The \mathcal{L}-dual of a Matsumoto space

By IOANA MONICA MASCA (Brasov), VASILE SORIN SABAU (Sapporo) and HIDEO SHIMADA (Sapporo)

Abstract

In [HS1], [MHSS] the \mathcal{L}-duals of a Randers and Kropina space were studied. In this paper we shall discuss the \mathcal{L}-dual of a Matsumoto space. The metric of this \mathcal{L}-dual space is completely new and it brings a new idea about \mathcal{L}-duality because the \mathcal{L}-dual of Matsumoto metric can be given by means of four quadratic forms and 1-forms on $T^{*} M$ constructed only with the Riemannian metric coefficients, $a_{i j}(x)$ and the 1 -form coefficients $b_{i}(x)$.

1. Introduction

The study of \mathcal{L}-duality of Lagrange and Finsler space was initiated by R. Miron [Mi2] around 1980. Since then, many Finsler geometers studied this topic.

One of the remarkable results obtained are the concrete \mathcal{L}-duals of Randers and Kropina metrics [HS2]. However, the importance of \mathcal{L}-duality is by far limited to computing the dual of some Finsler fundamental functions.

Recently, in [BRS], the complicated problem of classifying Randers metrics of constant flag curvature was solved by means of duality. Other geometrical problems of (α, β)-metrics might be solved on future by considering not the metric itself, but its \mathcal{L}-dual.

The concrete examples of \mathcal{L}-dual metrics are quite few [HS1], [HS2]. In the present paper we succeeded to compute the dual of another well known (α, β) metric, the Matsumoto metric. Surprisingly, despite of the quite complicated computations involved, we obtain the Hamiltonian function by means of four

[^0]quadratic forms and a 1 -form on $T^{*} M$. This metric is completely new and it brings a new idea about \mathcal{L}-duality. The dual of an (α, β)-metric can be given by means of several quadratic forms and 1-forms on $T^{*} M$ constructed only with the Riemannian metric coefficients, $a_{i j}(x)$ and the 1-form coefficients $b_{i}(x)$.

2. The Legendre transformation

2.1. Definitions. Let $F^{n}=(M, F)$ be a n-dimensional Finsler space. The fundamental function $F(x, y)$ is called an (α, β)-metric if F is homogeneous function of α and β of degree one, where $\alpha^{2}=a(y, y)=a_{i j} y^{i} y^{j}, y=\left.y^{i} \frac{\partial}{\partial x^{i}}\right|_{x} \in T_{x} M$ is Riemannian metric, and $\beta=b_{i}(x) y^{i}$ is a 1-form on $\widetilde{T M}=T M \backslash\{0\}$.

A Finsler space with the fundamental function:

$$
\begin{equation*}
F(x, y)=\alpha(x, y)+\beta(x, y), \tag{2.1}
\end{equation*}
$$

is called a Randers space.
A Finsler space having the fundamental function:

$$
\begin{equation*}
F(x, y)=\frac{\alpha^{2}(x, y)}{\beta(x, y)}, \tag{2.2}
\end{equation*}
$$

is called a Kropina space, and one with

$$
\begin{equation*}
F(x, y)=\frac{\alpha^{2}(x, y)}{\alpha(x, y)-\beta(x, y)}, \tag{2.3}
\end{equation*}
$$

is called a Matsumoto space.
Let $C^{n}=(M, K)$ be an n-dimensional Cartan space having the fundamental function $K(x, p)$. We also consider Cartan spaces having the metric function of the following form:

$$
\begin{equation*}
K(x, p)=\sqrt{a^{i j}(x) p_{i} p_{j}}+b^{i}(x) p_{i}, \tag{2.4}
\end{equation*}
$$

or

$$
\begin{equation*}
K(x, p)=\frac{a^{i j}(x) p_{i} p_{j}}{b^{i}(x) p_{i}} \tag{2.5}
\end{equation*}
$$

with $a_{i j} a^{j k}=\delta_{i}^{k}$ and we will again call these spaces Randers and Kropina spaces on the cotangent bundle $T^{*} M$, respectively.

Let $L(x, y)$ be a regular Lagrangian on a domain $D \subset T M$ and let $H(x, p)$ be a regular Hamiltonian on a domain $D^{*} \subset T^{*} M$.

It is known [MHSS] that if L is a differentiable function, we can consider the fiber derivative of L, locally given by the diffeomorphism between the open set $U \subset D$ and $U^{*} \subset D^{*}$:

$$
\begin{equation*}
\varphi(x, y)=\left(x^{i}, \dot{\partial}_{a} L(x, y)\right) \tag{2.6}
\end{equation*}
$$

which is called the Legendre transformation. We can define, in this case, the function $H: U^{*} \rightarrow R$:

$$
\begin{equation*}
H(x, p)=p_{a} y^{a}-L(x, y) \tag{2.7}
\end{equation*}
$$

where $y=\left(y^{a}\right)$ is the solution of the equations:

$$
\begin{equation*}
p_{a}=\dot{\partial}_{a} L(x, y) \tag{2.8}
\end{equation*}
$$

In the same manner, the fiber derivative is locally given by:

$$
\begin{equation*}
\psi(x, p)=\left(x^{i}, \dot{\partial}^{a} H(x, p)\right) \tag{2.9}
\end{equation*}
$$

The function ψ is a diffeomorphism between the same open sets $U^{*} \subset D^{*}$ and $U \subset D$ and we can consider the function $L: U \rightarrow R$:

$$
\begin{equation*}
L(x, y)=p_{a} y^{a}-H(x, p) \tag{2.10}
\end{equation*}
$$

where $p=\left(p_{a}\right)$ is the solution of the equations:

$$
\begin{equation*}
y^{a}=\dot{\partial}^{a} H(x, p) \tag{2.11}
\end{equation*}
$$

The Hamiltonian given by (2.7) is called the Legendre transformation of the Lagrangian L and the Lagrangian given by (2.10) is called the Legendre transformation of the Hamiltonian H.

If (M, K) is a Cartan space, then (M, H) is a Hamilton manifold [MHSS], where $H(x, p)=\frac{1}{2} K^{2}(x, p)$ is 2-homogeneous on a domain of $T^{*} M$. So, we get the following transformation of H on U :

$$
\begin{equation*}
L(x, y)=p_{a} y^{a}-H(x, p)=H(x, p) \tag{2.12}
\end{equation*}
$$

Proposition 1 ([MHSS]). The scalar field $L(x, y)$ defined by (2.12) is a positively 2-homogeneous regular Lagrangian on U.

Therefore, we get the Finsler metric F of U, such that

$$
\begin{equation*}
L=\frac{1}{2} F^{2} \tag{2.13}
\end{equation*}
$$

Thus, for the Cartan space (M, K) one always can locally associate a Finsler space (M, F) which will be called the \mathcal{L}-dual of a Cartan space $\left(M, K_{\mid U^{*}}\right)$.

Conversely, we can associate, locally, a Cartan space to every Finsler space which will be called the \mathcal{L}-dual of a Finsler space $\left(M, F_{\mid U}\right)$.

3. The (α, β) Finsler $-\left(\alpha^{*}, \beta^{*}\right)$ Cartan \mathcal{L}-duality

Let us recall some known results.
Theorem 3.1 ([HS1], [MHSS]). Let (M, F) be a Randers space and $b=\left(a_{i j} b^{i} b^{j}\right)^{\frac{1}{2}}$ the Riemannian length of b_{i}. Then:
(1) If $b^{2}=1$, the \mathcal{L}-dual of (M, F) is a Kropina space on $T^{*} M$ with:

$$
\begin{equation*}
H(x, p)=\frac{1}{2}\left(\frac{a^{i j} p_{i} p_{j}}{2 b^{i} p_{i}}\right)^{2} \tag{3.1}
\end{equation*}
$$

(2) If $b^{2} \neq 1$, the \mathcal{L}-dual of (M, F) is a Randers space on $T^{*} M$ with:

$$
\begin{equation*}
H(x, p)=\frac{1}{2}\left(\sqrt{\tilde{a}^{i j} p_{i} p_{j}} \pm \tilde{b}^{i} p_{i}\right)^{2} \tag{3.2}
\end{equation*}
$$

where

$$
\tilde{a}^{i j}=\frac{1}{1-b^{2}} a^{i j}+\frac{1}{\left(1-b^{2}\right)^{2}} b^{i} b^{j} ; \quad \tilde{b}^{i}=\frac{1}{1-b^{2}} b^{i}
$$

(in (3.2) ${ }^{\prime}-^{\prime}$ corresponds to $b^{2}<1$ and ${ }^{\prime}+^{\prime}$ corresponds to $b^{2}>1$).
Theorem 3.2 ([HS1], [MHSS]). The \mathcal{L}-dual of a Kropina space is a Randers space on $T^{*} M$ with the Hamiltonian:

$$
\begin{equation*}
H(x, p)=\frac{1}{2}\left(\sqrt{\tilde{a}^{i j} p_{i} p_{j}} \pm \tilde{b}^{i} p_{i}\right)^{2} \tag{3.3}
\end{equation*}
$$

where

$$
\tilde{a}^{i j}=\frac{b^{2}}{4} a^{i j} ; \quad \tilde{b}^{i}=\frac{1}{2} b^{i},
$$

(in (3.3) ' ${ }^{\prime}$ corresponds to $\beta<0$ and ' $+^{\prime}$ corresponds to $\beta>0$).
In [HS1] the notation $\alpha^{*}=\left(a^{i j}(x) p_{i} p_{j}\right)^{\frac{1}{2}}, \beta^{*}=b^{i}(x) p_{i}$ are used, where $a^{i j}(x)$ are the reciprocal components of $a_{i j}(x)$ and $b^{i}(x)$ are the components of the vector field on $M, b^{i}(x)=a^{i j}(x) b_{j}(x)$. We can consider the metric functions $K=\alpha^{*}+\beta^{*}$ (Randers metric on $T^{*} M$) or $K=\frac{\alpha^{* 2}}{\beta^{*}}$ (Kropina metric on $T^{*} M$) defined on a domain $D^{*} \subset T^{*} M$. So, one can easily rewrite the previous theorems:

Theorem 3.3. Let (M, F) be a Randers space and $b=\left(a_{i j} b^{i} b^{j}\right)^{\frac{1}{2}}$ the Riemannian lengh of b_{i}. Then:
(1) If $b^{2}=1$, the \mathcal{L}-dual of (M, F) is a Kropina space on $T^{*} M$ with:

$$
\begin{equation*}
H(x, p)=\frac{1}{2}\left(\frac{\alpha^{* 2}}{2 \beta^{*}}\right)^{2} \tag{3.4}
\end{equation*}
$$

(2) If $b^{2} \neq 1$, the \mathcal{L}-dual of (M, F) is a Randers space on $T^{*} M$ with:

$$
\begin{equation*}
H(x, p)=\frac{1}{2}\left(\alpha^{*} \pm \beta^{*}\right)^{2} \tag{3.5}
\end{equation*}
$$

with $\alpha^{*}=\sqrt{\tilde{a}^{i j}(x) p_{i} p_{j}}$ and $\beta^{*}=\tilde{b}^{i} p_{i}$ where

$$
\tilde{a}^{i j}=\frac{1}{1-b^{2}} a^{i j}+\frac{1}{\left(1-b^{2}\right)^{2}} b^{i} b^{j} ; \quad \tilde{b}^{i}=\frac{1}{1-b^{2}} b^{i}
$$

(in (3.5) ${ }^{\prime}-^{\prime}$ corresponds to $b^{2}<1$ and ${ }^{\prime}+^{\prime}$ corresponds to $b^{2}>1$).
Theorem 3.4. The \mathcal{L}-dual of a Kropina space is a Randers space on $T^{*} M$ with the Hamiltonian:

$$
\begin{equation*}
H(x, p)=\frac{1}{2}\left(\alpha^{*} \pm \beta^{*}\right)^{2} \tag{3.6}
\end{equation*}
$$

with $\alpha^{*}=\sqrt{\tilde{a}^{i j}(x) p_{i} p_{j}}$ and $\beta^{*}=\tilde{b}^{i} p_{i}$ where

$$
\tilde{a}^{i j}=\frac{b^{2}}{4} a^{i j} ; \quad \tilde{b}^{i}=\frac{1}{2} b^{i},
$$

(in (3.6) ${ }^{\prime}-^{\prime}$ corresponds to $\beta<0$ and ${ }^{\prime}+^{\prime}$ corresponds to $\beta>0$).
We are going to compute now the dual of a Matsumoto metric. We obtain:
Theorem 3.5. Let (M, F) be a Matsumoto space and $b=\left(a_{i j} b^{i} b^{j}\right)^{\frac{1}{2}}$ the Riemannian length of b_{i}. Then
(1) If $b^{2}=1$, the \mathcal{L}-dual of (M, F) is the space having the fundamental function:

$$
\begin{equation*}
H(x, p)=\frac{1}{2}\left(-\frac{b^{i} p_{i}}{2} \frac{\left(\sqrt[3]{a^{i j} p_{i} p_{j}}+\sqrt[3]{\left(b^{i} p_{i}+\sqrt{\tilde{a}^{i j} p_{i} p_{j}}\right)^{2}}\right)^{3}}{a^{i j} p_{i} p_{j}+\left(b^{i} p_{i}+\sqrt{\tilde{a}^{i j} p_{i} p_{j}}\right)^{2}}\right)^{2} \tag{3.7}
\end{equation*}
$$

where

$$
\tilde{a}^{i j}=b^{i} b^{j}-a^{i j}
$$

(2) If $b^{2} \neq 1$, the \mathcal{L}-dual of (M, F) is the space on $T^{*} M$ having the fundamental function:

$$
\begin{equation*}
H(x, p)=\frac{1}{2}\left(-\frac{b^{i} p_{i}}{200} \frac{25\left(2 \sqrt{d_{2}^{i j} p_{i} p_{j}}+\sqrt{d_{4}^{i j} p_{i} p_{j}}\right)^{2}+d_{8}^{i j} p_{i} p_{j}}{\sqrt{d_{2}^{i j} p_{i} p_{j}} \sqrt{d_{4}^{i j} p_{i} p_{j}}+d_{9}^{i j} p_{i} p_{j}}\right)^{2} \tag{3.8}
\end{equation*}
$$

where

$$
\begin{aligned}
c_{1}^{i j} & =\left(b^{i} b^{j}+2 \varepsilon_{1} a^{i j}\right)^{2}+\left(2 a^{i j}\right)^{2} \varepsilon_{3}, \\
c_{2}^{i j} & =a^{i j}\left(\theta_{4}^{2} b^{i} b^{j}+a^{i j} \varepsilon_{2}\right), \\
c_{3}^{i j} & =\left(2 a^{i j}\right)^{2} \theta_{5}^{3}, \\
\sqrt[3]{\tilde{a}^{i j}} & =\sqrt[3]{c_{1}^{i j}}-2 \sqrt[3]{c_{2}^{i j}}+\sqrt[3]{c_{3}^{i j}}, \\
d_{1}^{i j} & =d_{3}^{i j}+4 m\left(a^{i j} b^{2}-b^{i} b^{j}\right), \\
d_{2}^{i j} & =\sqrt{d_{3}^{i j} a^{i j}}+4 \sqrt{d_{1}^{i j} a^{i j}}-d_{3}^{i j}, \\
d_{3}^{i j} & =2 \sqrt[3]{2 a^{i j}\left(\tilde{a}^{i j}\right)^{2}}, \\
\sqrt{d_{4}^{i j}} & =\sqrt{d_{3}^{i j}}+3 \sqrt{a^{i j}}, \\
\sqrt{d_{5}^{i j}} & =\sqrt{d_{3}^{i j} a^{i j}}, \\
d_{6}^{i j} & =d_{1}^{i j} a^{i j}, \\
\sqrt{d_{7}^{i j}} & =2 \sqrt{d_{2}^{i j}}+\sqrt{d_{4}^{i j}}, \\
d_{8}^{i j} & =200\left(\sqrt{d_{6}^{i j}}+2 n a^{i j}\right)-5\left(4 \sqrt{d_{3}^{i j}}+\sqrt{d_{4}^{i j}}\right), \\
d_{9}^{i j} & =4 \sqrt{d_{6}^{i j}}+4 a^{i j} p+9 \sqrt{d_{5}^{i j}},
\end{aligned}
$$

and

$$
\begin{aligned}
m & =1-b^{2} \\
n & =\frac{20 b^{2}-29}{29}, \\
p & =\frac{1-2 b^{2}}{2} \\
\theta_{1} & =-\frac{712 b^{6}-452 b^{4}+24 b^{2}+1}{1728} \\
\theta_{2} & =\frac{576 b^{4}-2232 b^{2}+2628}{1728}
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{3}=-\left(\frac{8 b^{2}+1}{12}\right)^{2}, \\
& \theta_{4}=\frac{2 b^{2}+1}{6} \\
& \theta_{5}=\frac{11 b^{2}+1}{12}, \\
& \varepsilon_{1}=2\left(\theta_{4}^{2}-\theta_{2}\right), \\
& \varepsilon_{2}=3 \theta_{3} \theta_{4}^{2}+\theta_{2}^{2} \\
& \varepsilon_{3}=4 \varepsilon_{2}-2 \theta_{1}-\varepsilon_{1} .
\end{aligned}
$$

Proof. By putting: $\alpha^{2}=y_{i} y^{i}, b^{i}=a^{i j} b_{j}, \beta=b_{i} y^{i}, \beta^{*}=b^{i} p_{i}, p^{i}=a^{i j} p_{j}$, $\alpha^{* 2}=p_{i} p^{i}=a^{i j} p_{i} p_{j}$, we have $F=\frac{\alpha^{2}}{\alpha-\beta}$, and

$$
\begin{equation*}
p_{i}=\frac{1}{2} \dot{\partial}_{i} F^{2}=\frac{y_{i}}{\alpha-\beta}+\frac{\alpha^{2} b^{i}-y_{i} \beta}{(\alpha-\beta)^{2}} . \tag{3.9}
\end{equation*}
$$

Contracting in (3.9) by p^{i} and b^{i} we get:

$$
\begin{align*}
\alpha^{* 2} & =\frac{F}{(\alpha-\beta)^{2}}\left[F^{2}(\alpha-2 \beta)+\alpha^{2} \beta^{*}\right] \\
\beta^{*} & =\frac{F}{(\alpha-\beta)^{2}}\left[\beta(\alpha-2 \beta)+\alpha^{2} b^{2}\right] \tag{3.10}
\end{align*}
$$

In [Sh], for a Finsler (α, β)-metric F on a manifold M, one constructs a positive function $\phi=\phi(s)$ on $\left(-b_{0} ; b_{0}\right)$ with $\phi(0)=1$ and $F=\alpha \phi(s), s=\frac{\beta}{\alpha}$, where $\alpha=\sqrt{a_{i j} y^{i} y^{j}}$ and $\beta=b_{i} y^{i}$ with $\|\beta\|_{x}<b_{0}, \forall x \in M$.

The function ϕ satisfies: $\phi(s)-s \phi^{\prime}(s)+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}(s)>0,\left(|s| \leq b_{0}\right)$.
A Matsumoto metric is a special (α, β)-metric with $\phi=\frac{1}{1-s}$.
Using SHEN's [Sh] notation $s=\frac{\beta}{\alpha}$, the formula (3.10) become:

$$
\begin{align*}
\alpha^{\star 2} & =F^{2} \frac{1-2 s}{(1-s)^{3}}+F \frac{1}{(1-s)^{2}} \beta^{\star} \\
\beta^{\star} & =F s \frac{1-2 s}{(1-s)^{2}}+F \frac{1}{(1-s)^{2}} b^{2} \tag{3.11}
\end{align*}
$$

Now we put $1-s=t$, i.e. $s=1-t$ and both equations become:

$$
\begin{equation*}
\alpha^{\star 2}=F^{2} \frac{2 t-1}{t^{3}}+F \frac{1}{t^{2}} \beta^{\star} \tag{3.12}
\end{equation*}
$$

$$
\begin{equation*}
\beta^{\star}=F(1-t) \frac{2 t-1}{t^{2}}+F \frac{1}{t^{2}} b^{2} . \tag{3.13}
\end{equation*}
$$

We get

$$
\begin{equation*}
\beta^{*} t^{2}=M\left(-2 t^{2}+3 t+b^{2}-1\right) \tag{3.14}
\end{equation*}
$$

For $b^{2}=1$ from (3.13) we obtain:

$$
\begin{equation*}
F=-\frac{\beta^{*} t}{2 t-3} \tag{3.15}
\end{equation*}
$$

and by substitution of F in (3.12), after some computations we get a cubic equation:

$$
\begin{equation*}
t^{3}-3 t+\frac{9}{4} t-\frac{\beta^{\star}}{2 \alpha^{\star 2}}=0 \tag{3.16}
\end{equation*}
$$

Using Cardano's method for solving cubic equation [Wi], we get:

$$
\begin{equation*}
F=-\frac{\beta^{\star}}{2} \frac{(2 P-1)^{2}}{3 P^{2}+(P-1)^{2}} \tag{3.17}
\end{equation*}
$$

where for P we have:

$$
\begin{equation*}
P=\frac{1}{2} \sqrt[3]{\left(\frac{\beta^{\star}+\sqrt{\beta^{\star 2}-\alpha^{\star 2}}}{\alpha^{\star}}\right)^{2}} \tag{3.18}
\end{equation*}
$$

After some computations, for F we get:

$$
\begin{equation*}
F=-\frac{\beta^{\star}}{2} \frac{\left(\sqrt[3]{\alpha^{\star 2}}+\sqrt[3]{\left(\beta^{\star}+\sqrt{\beta^{\star 2}-\alpha^{\star 2}}\right)^{2}}\right)^{3}}{\alpha^{\star 2}+\left(\beta^{\star}+\sqrt{\beta^{\star 2}-\alpha^{\star 2}}\right)^{2}} \tag{3.19}
\end{equation*}
$$

Substituting now $\beta^{*}=b^{i} p_{i}$ and $\alpha^{* 2}=p_{i} p^{i}=a^{i j} p_{i} p_{j}$ we can easily get (3.7).
If $b^{2} \neq 1$, the formula (3.15) is more complicated because:

$$
\begin{equation*}
F=\frac{\beta^{*} t^{2}}{-2 t^{2}+3 t+b^{2}-1} \tag{3.20}
\end{equation*}
$$

and by substituting this in (3.12) we obtain the quadric equation:

$$
\begin{equation*}
t^{4}-3 t^{3}+t^{2} \frac{13-4 b^{2}}{4}+t \frac{6 \alpha^{* 2}\left(b^{2}-1\right)}{4 \alpha^{* 2}}+\frac{\alpha^{* 2}\left(b^{2}-1\right)^{2}+\beta^{* 2}\left(1-b^{2}\right)}{4 \alpha^{* 2}}=0 \tag{3.21}
\end{equation*}
$$

After a quite long computation, formula (3.21) becomes a cubic equation (different from (3.16)) and solving it, we get:

$$
\begin{align*}
F= & -\frac{\beta^{*}}{2}\left(\left(\sqrt{\left.-A^{2}+3 A+2 \sqrt{A^{2}+m\left(b^{2}-\frac{\beta^{* 2}}{\alpha^{* 2}}\right.}\right)}+\frac{A}{2}+\frac{3}{4}\right)^{2}\right. \\
& \left.+\sqrt{A^{2}+m\left(b^{2}-\frac{\beta^{* 2}}{\alpha^{* 2}}\right)}-\frac{5}{4}\left(A+\frac{3}{10}\right)^{2}+n\right) \\
& /\left((\frac { 3 } { 2 } + 2 A) \left(\sqrt{\left.-A^{2}+3 A+2 \sqrt{A^{2}+m\left(b^{2}-\frac{\beta^{* 2}}{\alpha^{* 2}}\right.}\right)}\right.\right. \\
& \left.+2 \sqrt{A^{2}+m\left(b^{2}-\frac{\beta^{* 2}}{\alpha^{* 2}}\right)}+\frac{9}{2} A+p\right) \tag{3.22}
\end{align*}
$$

where

$$
\begin{equation*}
A^{2}=\sqrt[3]{\left(\frac{1}{2} \frac{\beta^{* 2}}{\alpha^{* 2}}+\varepsilon_{1}\right)^{2}+\varepsilon_{3}}+\sqrt[3]{-4\left(\theta_{4}^{3} \frac{\beta^{* 2}}{\alpha^{* 2}}+\varepsilon_{2}\right)}+\theta_{5} \tag{3.23}
\end{equation*}
$$

By substituting now $\beta^{*}=b^{i} p_{i}$ and $\alpha^{* 2}=p_{i} p^{i}=a^{i j} p_{i} p_{j}$, after some computations, from (3.23) we obtain (3.8).

3.1. Remarks.

(1) It is easy to see that both relations, (3.7) and (3.8), are coming from (3.14). Indeed, substituting $b^{2}=1$ in (3.14) we get the cubic equation (3.16). As solution, we find (3.7). For $b^{2} \neq 1$, from (3.14) we get the complicated quadric equation (3.21) with (3.8) as solution. If in (3.21) we would replace $b^{2}=1$ we would get $t^{4}-3 t^{3}+\frac{9}{4}=0$ with $t_{1}=t_{2}=0$ and $t_{3}=t_{4}=\frac{3}{2}$. It is impossible for these four solutions to exist in our proof. So, we can easily see that (3.7) and (3.8) are two different relations and we can't get (3.7) as a particular case of (3.8).
(2) Using α^{*} and β^{*} we can get, for the \mathcal{L}-dual of (M, F), in the case $b^{2}=1$, the fundamental function:

$$
\begin{equation*}
H(x, p)=\frac{1}{2}\left(-\frac{\beta^{\star}}{2} \frac{\left(\sqrt[3]{\alpha^{\star 2}}+\sqrt[3]{\left(\beta^{\star}+\sqrt{\beta^{\star 2}-\alpha^{\star 2}}\right)^{2}}\right)^{3}}{\alpha^{\star 2}+\left(\beta^{\star}+\sqrt{\beta^{\star 2}-\alpha^{\star 2}}\right)^{2}}\right)^{2} \tag{3.24}
\end{equation*}
$$

(3) In (3.7) $\tilde{a}^{i j}$ is positive-definite and the Randers metric on $T^{*} M$ $p_{i} b^{i}+\sqrt{p_{i} p_{j} \tilde{a}^{i j}}$ is positive-valued for any p.

4. Conclusions

Let's take a second look at formula (3.8). If we introduce the following quadratic forms:

$$
\begin{array}{ll}
\alpha_{2}^{*}=\sqrt{d_{2}^{i j} p_{i} p_{j}}, & \alpha_{4}^{*}=\sqrt{d_{4}^{i j} p_{i} p_{j}} \\
\alpha_{8}^{*}=\sqrt{d_{8}^{i j} p_{i} p_{j}}, & \alpha_{9}^{*}=\sqrt{d_{9}^{i j} p_{i} p_{j}}
\end{array}
$$

defined on $T^{*} M$ by the corresponding matrices, then (3.8) becomes:

$$
\begin{equation*}
H(x, p)=\frac{1}{2}\left(-\frac{\beta^{*}}{200} \frac{25\left(2 \alpha_{2}^{*}+\alpha_{4}^{*}\right)^{2}+\left(\alpha_{8}^{*}\right)^{2}}{\alpha_{2}^{*} \alpha_{4}^{*}+\left(\alpha_{9}^{*}\right)^{2}}\right)^{2} \tag{4.1}
\end{equation*}
$$

for $b^{2} \neq 1$.
In other words, the \mathcal{L}-duals of a Randers and Kropina metrics are expressed only with the duals α^{*}, β^{*} of α, β, respectively. However, the \mathcal{L}-dual of a Matsumoto metric is given by means of four distinct quadratic forms on $T^{*} M$. Remark that the coefficients of the quadratic forms are constructed only from the Riemannian metric matrix element, $a_{i j}$ and the 1-forms β 's coefficients $b_{i}(x)$.

Inevitably, the following question occurs: if $d_{2}^{i j}, d_{4}^{i j}, d_{8}^{i j}, d_{9}^{i j}$ are positively defined and therefore making sure that $\alpha_{2}^{*}, \alpha_{4}^{*}, \alpha_{8}^{*}, \alpha_{9}^{*}$ exist.

The answer is not quite immediate and depends both on the value of b^{2} and on $a^{i j}, b^{i}, b^{j}$. For example, if we take $b^{2}<\frac{1}{2}$ and $a^{i j}>2 b^{i} b^{j}$ then, not only $d_{2}^{i j}$, $d_{4}^{i j}, d_{8}^{i j}, d_{9}^{i j}$ are positively defined but also the four quadric forms are defined.

Certainly, there are many other values for $b^{2}, a^{i j}, b^{i}, b^{j}$ which give a certain positive answer, but the above values justify the existence of (4.1).

4.1. Remarks, examples.

Remark 4.1. For the \mathcal{L}-dual of (4.1) we obtain the Matsumoto space with the fumdamental function:

$$
\begin{equation*}
F=\frac{\tilde{a}_{i j} y^{i} y^{j}}{\sqrt{b^{2} a_{i j} y^{i} y^{j}}-\tilde{b}_{i} y^{i}}, \tag{4.2}
\end{equation*}
$$

where

$$
\begin{aligned}
\tilde{b}_{i}= & 4 b^{2} b_{i}, \\
\tilde{a}_{i j}= & a_{i j}^{2} b_{i} b_{j}\left(7+8 b^{2}\right)-\sqrt{a_{i j}} b_{i}\left[a_{i j}\left(1+2 b^{2}\right)-12 b_{i} b_{j}\right] \\
& \pm m\left[a_{i j}^{2} b_{i}\left(7+8 b^{2}\right)-\sqrt{a_{i j}}\left(a_{i j}-12 b_{i} b_{j}\right)\right],
\end{aligned}
$$

and

$$
m=\sqrt{b_{i} b_{j}-b^{2} a_{i j}}
$$

The other properties like curvature and the relation between geometrical properties of the \mathcal{L}-dual metric (4.1) and the initial Matsumoto metric will be studied elsewhere.

Example 1. Let us consider a particular example and find its \mathcal{L}-dual. For this, let us consider a surface S emebedded in the usual Euclidian space R^{3}, i.e.

$$
S \hookrightarrow R^{3}, \quad(x, y) \in S \longrightarrow(x, y, z=f(x, y)) \in R^{3}
$$

It is known that the induced Riemannian metric on the surface S is given by:

$$
\left(a_{i j}\right)=\left(\begin{array}{cc}
1+\left(f_{x}\right)^{2} & f_{x} f_{y} \\
f_{x} f_{y} & 1+\left(f_{y}\right)^{2}
\end{array}\right)
$$

where f_{x} and f_{y} means partial derivative with respect to x and y, respectively.
If we consider now a coordinate system $(x, y, u, v) \in T M$ in the tangent bundle $T M$, then for α and β one can choose:

$$
\alpha^{2}=\left(1+f_{x}^{2}\right)^{2} u^{2}+2 f_{x} f_{y} u v+\left(1+f_{y}^{2}\right)^{2} v^{2}
$$

and

$$
\beta=f_{x} u+f_{y} v .
$$

Now, for the induced Riemannian metric, we have:

$$
\begin{aligned}
\operatorname{det}\left\|a_{i j}\right\| & =1+f_{x}^{2}+f_{y}^{2} \\
\left(a^{i j}\right) & =\left(\begin{array}{cc}
\frac{1+\left(f_{y}\right)^{2}}{1+f_{x}^{2}+f_{y}^{2}} & -\frac{f_{x} f_{y}}{1+f_{x}^{2}+f_{y}^{2}} \\
-\frac{f_{x} f_{y}}{1+f_{x}^{2}+f_{y}^{2}} & \frac{1+\left(f_{x}\right)^{2}}{1+f_{x}^{2}+f_{y}^{2}}
\end{array}\right) \\
\tilde{b}^{1} & =\frac{f_{x}}{1+f_{x}^{2}+f_{y}^{2}}, \quad \tilde{b}^{2}=\frac{f_{y}}{1+f_{x}^{2}+f_{y}^{2}}
\end{aligned}
$$

and for the Riemannian length of \tilde{b}_{i} :

$$
b^{2}=\frac{f_{x}^{2}+f_{y}^{2}}{1+f_{x}^{2}+f_{y}^{2}}, \quad 0<b^{2}<1
$$

Using these and following step by step the second case of Theorem 3.5, we find:

$$
d_{2}^{11}=M(A+4 B)-A^{2},
$$

$$
\begin{aligned}
& d_{2}^{12}=d_{2}^{21}=P^{2}[E(1-E)+4 F], \\
& d_{2}^{22}=N(C+4 D)-C^{2}, \\
& d_{4}^{11}=A+3 M, \\
& d_{4}^{12}=d_{4}^{21}=P(E+3), \\
& d_{4}^{22}=C+3 N, \\
& d_{8}^{11}=5 M[40(B+2 n M)-3]-25 A, \\
& d_{8}^{12}=d_{8}^{21}=5 P[40 P(F+2 n)-5 E-3], \\
& d_{8}^{22}=5 N[40(D+2 n N)-3]-25 C, \\
& d_{9}^{11}=M(4 B+4 p+9 A), \\
& d_{9}^{12}=d_{9}^{21}=P^{2}(4 F-4 p+9 E), \\
& d_{9}^{22}=N(4 D+4 p+9 C),
\end{aligned}
$$

where

$$
M=\sqrt{\frac{1+\left(f_{y}\right)^{2}}{1+f_{x}^{2}+f_{y}^{2}}}, \quad N=\sqrt{\frac{1+\left(f_{x}\right)^{2}}{1+f_{x}^{2}+f_{y}^{2}}}, \quad P=\sqrt{-\frac{f_{x} f_{y}}{1+f_{x}^{2}+f_{y}^{2}}},
$$

and

$$
\begin{array}{ll}
A=\sqrt{R_{1}-R_{2}+2 M^{2} \theta_{5}}, & B=\sqrt{R_{1}-R_{2}+M^{2} \theta_{6}}, \\
C=\sqrt{R_{3}-R_{4}+2 N^{2} \theta_{5}}, & D=\sqrt{R_{3}-R_{4}+N^{2} \theta_{6}},
\end{array}
$$

and

$$
E=\sqrt{R_{5}}, \quad F=\sqrt{R_{5}+\frac{4}{c}}
$$

where

$$
\begin{aligned}
& R_{1}=2 \sqrt[3]{2 \frac{f_{x}^{4}\left(1+f_{y}^{2}\right)}{\left(1+f_{x}^{2}+f_{y}^{2}\right)^{5}}+8 \varepsilon_{1} \frac{f_{x}^{2}\left(1+f_{y}^{2}\right)^{2}}{\left(1+f_{x}^{2}+f_{y}^{2}\right)^{4}}+8 \varepsilon_{4} \frac{\left(1+f_{y}^{2}\right)^{3}}{\left(1+f_{x}^{2}+f_{y}^{2}\right)^{3}}} \\
& R_{2}=4 \sqrt[3]{2 \varepsilon_{2} \frac{\left(1+f_{y}^{2}\right)^{3}}{\left(1+f_{x}^{2}+f_{y}^{2}\right)^{3}}+\theta_{4}^{2} \frac{f_{x}^{2}\left(1+f_{y}^{2}\right)^{2}}{\left(1+f_{x}^{2}+f_{y}^{2}\right)^{4}}}, \\
& R_{3}=2 \sqrt[3]{2 \frac{f_{y}^{4}\left(1+f_{x}^{2}\right)}{\left(1+f_{x}^{2}+f_{y}^{2}\right)^{5}}+8 \varepsilon_{1} \frac{f_{y}^{2}\left(1+f_{x}^{2}\right)^{2}}{\left(1+f_{x}^{2}+f_{y}^{2}\right)^{4}}+8 \varepsilon_{4} \frac{\left(1+f_{x}^{2}\right)^{3}}{\left(1+f_{x}^{2}+f_{y}^{2}\right)^{3}}},
\end{aligned}
$$

$$
\begin{aligned}
& R_{4}=4 \sqrt[3]{2 \varepsilon_{2} \frac{\left(1+f_{x}^{2}\right)^{3}}{\left(1+f_{x}^{2}+f_{y}^{2}\right)^{3}}+\theta_{4}^{2} \frac{f_{y}^{2}\left(1+f_{x}^{2}\right)^{2}}{\left(1+f_{x}^{2}+f_{y}^{2}\right)^{4}}} \\
& R_{5}=2\left(\sqrt[3]{2\left(\frac{1}{c}-2 \varepsilon_{1}\right)^{2}+8 \varepsilon_{2}}+2 \theta_{5}-2 \sqrt[3]{2 \varepsilon_{2}-\frac{2}{c} \theta_{4}^{2}}\right),
\end{aligned}
$$

and

$$
\begin{gathered}
c=1+f_{x}^{2}+f_{y}^{2}, \\
m=\frac{1}{1+f_{x}^{2}+f_{y}^{2}}, \\
n=-\frac{29+9 f_{x}^{2}+9 f_{y}^{2}}{29\left(1+f_{x}^{2}+f_{y}^{2}\right)}, \\
p=\frac{1-f_{x}^{2}-f_{y}^{2}}{2\left(1+f_{x}^{2}+f_{y}^{2}\right)}, \\
\theta_{1}=-\frac{258 c^{3}-1256 c^{2}+1684 c-712}{12^{3} c^{3}}, \\
\theta_{2}=\frac{81 c^{2}+90 c+48}{12^{2} c^{2}}, \\
\theta_{3}=-\left(\frac{9 c-8}{12 c}\right)^{2}, \\
\theta_{4}=\frac{3 c-2}{6 c}, \\
\theta_{5}=\frac{12 c-11}{12 c}, \\
\theta_{6}=\frac{12 c^{2}+13 c-24}{6 c^{2}}, \\
\varepsilon_{1}=\frac{-45 c^{2}-138 c-32}{12^{2} c^{2}}, \\
\varepsilon_{2}=\frac{-2187 c^{4}+41796 c^{3}-15660 c^{2}+24768 c-768}{12^{4} c^{4}}, \\
\varepsilon_{3}=\frac{921 c^{4}+14732 c^{3}-1084 c^{2}+6832 c-256}{12^{3} c^{4}}, \\
\varepsilon_{4}=\frac{13077 c^{4}+189204 c^{3}+8916 c^{2}+90816 c-2048}{12^{4} c^{4}},
\end{gathered}
$$

getting in this way all the four quadric form which allow us to find, in $T^{*} M$, using (4.1), the \mathcal{L}-dual of our particular Matsumoto space from above.

For the above construction, we need to analyze the existence of the expressions under the radicals. M, N allways exist.

First of all, because of the radical in the expression of P we must have $f_{x} f_{y} \leq 0$. If $f_{x} f_{y}=0$ we get $d_{2}^{12}=d_{2}^{21}=0$ and $d_{4}^{12}=d_{4}^{21}=0, d_{8}^{12}=d_{8}^{21}=0$, $d_{9}^{12}=d_{9}^{21}=0$.

Let us put $\Delta=\left(\varepsilon_{1}-\theta_{4}^{2}\right)^{2}-4\left(\varepsilon_{4}-2 \varepsilon_{2}\right)$ and $S=4\left(\varepsilon_{4}-2 \varepsilon_{2}\right)$. Therefore, we have:

If $\Delta<0$ then $R_{1}-R_{2} \geq 0$ and $R_{3}-R_{4} \geq 0$ for any value of c. This allows us to conclude that A, B, C, D always exist.

If $\Delta \geq 0$ and $c \in\left[1, \frac{4}{3}\right]$ or $\Delta \geq 0$ and $S \geq 0$, then $R_{1}-R_{2} \geq 0$ and $R_{3}-R_{4} \geq 0$ proving the existence of A, B, C, D.

We also need to have $R_{5} \geq 0$. But this depends on the value of $c \geq 1$. For example, if $c \in\left[1, \frac{4}{3}\right]$ we have $R_{5} \in[-0,0701 ; 2,1898]$.

To complete our discussion, we mention here the following result [SS1]: if $f_{x}^{2}+f_{y}^{2} \leq \frac{1}{3}$ i.e. $1 \leq c \leq \frac{4}{3}$, then $\frac{f_{x}^{2}+f_{y}^{2}}{1+f_{x}^{2}+f_{y}^{2}} \leq \frac{1}{4}$ and the fundamental tensor $g^{i j}$ of Matsomoto space $F=\frac{\alpha^{2}}{\alpha-\beta}$ with α and β defined above is positively defined, or equivalently, the indicatrix is convex.

Example 2. Let us consider the surface S to be a plane, $z=f(x, y)=\frac{1}{2} x$.
The convexity condition for the indicatrix is satisfied, i.e.: $f_{x}^{2}+f_{y}^{2}=\frac{1}{4}<\frac{1}{3}$. Now, $f_{x}=\frac{1}{2}, f_{y}=0$,

$$
\left(a_{i j}\right)=\left(\begin{array}{cc}
\frac{5}{4} & 0 \\
0 & 1
\end{array}\right), \quad \operatorname{det}\left\|a_{i j}\right\|=\frac{5}{4}, \quad\left(a^{i j}\right)=\left(\begin{array}{cc}
\frac{4}{5} & 0 \\
0 & 1
\end{array}\right)
$$

and $\tilde{b}^{1}=\frac{2}{5}, \tilde{b}^{2}=0$ and $b^{2}=\frac{1}{5}$.
Following the calculus from above, we get:

$$
\begin{aligned}
& d_{2}^{11}=10.7621695 \\
& d_{2}^{12}=d_{2}^{21}=0 \\
& d_{2}^{22}=18.5916118 \\
& d_{4}^{11}=4.1619406 \\
& d_{4}^{12}=d_{4}^{21}=0 \\
& d_{4}^{22}=3.3692342, \\
& d_{8}^{11}=255.0575035
\end{aligned}
$$

$$
\begin{aligned}
& d_{8}^{12}=d_{8}^{21}=0 \\
& d_{8}^{22}=185.6868118 \\
& d_{9}^{11}=24.6023378 \\
& d_{9}^{12}=d_{9}^{21}=0 \\
& d_{9}^{22}=23.1147203,
\end{aligned}
$$

and for the four quadratic forms and β^{*} we get:

$$
\begin{aligned}
& \alpha_{2}^{* 2}=10.7621695 t^{2}+18.5916118 s^{2} \\
& \alpha_{4}^{* 2}=4.1619406 t^{2}+3.3692342 s^{2} \\
& \alpha_{8}^{* 2}=255.0575035 t^{2}+185.6868118 s^{2} \\
& \alpha_{9}^{* 2}=24.6023378 t^{2}+23.1147203 s^{2} \\
& \beta^{*}=0.4 t
\end{aligned}
$$

References

[AIM] P. L. Antonelli, R. S. Ingarden and M. Matsumoto, The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, FTPH no. 58, Kluwer Acad. Publ., 1993.
[BCS] D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemannian-Finsler Geometry, Graduate Texts in Mathematics 200, Springer-Verlag, 2000.
[BRS] D. Bao,C. Robles and Z. Shen, Zermelo navigation on Riemannian Manifolds, J. Diff. Geoт. 66 (2004), 377-435.
[HS1] D. Hrimiuc and H. Shimada, On the \mathcal{L}-duality between Lagrange and Hamilton manifolds, Nonlinear World 3 (1996), 613-641.
[HS2] D. Hrimiuc and H. Shimada, On some special problems concerning the \mathcal{L}-duality between Finsler and Cartan spaces, Tensor N. S. 58 (1997), 48-61.
[Ma] M. Matsumoto, Foundations of Finsler Geometry and Special Finsler Spaces, Kaisheisha Press, Otsu, Japan, 1986.
[Mi1] R. Miron, Cartan Spaces in a new point of view by considering them as duals of Finsler spaces, Tensor N. S. 46 (1987), 330-334.
[Mi2] R. Miron, The Geometry of Higher-Order Hamilton Spaces: Applications to Hamiltonian Mechanics, FTPH no. 132, Kluwer Acad. Publ., 2003.
[MA] R. Miron and M. Anastasiei, The Geometry of Lagrange Spaces: Theory and Applications, FTPH no. 59, Kluwer Acad. Publ., 1994.
[MHSS] R. Miron, D. Hrimiuc, H. Shimada and S. V. Sabau, The Geometry of Hamilton and Lagrange Spaces, FTPH no. 118, Kluwer Acad. Publ., 2001.
[SS] S. V. Sabau and H. Shimada, Classes of Finsler spaces with (α, β)-metrics, Rep. Math. Phys. 47 (2001), 31-48.
[SSe] S. V. Sabau and H. Shimada, Errata for the paper "Classes of Finsler spaces with (α, β)-metrics", in Rep. Math. Phys. 47, (2001), 31-48, Rep. Math. Phys. 51 (2003), 149-152.
[SS1] H. Shimada and S. V. Sabau, Introduction to Matsumoto metric, Nonlinear Analysis 63 (2005), e165-e168.
[Sh] Z. Shen, On Landsberg (α, β)-metrics, 2006, http://www.math.iupiu.edu/ ~zshen/Research/papers.
[Wi] Wikipedia, http://en.wikipedia.org/wiki/.
IOANA MONICA MASCA
COLEGIUL NATIONAL DE INFORMATICA 'GRIGORE MOISIL' BRAŞOV
CALEA BUCUREŞTI 75 BRASOV
ROMANIA
E-mail: masca_ioana@rdsbv.ro
VASILE SORIN SABAU
HOKKAIDO TOKAI UNIVERSITY
MINAMIKU
MINAMISAWA, 5-1-1-1, SAPPORO
JAPAN
E-mail: sorin@cc.htokai.ac.jp
HIDEO SHIMADA
HOKKAIDO TOKAI UNIVERSITY
MINAMIKU
MINAMISAWA, 5-1-1-1, SAPPORO
JAPAN
E-mail: shimada@es.htokai.ac.jp
(Received January 25, 2007; revised June 21, 2007)

[^0]: Mathematics Subject Classification: 53B40, 53C60.
 Key words and phrases: Matsumoto space, Finsler space, Cartan space, the duality between Finsler and Cartan spaces.

