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Algebraic approach to equivariance of solutions
for an iterative equation

By WEINIAN ZHANG (Chengdu) and BING XU (Chengdu)

Abstract. Describing the symmetry of a mapping by equivariance with respect to

a linear transformation group, the reference [Proc. Roy. Soc. Edinburgh A130 (2000),

1153–1163] gave the existence of equivariant solutions of the polynomial-like iterative

equation under the action of topologically finitely generated subgroups of GL(R) on R

and the orthogonal group O(N) on R
N (N ≥ 2). In this paper, based on the algebraic

structure of closed subgroups of GL(R), we prove the equivariance of solutions on R

with respect to closed subgroups of GL(R) and extend the result of O(N)-equivariance

of solutions to the group O(N) × 〈cIN 〉 on R
N .

1. Introduction

Related to problems of iterative roots (see [9], [22]), invariant curves (see [9],

[14], [17]) and normal forms of dynamical systems (see (2.16) in [1]), equations

involving iteration become interesting. For a self-mapping f on a Banach space

X over R and a positive integer n, the n-th iterate fn is defined by fn(x) =

f(fn−1(x)) and f0(x) ≡ x. An interesting form of such equations is the so-called

polynomial-like iterative equation, a linear combination of iterates of the unknown

mapping f , i.e.,

λ1f(x) + λ2f
2(x) + · · · + λnfn(x) = F (x), x ∈ X, (1.1)

where F : X → X is a given mapping and all coefficients λi (i = 1, 2, . . . , n)

are real constants. For linear F , equation (1.1) on R was investigated in [2], [8],
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[13], [15], [16], [20], [21]. For nonlinear F , equation (1.1) on R was discussed

in [12], [28] for n = 2 and in [23, 24] for general n. In [22] and [27] the open

problems on the Cm smoothness and the leading coefficient were put forwarded

and later discussed in [11] and [26]. Solutions in R
n and analytic solutions in C

were discussed in [10], [19]. In many of those works fixed points of mappings f

and F are involved, that the normalization condition

n
∑

i=1

λi = 1 (1.2)

is imposed naturally.

As in many references [4], [5], [18], symmetry of a mapping is described by

equivariance of the mapping with respect to a Lie group Γ of linear transforma-

tions. The reason why one prefers the terminology of Lie group to the general

one is, as told on p. 13 of [18], that “this combination of algebra and calculus

leads to powerful techniques for the study of symmetry which are not available

for, say, finite groups”. For a Lie group Γ of linear transformations of X , say that

f : X → X is Γ-equivariant if

f(γx) = γf(x), ∀x ∈ X, γ ∈ Γ.

Sometimes we also say that f : A ⊂ X → X is of Γ-equivariance if f is a restriction

of a Γ-equivariant mapping on the subset A. In [25] equivariance of continuous

solutions for equation (1.1) was discussed under the action of topologically finitely

generated subgroups of GL(R) on R and the orthogonal group O(N) on RN

(N ≥ 2).

In this paper, based on the algebraic structure of closed subgroups of GL(R),

we prove the equivariance of solutions of equation (1.1) on R with respect to

closed subgroups of GL(R), so a more general version of equivariance of solutions

of equation (1.1) is obtained by a different proof. The idea of this proof is to

reduce the equivariant problem by ‘factoring out’ the group action algebraically

to a non-equivariant one. Then, we discuss equation (1.1) on RN and extend the

result of O(N)-equivariance of solutions to the group O(N)×〈cIN〉, where 〈cIN 〉

is the group of positive dilations.

2. Equivariance to closed subgroups of GL(R)

Consider Lie group Γ of linear transformations on RN . and refer to standard

group theory texts such as Fuchs [3] and Hall [6] for group-theoretic back-

ground. As in [4], [5], for any x ∈ R
N the subgroup Σx := {γ ∈ Γ : γx = x},
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called the isotropy group, is a closed subgroup of Γ by continuity. Our discussion

is focused at closed subgroups of Γ.

In the case N = 1, invertible linear transformations of R take the form

x 7→ γx where 0 6= γ ∈ R. Without loss of generality, any Lie group acting linearly

on R can therefore be identified with a subgroup of GL(R), the multiplicative

topological group of nonzero reals, which we can identify with R0 = R\{0}. All

such groups are Abelian.

Let C(I) consist of all continuous real-valued functions on I := [−1, 1] and

FΓ(I) = {f ∈ C(I) | f(γx) = γf(x), ∀γ ∈ Γ and ∀x, γx ∈ I},

F(I; m, M) = {f ∈ C(I) | f(1) = 1, f(−1) = −1, and

m(y − x) ≤ f(y) − f(x) ≤ M(y − x), ∀y > x ∈ I},

FΓ(I; m, M) = F(I; m, M) ∩ FΓ(I),

where M ≥ 1 ≥ m ≥ 0. The main result in this section is the following.

Theorem 1. Suppose that Γ is a closed subgroup of GL(R) and that M > 1.

If F ∈ FΓ(I; 0, M) and (1.2) holds with λ1 > 0, λi ≥ 0 (i = 2, . . . , n), then

equation (1.1) has a continuous solution f ∈ FΓ(I; 0, M/λ1), which possesses

Γ-equivariance.

Before proving the theorem, observe that GL(R) = {cI | 0 6= c ∈ R}, where

I = idR, the identity on R. The following lemma shows the algebraic structure

of closed subgroups of GL(R).

Lemma 1. The closed subgroups of G = GL(R) are:

(a) 1.

(b) 〈c〉 where 0 6= c ∈ R and (without loss of generality) |c| > 1.

(c) Go = {cI | c > 0}.

(d) {−1, 1}.

(e) {−1, 1} × 〈c〉 where 0 6= c ∈ R and (without loss of generality) c > 1.

(f) G.

In order to prove this lemma, we need the following well-known result, which

is Theorem 438 in [7] p. 375.

Lemma 2 (Kronecker’s Theorem). Suppose that a1, a2 ∈ R. (i) If the ratio

a1/a2 is rational then {ka1 + la2 : k, l ∈ Z} = {ka : k ∈ Z} for a constant a ∈ R.

(ii) If the ratio a1/a2 is irrational then the closure of {ka1 + la2 : k, l ∈ Z} is R.
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Proof of Lemma 1. Observe that GL(R) is isomorphic to GL+(R) × Z2

where GL+(R) is the group of dilations x 7→ ax for real a > 0 and Z2 = {−1, 1}.

The subgroups of GL(R) therefore fall into three classes:

Case (1) those contained in GL+(R),

Case (2) those that contain Z2, and

Case (3) those that satisfy neither of these conditions.

The logarithm function provides an isomorphism between GL+(R) and the addi-

tive group of R.

Let H be a closed subgroup of GL+(R), that is, H∗ = {logh : h ∈ H}, the

image of H under logarithm is a closed subgroup of the additive group R. Then,

by Lemma 2, either H∗ = {0}, or H∗ is generated by one element a and hence

is cyclic, or H∗ contains a non-cyclic subgroup with a generating set containing

two elements a, a′ where a′ is not a rational multiple of a and the closure of the

group 〈a, a′〉 generated by a, a′ is the whole of R. This proves (a), (c) and part

of (b) where c > 1.

If H ⊃ Z2 then it is clear that H = H0 × Z2 where H0 is a closed subgroup

of GL+(R). This proves (d), (e) and (f).

In the third case, H must be of the form H = {h, σ(h)} where h ∈ H ′ ⊂

GL+(R) and σ : H ′ → Z2 is a surjective homeomorphism. This is possible only

when H ′ = 〈c0〉 is cyclic and c0 > 1, in which case σ(cn
0 ) = (−1)n and we can

express H as 〈−c0〉. This proves the other part of (b) where c < −1.

Therefore, we have completed the proof of Lemma 1. �

The following known result of continuous solutions is also useful.

Lemma 3 ([23]). Suppose that F : J = [a, b] → J (where a < b) is an

increasing function with fixed points at a and b and Lipschitz constant M > 1

and that (1.2) holds with λ1 > 0, λi ≥ 0 (i = 2, . . . , n). Then (1.1) has an

increasing continuous solution f on J which has the Lipschitz constant M/λ1

and fixes a and b.

Proof of Theorem 1. It suffices to prove Theorem 1 for each of these six

cases provided in Lemma 1.

Case (a) is just the non-equivariant case. Note that F ∈ FΓ(I; 0, M) implies

in particular that F is monotonic increasing, a condition that occurs already in

the non-equivariant case as in [23] and [24], so we can obtain our result directly

from Lemma 3.

In Case (b), there is no loss of generality in assuming that Γ = 〈c〉 where
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c > 1. It follows that

F

(

±
1

ck
x

)

= ±
1

ck
F (x), k = 0, 1, 2 . . . , (2.3)

since F (cx) = cF (x), ∀x ∈ I. Moreover, F (1) = 1 and F (−1) = −1 for any

F ∈ FΓ(I; 0, M). By continuity, (2.3) implies that F (0) = 0. Notice that the

actions of Γ on I+ = [0, 1] and I− = [−1, 0] are independent of each other because

−1 6∈ Γ. So, it suffices to observe FΓ(I+; 0, M). From (2.3), we see that

F

(

1

ck

)

=
1

ck
, k = 0, 1, 2 . . . ,

Let Jk := [1/ck+1, 1/ck]. Then the mapping F restricted on each Jk is in a

non-equivariant case and satisfies the conditions in Lemma 3.

In case (c) Go-equivariance implies that F is a scalar multiple of the identity,

and the condition on fixed points ±1 implies that F is the identity. Now f can

(and must) be chosen to be the identity.

Cases (d,e,f) are similar but with the additional constraint that the function

f must be odd; this can be achieved by working on the interval [0, 1] and extending

to [−1, 0] using equivariance under Z2 = {−1, 1}.

The proofs for cases (b,d,e) can be seen as ‘factoring out’ the group action

by working on the orbit space

R/Γ = {Γ(x) : x ∈ R},

where Γ(x) = {γx : γ ∈ Γ}. Since this is topologically equivalent to a bounded

closed interval, the non-equivariant theorem Lemma 3 can be applied; then the

resulting function is lifted back to the original space (uniquely). �

3. Equivariance to O(N) × 〈cIN〉

In this section consider the action of the group O(N)×〈cIN 〉 on RN (N ≥ 2),

where IN is the identity on RN and 0 < c ∈ R, and generalize the result in [25]

for O(N)-equivariance.

Let Oc denote O(N) × 〈cIN 〉 for short. In standard representation,

O(N) = {A ∈ GL(N) : AAT = IN},
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where AT denotes the transpose of A. For example, O(2) is generated by rota-

tions on R2 and the flip

κ =

(

1 0

0 −1

)

.

Let B = BN = {x ∈ RN | ‖x‖ ≤ 1} and 〈· , ·〉 denote the usual inner product on

RN . Define

FOc
(B) = {f ∈ C(B) | f(γx) = γf(x), ∀γ ∈ Oc and ∀x, γx ∈ B},

F(B; m, M) = {f ∈ C(B) | f fixes ∂B pointwise, and for any v ∈ B,

m(t2 − t1)‖v‖
2 ≤ 〈f(t2v) − f(t1v), v〉 ≤ M(t2 − t1)‖v‖

2

when t2 ≥ t1 and t1v, t2v ∈ B}

and
FOc

(B; m, M) = F(B; m, M) ∩ FOc
(B)

when M ≥ 1 ≥ m ≥ 0.

Theorem 2. Let F ∈ FOc
(B; 0, M) where M > 1. Then the equation

(1.1) where λ1 > 0, λi ≥ 0 (i = 2, . . . , n) and
∑

n

i=1
λi = 1 has a solution f ∈

FOc
(B; 0, M/λ1), which is continuous and possesses O(N)× 〈cIN 〉-equivariance.

Although Oc is not compact, the theory of fixed-point spaces in [5] can still

be applied directly here.

Lemma 4. Suppose f be a Oc-equivariant mapping on RN . If Σ is a sub-

group of Oc then the fixed-point space Fix(Σ), defined by Fix(Σ) = {x ∈ RN |

γx = x, ∀γ ∈ Σ}, is invariant under f .

In fact, the proof is not related to the compactness of the group. For any

x ∈ Fix(Σ), by the equivariance we see that γf(x) = f(γx) = f(x), ∀γ ∈ Σ, that

is, f(x) ∈ Fix(Σ). The next is to characterize Oc-equivariant mappings.

Lemma 5. (a) Let f : RN → RN be an Oc-equivariant mapping. Then

there exists a function f∗ : R
+ := {x ∈ R : x ≥ 0} → R such that f∗(‖x‖) is

Oc-invariant and

f(x) = f∗(‖x‖)x, ∀x ∈ R
N . (3.4)

(b) Conversely if f is of the form (3.4) then f is Oc-equivariant.

Proof. (a) Choose a fixed unit vector u ∈ RN and let Σ be the isotropy

subgroup of u, that is, Σ = {γ ∈ Oc | γu = u}. By definition Fix(Σ) = Ru. Let

r ∈ R+. Since f is Oc-equivariant, by Lemma 4 it maps Fix(Σ) to itself, therefore

f(ru) = φ(r)u for some φ : R
+ → R. Let x ∈ R

N and r = ‖x‖, and define a real
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function f∗ : R+ → R by

f∗(s) =

{

φ(s)/s as s > 0,

0 s = 0.

If x 6= 0 then there exists γ ∈ O(N) ⊂ Oc such that γ(ru) = x. Therefore

f(x) = f(γ(ru)) = γf(ru) = γφ(r)u = φ(r)γu =
φ(r)

r
x = f∗(‖x‖)x

as required. If x = 0 then f(0) = f(x) = f(γx) = γf(0) for all γ ∈ Oc. The fact

that Fix(Oc) = {0} implies f(0) = 0. Clearly ( 3.4) holds for x = 0.

Furthermore, for all γ ∈ Oc, from ( 3.4) we have

γf∗(‖x‖)x = γf(x) = f(γx) = f∗(‖γx‖)γx

for all x ∈ RN , whence f∗(‖x‖) = f∗(‖γx‖) and f∗(‖x‖) is Oc-invariant.

(b) If γ ∈ Oc then

f(γx) = f∗(‖γx‖)γx = f∗(‖x‖)γx = γf∗(‖x‖)x = γf(x), ∀x ∈ R
N ,

that is, f is Oc-equivariant. �

Proof of Theorem 2. Let U be any 1-dimensional linear subspace of RN .

By continuity and the fact that F fixes ∂B pointwise, F maps U ∩ B into itself,

where B = BN is the unit ball. Let u ∈ U be a unit vector. Then U ∩ B = {tu |

t ∈ [−1, 1]}. By Lemma 5, F (tu) = F ∗(|t|)tu for a function F ∗ : R+ → R. Let

F̃ (t) = tF ∗(|t|), ∀t ∈ [−1, 1]. (3.5)

The continuity of F guarantees F̃ is continuous on [−1.1]. In fact, from the proof

of Lemma 5 it is easy to guarantee the continuity of F ∗(t) and F̃ (t) at t 6= 0.

Since F (x) is continuous at x = 0, it follows from ( 3.4) that

lim
t→0+

F ∗(t)t = 0.

This ensures the continuity of F̃ on the whole interval [−1, 1].

Now we claim that F̃ ∈ FZ2×〈c〉(I; 0, M) where I = [−1, 1], Z2 = {−1, 1} and

c > 0. Clearly F̃ ∈ C(I) and is odd, that is, F̃ is Z2-equivariant. By Lemma 5,

F ∗(‖x‖) is O(N) × 〈cIN 〉-invariant. Then

F̃ (c t) = c tF ∗(|c t|) = c tF ∗(‖c tu‖) = c tF ∗(‖tu‖) = c tF ∗(|t|) = c F̃ (t),
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for all t ∈ I, where u ∈ U is the unit vector. Hence F̃ ∈ FZ2×〈c〉(I). Moreover,

since u and −u belong to ∂B we have F ∗(1) = 1 and F̃ (±1) = ±1. Note that for

any t1, t2 ∈ I with t2 > t1,

F (t2u) − F (t1u) = F̃ (t2)u − F̃ (t1)u = (F̃ (t2) − F̃ (t1))u,

and 〈F (t2u) − F (t1u), u〉 = F̃ (t2) − F̃ (t1). Thus F ∈ F(B; 0, M) implies F̃ ∈

F(I; 0, M). Thus what we claimed is true.

From (3.5) we see

F (tu) = F̃ (t)u. (3.6)

By Theorem 1, there exists a function f̃ ∈ FZ2×〈c〉(I; 0, M/λ1) such that

λ1f̃(x) + λ2f̃
2(x) + · · · + λnf̃n(x) = F̃ (x) (3.7)

for t ∈ I. Extend f̃ to f : BN → RN by setting

f(x) = f∗(‖x‖)x (3.8)

where

f∗(t) =

{

f̃(t)/t if t > 0,

0 t = 0.

Clearly f is continuous for x 6= 0 because of the continuity of f̃ . At x = 0

it is obvious that limx→0 ‖f(x)‖ = limx→0 |f
∗(‖x‖)| ‖x‖ = limx→0 |f̃(‖x‖)| = 0.

Therefore f is continuous on BN . For any 0 6= x ∈ BN let t = ‖x‖ and v = x/‖x‖.

Then x = tv and f(x) = f(tv) = f̃(t)v as in (3.6). Clearly fn(x) = f̃n(t)v for

any integer n > 0. Therefore (3.7) implies that

λ1f̃(t)v + λ2f̃
2(t)v + · · · + λnf̃n(t)v = F̃ (t)v,

so that
λ1f(x) + λ2f

2(x) + · · · + λnfn(x) = F (x).

It is easy to verify that f defined in (3.8) is of O(N) × 〈cIN 〉-equivariance, since

f̃ is of Z2 × 〈c〉-equivariance. Hence we have obtained a solution f to (1.1) in

FOc
(B; 0, M/λ1). �

The corresponding results on uniqueness and stability can be given similarly.

4. Applications

Theorem 2, being the main result of this paper and proved on the basis of

Theorem 1, generalizes the N -dimensional result of equivariance given in [25]

from the group O(N) to O(N)× 〈cIN 〉. In order to demonstrate how Theorem 2
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works on a practical example, let us simply consider a mapping F on the unit

disk of R2 defined in polar coordinates by F : (r, θ) 7→ (Φ(r), θ), where Φ is a C1-

smooth function on I+ = [0, 1] of 〈1

2
〉-equivariance. Function Φ can be constructed

by linking C1-smooth functions Φk, each of which is defined on [ 1

2k+1 , 1

2k ] for

k = 0, 1, 2, . . . and satisfies

(i) Φk

(

1

2k

)

= 1

2k , Φk

(

1

2k+1

)

= 1

2k+1 ,

(ii) m ≤ Φ′
k
(r) ≤ M, ∀r ∈

(

1

2k+1 , 1

2k

)

, where 0 ≤ m < 1 < M , and

(iii) Φ′
k
( 1

2k ) = Φ′
k
( 1

2k+1 ) = 1.

One can easily see that

Φ

(

±
1

2k
r

)

= ±
1

2k
Φ(r), k = 0, 1, 2 . . . . (4.9)

Since each γ ∈ O(N)×
〈

1

2
IN

〉

can be expressed as either γ : (r, θ) 7→
(

1

2k r, θ + α
)

or γ : (r, θ) 7→
(

1

2k r,−θ
)

, where k is a positive integer and α is a real number,

we can check with (4.9) that F is equivariant under the action of the group

O(N) ×
〈

1

2
IN

〉

. Thus conditions in Theorem 2 are fulfilled by this mapping F .
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