = {A ∈ B(X, Y ) | Ran(T + A) $ Ran(T )}.

Clearly, M1(T ) ⊂ S3(T ) ⊂ S1(T ), M2(T ) ⊂ S4(T ) ⊂ S2(T ). By Lemma 2.1 (3),
δ(Ker(T + A),Ker T ) = 1 when A ∈ M1(T ) or A ∈ S3(T ); by Lemma 2.1 (3) and
Lemma 2.2, δ(Ran(T ), Ran(T + A)) = 1 when A ∈ M2(T ) or A ∈ S4(T ). Thus
we have by Lemma 2.3,

γ(T ) ≤ inf
{ ‖A‖

δ(Ran(T ),Ran(T + A))

∣∣∣ A ∈ S2(T )
}

≤ inf{‖A‖ | A ∈ S4(T )} ≤ inf{‖A‖ | A ∈ M2(T )} (2.1)

and

γ(T ) ≤ inf
{ ‖A‖

δ(Ker(T + A), KerT ))

∣∣∣ A ∈ S1(T )
}

≤ inf{‖A‖ | A ∈ S3(T )} ≤ inf{‖A‖ | A ∈ M1(T )} (2.2)

On the other hand, by Lemma 2.4, there is a sequence of operators {An} ⊂
B(X, Y ) such that limn→∞ ‖An‖ = γ(T ) and Ran(T + An) ⊂ Ran(T ), Ker T $
Ker(T + An), n ≥ 1 and moreover, Ran(T + An) $ Ran(T ) if Ran(T ) is closed.
Since {An}∞1 ⊂ M1(T ) and {An}∞1 ⊂ M2(T ) if Ran(T ) is closed, it follows that

inf{‖A‖ | A ∈ M1(T )} ≤ γ(T ), (2.3)

inf{‖A‖ | A ∈ M2(T )} ≤ γ(T ) (when Ran(T ) is closed). (2.4)

Therefore, combining (2.1) with (2.4) and (2.2) with (2.3), we get the results. ¤
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Corollary 2.6. Let T ∈ C(X, Y )

(1) If dimKer T < ∞, then

γ(T ) = inf{‖A‖ | dim Ker(T + A) > dimKer T, A ∈ B(X,Y )};
(2) If dimRan(T ) < ∞, then

γ(T ) = inf{‖A‖ | dimRan(T ) > dimRan(T + A), A ∈ B(X,Y )}.
(3) If codim Ran(T ) < ∞, then

γ(T ) = inf{‖A‖ | codim Ran(T + A) > codim Ran(T ), A ∈ B(X, Y )}.
Proof. (1) Let A ∈ B(X, Y ) with dimKer(T + A) > dimKer T . Then by

Lemma 2.1 (2), δ(Ker(T + A),Ker T ) = 1. Noting that

M1(T ) ⊂ {A ∈ B(X, Y ) | dimKer(T + A) > dimKer T} ⊂ S1(T ),

we obtain that by Theorem 2.5,

γ(T ) ≤ inf{‖A‖ | dim Ker(T + A) > dimKer T, A ∈ B(X,Y )} ≤ γ(T ),

i.e., γ(T ) = inf{‖A‖ | dimKer(T + A) > dimKer T, A ∈ B(X, Y )}.
(2) The proof is similar to the proof of (1).

(3) codim T < ∞ implies that Ran(T ) is closed. Let A ∈ B(X,Y ) with
codim T <codim(T + A). Since

codim(T + A) = dim Ker(T + A)∗ and codim T = dim Ker T ∗

by [11, Theorem IV. 5.13], it follows from Corollary 2.6 (1) that

γ(T ) = γ(T ∗) ≤ ‖A∗‖ = ‖A‖. (2.5)

Now, for any ε > 0 we can choose B ∈ B(X, Y ) with Ran(T + B) $ Ran(T )
such that γ(T ) > ‖B‖ − ε by Theorem 2.5. From

KerT ∗ = Ran(T )⊥ = {f ∈ Y ∗ | f(y) = 0, ∀ y ∈ Ran(T )},

Ker(T + B)∗ = Ran(T + B)⊥, Ran(T + B) $ Ran(T )

we deduce that Ker T ∗ $ Ker(T + B)∗. Thus, codim T < codim(T + B). This
means that

{‖A‖ | codim(T + A) > codim T} ≤ ‖B‖ < γ(T ) + ε. (2.6)

Combining (2.5) with (2.6), we can obtain the assertion. ¤
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Corollary 2.7. Let G(X) denote the set of all invertible operators in B(X).
Then dist(T, B(X)\G(X)) = ‖T−1‖−1, ∀T ∈ G(X).

Proof. If there is A ∈ B(X) such that, ‖T −A‖ < ‖T−1‖−1, then
‖I − T−1A‖ < 1 so that A ∈ G(X). This indicates that dist(T, B(X)\G(X)) ≥
‖T−1‖−1.

Now, for every ε > 0 we can find S ∈ B(X) such that KerS 6= {0} and

‖T−1‖−1 = γ(T ) > ‖T − S‖ − ε

by Theorem 2.5. Since S ∈ B(X)\G(X), we have

‖T−1‖−1 ≤ dist(T, B(X)\G(X)) < ‖T−1‖−1 + ε.

The assertion follows. ¤

3. The perturbation analysis of the reduced minimum modulus

Let T ∈ C(X,Y ) and A ∈ B(X, Y ). In this section, we will consider the
relationship between γ(T + A) and γ(T ) and then discuss the continuity of the
functional T 7→ γ(T ) on C(X,Y ).

Lemma 3.1. ([11, Lemma IV.2.2]) Let X be a Banach space and V1, V2, V3 ∈
V (X). Then

δ(V1, V2) ≥ δ(V1, V3)− δ(V2, V3)
1 + δ(V2, V3)

, δ(V2, V3) ≥ δ(V1, V3)− δ(V1, V2)
1 + δ(V1, V2)

.

Proposition 3.2. T ∈ C(X, Y ) and A ∈ B(X, Y ). Then

γ(T + A) ≥ γ(T )
1− δ(Ker T, Ker(T + A))
1 + δ(Ker T, Ker(T + A))

− ‖A‖; (3.1)

in addition, if Ran(T + A) is closed, then

γ(T + A) ≥ γ(T )
1− δ(Ran(T + A), Ran(T ))
1 + δ(Ran(T + A), Ran(T ))

− ‖A‖. (3.2)

Proof. By Theorem 2.5, there is a sequence of operators {Bn} ⊂ S3(T +A)
(or {Bn} ⊂ S4(T + A) when Ran(T + A) is closed) such that limn→∞ ‖Bn‖ =
γ(T + A). Consequently, δ(Ker(T + A + Bn), Ker(T + A))= 1 (or δ(Ran(T + A),
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Ran(T + A + Bn)) = 1 when Ran(T + A) is closed), n = 1, 2, . . . . It follows from
Lemma 2.3 and Lemma 3.1 that

‖A‖+ ‖Bn‖ ≥ ‖Bn + A‖ ≥ γ(T )δ(Ker(T + A + Bn), KerT )

≥ δ(Ker(T + A + Bn), Ker(T + A)− δ(Ker T, Ker(T + A))
1 + δ(Ker T, Ker(T + A))

,

n ≥ 1. Letting n →∞, we obtain the (3.1).
When Ran(T + A) is closed we have, also by Lemma 2.3 and Lemma 3.1,

‖A‖+ ‖Bn‖ ≥ ‖Bn + A‖ ≥ γ(T )δ(Ran(T ), Ran(T + A + Bn))

≥ δ(Ran(T + A),Ran(T + A + Bn))− δ(Ran(T + A), Ran(T ))
1 + δ(Ran(T + A), Ran(T ))

,

n ≥ 1. Now let n →∞, and we get the inequality (3.2). ¤

Proposition 3.3. Let T ∈ C(X, Y ) and A ∈ B(X,Y ). If one of the following

conditions is satisfied, then |γ(T + A)− γ(T )| ≤ ‖A‖.
(1) dimKer(T + A) = dimKer T < ∞;

(2) dimRan(T + A) = dimRan(T ) < ∞;

(3) codim(T + A) = codim T < ∞.

Proof. For any ε > 0, there is C ∈ B(X,Y ) such that

dimKer(T + A) = dim Ker T < dim Ker(T + A + C), γ(T + A) > ‖C‖ − ε

by Corollary 2.6. Thus, by using Corollary 2.6 again, we have

γ(T ) ≤ ‖A + C‖ ≤ ‖A‖+ ‖C‖ < γ(T + A) + ‖A‖+ ε.

Then γ(T )−γ(T +A) ≤ ‖A‖ as ε → 0. Similarly, we have γ(T +A)−γ(T ) ≤ ‖A‖.
So |γ(T + A)− γ(T )| ≤ ‖A‖.

Similarly, we can obtain the result when T and T + A satisfy (2) or (3). ¤

The following corollary presents two estimates of the perturbation of γ(·) in
the general case.

Corollary 3.4. Let T ∈ C(X, Y ) and A ∈ B(X, Y ). Then

|γ(T + A)− γ(T )|

≤ max{γ(T + A), γ(T )} 2 gap(Ker T,Ker(T + A))
1 + gap(Ker T, Ker(T + A))

+ ‖A‖. (3.3)
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If gap(KerT, Ker(T + A)) < 1, then

|γ(T + A)− γ(T )| ≤ 4‖A‖
1− gap(KerT, Ker(T + A))

. (3.4)

If Ran(T ) and Ran(T + A) are both closed, then

|γ(T + A)− γ(T )|

≤ max{γ(T + A), γ(T )} 2 gap(Ran(T ),Ran(T + A))
1 + gap(Ran(T ), Ran(T + A))

+ ‖A‖. (3.5)

If Ran(T ) and Ran(T +A) are both closed and gap(Ran(T ),Ran(T +A)) < 1,

then

|γ(T + A)− γ(T )| ≤ 4‖A‖
1− gap(Ran(T ), Ran(T + A))

. (3.6)

Proof. By (3.1),

γ(T )− γ(T + A) ≤ γ(T )
2δ(Ker T, Ker(T + A))

1 + δ(Ker T,Ker(T + A))
+ ‖A‖

≤ γ(T )
2 gap(Ker T, Ker(T + A))

1 + gap(Ker T, Ker(T + A))
+ ‖A‖.

Interchanging T and T + A in the above inequality, we get

γ(T + A)− γ(T ) ≤ γ(T + A)
2 gap(Ker T, Ker(T + A))

1 + gap(Ker T,Ker(T + A))
+ ‖A‖.

Thus we have (3.3).
By (3.1) we have

γ(T ) ≥ γ(T + A)
1− δ(Ker(T + A), KerT )
1 + δ(Ker(T + A), KerT )

− ‖A‖.

Thus, by Lemma 2.3,

γ(T + A)− γ(T ) ≤ (γ(T ) + ‖A‖)(1 + δ(Ker(T + A), KerT )
1− δ(Ker(T + A),Ker T )

− γ(T )

≤ 4‖A‖
1− δ(Ker(T + A),Ker T )

≤ 4‖A‖
1− gap(KerT,Ker(T + A))

.

Similarly, we also have

γ(T )− γ(T + A) ≤ 4‖A‖
1− gap(KerT,Ker(T + A))

.

So we get (3.4).
The remaining proofs are similar. ¤
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Remark 3.5. The author proved in [5] that

γ(T ) ≥ γ(S)[1− δ(Ker S, Ker T )]− ‖S − T‖, S, T ∈ B(X, Y )

when X, Y are Hilbert spaces. From this inequality we can deduce (1.4) and

|γ(S)− γ(T )| ≤ 2‖S − T‖
1− gap(KerS, KerT )

, gap(KerS,Ker T ) < 1.

Finally, we discuss the behavior of limn→∞ γ(T + An) for T ∈ C(X, Y ) and
{An} ⊂ B(X, Y ) with limn→∞ ‖An‖ = 0.

Lemma 3.6. Let X, Y be Banach spaces.

(1) For given α > 0, the set {T ∈ B(X, Y ) | γ(T ) ≥ α} is norm–closed in

B(X, Y );

(2) Assume that X, Y are reflexive. Let T ∈ C(X,Y ) and {An} ⊂ B(X, Y ) with

limn→∞ ‖An‖ = 0. If γ = infn≥1 γ(T + An) > 0, then γ(T ) ≥ γ.

Proof. (1) is Lemma 1.9 of [1]. We now prove (2).
We have by (1.2)

‖(T + An)x‖ ≥ γ dist(x, Ker(T + An)), ∀x ∈ D(T ), n ≥ 1. (3.7)

Since X is reflexive, we can pick zn ∈ Ker(T + An) such that ‖x − zn‖ =
dist(x, Ker(T + An)). Then there exists a subsequence {znk

} of {zn} and z ∈ X

such that znk

w−→ z. Consequently, ‖x− z‖ ≤ limk→∞ ‖x− znk
‖. Noting that

lim
k→∞

‖Ank
znk

‖ → 0, T znk
= −Ank

znk
, k ≥ 1 and

lim
k→∞

f(znk
) → f(z0), ∀ f ∈ Ran(T ∗),

we have f(z) = 0, ∀ f ∈ Ran(T ∗). Since X, Y are reflexive and T is densely
defined and closed, it follows from [11, Problem III.5.27, Theorem III.5.29] that
z ∈ Ker T . Therefore we deduce from (3.7) that

‖Tx‖ ≥ γ lim
k→∞

‖x− znk
‖ ≥ γ ‖x− z‖ ≥ γ dist(x, KerT ), x ∈ D(T ),

which implies γ(T ) ≥ γ. ¤

Corollary 3.7. Let X, Y be Banach spaces, T ∈ C(X,Y ) and

{An} ⊂ B(X, Y ).
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(1) If γ(T ) > 0 and Ker T = {0} or Ran(T )= Y , then limn→∞ γ(T +An) = γ(T );

(2) Let X, Y be reflexive. If γ(T ) = 0, then limn→∞ γ(T + An) = 0;

(3) If Ran(T ) is closed and KerT 6= {0}, Ran(T ) 6= Y , then there is {Bn} ⊂
B(X, Y ) with limn→∞ ‖Bn‖ = 0 such that limn→∞ γ(T + Bn) = 0.

Proof. (1) Let n be large enough so that ‖An‖ < γ(T ). Then Ker T = {0}
indicates that Ker(T +An) = {0}. Thus, by Proposition 3.3, |γ(T +An)−γ(T )| ≤
‖An‖.

If Ran(T ) = Y , then Ker T ∗ = {0} and γ(T ∗) = γ(T ) > 0. By applying the
above argument to (T + An)∗ and T ∗, we also have

|γ(T + An)− γ(T )| = |γ((T + An)∗)− γ(T ∗)| ≤ ‖A∗n‖ = ‖An‖.
(2) If limn→∞ γ(T + An) 6= 0, then there exist an ε0 > 0 and a subsequence

{γ(T +Ank
)} of {γ(T +An)} such that γ(T +Ank

) ≥ ε0, ∀ k ≥ 1. Thus γ(T ) ≥ ε0
by Lemma 3.6 (2), which contradicts the assumption γ(T ) = 0.

(3) Pick x0 ∈ KerT with ‖x0‖ = 1 and y0 ∈ Y \Ran(T ) with ‖y0‖ = 1. Let
x∗0 ∈ X∗ such that ‖x∗0‖ = x∗0(x0) = 1 and put Bn(x) = n−1x∗0(x) y0, ∀x ∈ X,
n ≥ 1. Then Ker(T + Bn) = Ker T ∩KerBn, and Ker(T + Bn) $ Ker T , ∀n ≥ 1.
So, by Theorem 2.5, γ(T + Bn) ≤ ‖ − Bn‖ = n−1 hence limn→∞ γ(T + Bn) =
0 6= γ(T ). ¤

Combining Lemma 2.3, and Theorem 2.5 with Lemma 3.6 (1), we have

Corollary 3.8. Let {Tn}⊂B(X, Y ) and T ∈B(X, Y ) with lim
n→∞

‖Tn−T‖=0.

(1) If infn≥1 γ(Tn) > 0, then γ(T ) > 0 and limn→∞ γ(Tn) = γ(T );

(2) If γ(T ) > 0 and γ(Tn) > 0, ∀n ≥ 1, then limn→∞ γ(Tn) = γ(T ) iff

infn≥1 γ(Tn) > 0.

Remark 3.9. (1) Harte and Mbekhta proved that if T ∈ B(X, Y ) with Ran(T )
closed satisfies the condition: Ker T = {0} or Ran(T ) = Y , then γ(·) is continuous
at T ; if T satisfies condition Ker T 6= {0} and Ran(T ) 6= Y , then γ(·) is discon-
tinuous at T ([10, Theorem 9]). By Lemma 3.6 (1), if T ∈ B(X, Y ) is such that
Ran(T ) is not closed, then γ(·) is continuous at T . All this proves the continuity
of γ(·) on B(X, Y ).

(2) Let X, Y be Hilbert spaces and let {Tn} ⊂ B(X, Y ) and T ∈ B(X,Y )
with Ran(T ) and Ran(Tn) closed, n ≥ 1. Assume that limn→∞ ‖Tn − T‖ = 0.
Then Corollary 3.8 (2) can be rewritten as

lim
n→∞

γ(Tn) = γ(T ) iff inf
n≥1

γ(Tn) > 0 and

Ran(Tn) ∩ Ran(T )⊥ = {0} iff KerT ∩Ker T⊥n = {0}
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for n large enough (cf. [5]).

Acknowledgement. The author is grateful to the referee for very helpful
comments and suggestions.
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