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On algebras that are sums of two subalgebras satisfying certain
polynomial identities

By MAREK KȨPCZYK (BiaÃlystok)

Abstract. We study an associative algebra A over an arbitrary field that is a

sum of two subalgebras B and C (i.e. A = B + C). We prove that if B and C have

commutative ideals of finite codimension then A/I, for some nilpotent ideal I of A, has

a commutative ideal of finite codimension. Similar statements are shown for nilpotent

and nil of bounded index ideals.

1. Introduction

Let R be an associative ring and R1, R2 its subrings such that R = R1 +R2,
i.e. for every r ∈ R there are r1 ∈ R1 and r2 ∈ R2 such that r = r1 + r2.
In [4] K. I. Beidar and A. V. Mikhalev stated the following problem: if
both Ri satisfy polynomial identities (shortly, are PI rings),whether then also R

is a PI ring. The problem for particular identities was studied in many papers
(cf. [2], [5], [6], [7], [8], [9], [11]). Before the problem was raised, three results
(important for this work) related to this problem were obtained. Kegel [5]
proved that if Ri are nilpotent, then so is R. In [6] it was shown that if Ri

are nil of bounded index (i.e. they satisfy identity xni = 0), then so is R. In
[2] Bahturin and Giambruno proved that if both Ri are commutative, then
R satisfies the identity [x1, y1][x2, y2] = 0, where as usual [x, y] = xy − yx. In
[11] Petravchuk considered certain generalization of the two cited results for
algebras over an arbitrary field that have commutative ideals of finite codimension
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(such algebras are called almost commutative) and algebras that have a nilpotent
ideals of finite codimension (such algebras are called almost nilpotent). He proves
that if both Ri are almost commutative subalgebras, then R contains a nilpotent
ideal I such that R/I is almost commutative. Moreover he shows that if both Ri

are almost nilpotent then so is R.
However, his proof contains a mistake. Namely Corollary 2, which plays a

key role in the proof, is false.
It states: Let H be an algebra and I be a right (left) almost nilpotent ideal

of H. Then I is contained in some almost nilpotent ideal of the algebra H.
We shall give a counterexample. Let H be the algebra of all infinite matrices

over K that have only finitely many non-zero rows. Let us consider the subset I

of H consisting of all the matrices having nonzero entries only in the first column
and let J be the subset of all matrices in I whose first row is zero. It is clear that I

is a left ideal of H, J is a ideal of I and J2 = 0. Since in addition dimK I/J = 1,
I is not almost nilpotent. Obviously H is simple infinite dimensional algebra
over K. Hence, the only ideal of H containing I is H, but H is not almost
nilpotent. Subset of all matrices in H that have nonzero entries only in the top
row is a right almost nilpotent ideal of H, which shows that above lemma is not
true.

In this paper we give correct proofs of Petravchuk’s results. Our proofs are
partially based on some of Petravchuk’s ideas, but contain also some substantial
new reasoning.

We also show in this paper that a sum of two almost nil of bounded index
algebras is almost nil of bounded index.

2. The main results

We consider associative algebras over a fixed field K, which are not assumed
to have an identity. If I is an ideal (left ideal, right ideal) of a ring (of an algebra)
A, we write I C A (I <l A, I <r A).

By F , N , B and C we denote the class of all finite dimensional algebras,
nilpotent algebras, nil of bounded index algebras and commutative algebras, re-
spectively.

Let us consider two arbitrary classes of algebras S and T, for which 0 ∈ S
and 0 ∈ T. Let ST = {A | ∃I C A, I ∈ S : A/I ∈ T}. Obviously S ⊆ ST and
T ⊆ ST. Thus CF denotes the class of almost commutative algebras; NF the
class of almost nilpotent algebras; BF the class of almost nil of bounded index
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algebras. It is well known that if J C I C A and J is nilpotent then J lies in
some nilpotent ideal JA of the algebra A and JA ⊆ I. Thus (NR)S = N (RS)
for arbitrary classes of algebras R and S. Clearly NN = N and NB = B.

Throughout the paper A is an algebra over K, B and C are subalgebras of A

such that A = B +C. Moreover, let B0 CB and C0 CC, where dimK B/B0 < ∞
and dimK C/C0 < ∞.

Using the above notation, one can state the main results of this paper as
follows:

Theorem 1. If B ∈ NF and C ∈ NF , then A ∈ NF .

Theorem 2. If B ∈ BF and C ∈ BF , then A ∈ BF .

Theorem 3. If B ∈ CF and C ∈ CF , then A ∈ NCF .

3. Preliminary material

The centre of an algebra H is denoted by Z(H). For a given subset S of an
algebra H, by lH(S) and rH(S) we will denote the left and right annihilators of S

in H, respectively.
We shall need the following

Lemma 4 ([10]). Let H be an algebra over an arbitrary field and P a

subalgebra of H such that dim H/P < ∞. Then P contains an ideal I of H such

that dim H/I < ∞.

We will use the following modification of Petravchuk’s Lemma 7 from [11]
(cf. also [13]). We include its short proof for completeness.

Lemma 5. Let P1 and P2 be subalgebras of an algebra H and let I be an

ideal of H such that I ⊆ P1 + P2. Then there exist subalgebras Q1 ⊆ P1 and

Q2 ⊆ P2 of H such that Q1 + Q2 is subalgebra of H and I ⊆ Q1 + Q2.

Proof. It is enough to take Q1 = {p1 ∈ P1 | p1 + p2 ∈ I for some p2 ∈ P2}
and Q2 = {p2 ∈ P2 | p1 + p2 ∈ I for some p1 ∈ P1}. Let a, b ∈ P1, c, d ∈ P2

and a + c ∈ I, b + d ∈ I. Then ab − cd = (a + c)(b + d) − (a + c)d − c(b + d).
Hence it is easy to notice that Q1 and Q2 are subalgebras of H, which also imply
Q1 + I ⊆ Q1 + Q2 and Q2 + I ⊆ Q1 + Q2. Take any q1 ∈ Q1 and q2 ∈ Q2.
From the definition of Q1 there exists p2 ∈ P2 such that (q1 + p2)q2 ∈ I. Clearly
p2 ∈ Q2, so p2q2 ∈ Q2. Hence, q1q2 ∈ Q2 + I ⊆ Q1 + Q2. Similarly one can show
that q2q1 ∈ Q1 + Q2. Hence, we get that Q1Q2 ⊆ Q1 + Q2 and Q2Q1 ⊆ Q1 + Q2.
Then Q1 + Q2 is a subalgebra of H. Obviously I ⊆ Q1 + Q2. ¤
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We shall need some information about the classes B. Obviously every algebra
from B is a nil PI algebra. Let as denote by W (H) the sum of all nilpotent ideals
of an algebra H. Clearly a ∈ W (H) if and only if the right (left) ideal aH

(Ha) of H is nilpotent. It implies that if I C H then W (I) ⊆ W (H). Indeed,
if i ∈ W (I) then there exists a natural number n such that (iI)n = 0. Hence
(iH)2n ⊆ (iHiH)n ⊆ (iI)n = 0, so i ∈ W (H).

Proposition 6 ([1]). For every nil PI algebra H there exists a natural num-

ber n such that Hn ⊆ W (H).

Let us consider the class NRF , where R is one of the class C, N or B. Now
we are ready to make some generalization of [11, Proposition 1].

Proposition 7. For the class NRF , where R = C,N or B the following

statements hold:

(i) every subalgebra and every quotient algebra of an algebra fromNRF belongs

to NRF .

(ii) if P, Q ∈ NRF then the direct product P ×Q ∈ NRF .

(iii) if I C H, H/I ∈ NRF then H ∈ NRF .

Proof. The statements (i) and (ii) are obvious. We show that (iii) holds.
For R = C see [11, Proposition 1].
For R = N see [11, Corolary 3].
Let R = B, I C H, H/I ∈ BF and I ∈ BF . Hence in particular there exists an
ideal J of I such that J ∈ B and I/J ∈ F . Since J ∈ B and J C I CH, then there
exists a natural number n such that Jn ⊆ W (J) and W (J) ⊆ W (I) ⊆ W (H).
Let W (I)H be the ideal of H generated by W (I). It is not hard to check than
W (I)H ⊆ W (I). Thus (W (I)H + J)/J is nil. Additionally (W (I)H + J)/J ∈ F .
Hence (W (I)H + J)/J is nilpotent, so W (I)H ∈ B. Clearly we can assume that
W (I)H = 0, which implies Jn = 0. Now we show that H ∈ BF . Since J is
nilpotent and J CI CH then J is contained in some nilpotent ideal of the algebra
H, so we can assume that I ∈ F . Let S/I ∈ B and S/I be an ideal of H/I such
that H/S ∈ F and let G = rS(I). Obviously G C H and S/G ∈ F , which implies
H/G ∈ F . Since (G ∩ I)2 = 0 and G/(G ∩ I) ≈ (G + I)/I ∈ B, then G ∈ B.
Hence H ∈ BF and the proof is complete. ¤

Definition 8. An algebra A = B + C over an arbitrary field K is called
R-counter-example, where R = C,N or B, if A satisfies the following conditions:

(1) A /∈ NRF ;
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(2) the subalgebras B and C have ideals B0CB and C0CC such that B0, C0 ∈ R
and the number dim A/(B0 + C0) is the smallest one;

(3) the algebra A does not have not nonzero ideals that lie in K-subspace B0+C0

from condition (2).

Suppose that A = B + C is an algebra satisfying (1) and (2) from the above
definition. Let T be the sum of all ideals of A that are contained in B0 + C0. By
Lemma 5, T ⊆ Q1 +Q2, where Q1 +Q2 is a subalgebra of A and Q1, Q2 ∈ R. So
(Q1 + Q2) ∈ NR and T ∈ NR. Additionally Proposition 7 gives A/T /∈ NRF .
Clearly A/T = (B + T )/T + (C + T )/T . Now it is easy to see that A/T is an
R-counter-example.

Lemma 9. Let A be an R-counter-example, where R = C,N or B. Then

(i) for every 0 6= I C A, A/I ∈ NRF ;

(ii) the algebra A has no nonzero ideals from NRF ;

(iii) A is a prime algebra.

Proof. Let A be an R-counter-example and 0 6= I C A. Denote A =A/I,
B =(B + I)/I, C = (C + I)/I. Moreover B0 =(B0 + I)/I and C0 =(C0 + I)/I.
Clearly A = B + C and B, C ∈ NR. By Definition 8, I * B0 + C0, so
dim A/(B0 + C0) < dim A/(B0 + C0). So A ∈ NRF , which gives (i).

By (i) and Proposition 7, (ii) becomes obvious.
Let us prove the statement (iii). Suppose that A is not a prime algebra.

Hence there exist nonzero ideals I and J of A such that IJ = 0. Since (I ∩J)2=0,
then in view of a part (ii), I ∩ J = 0. Hence A can be embedded into the
product A/I × A/J . Therefore applying statements (i) and (ii) of Lemma 5 we
obtain that A ∈ NRF . However A is an R-counter-example, so A /∈ NRF , a
contradiction. ¤

Lemma 10. Assume that A is a prime algebra, lB0(B0) 6= 0 and rC0(C0) 6= 0.

If U1 = B0+B0A and U2 = C0+C0A are PI algebras, then A is finite dimensional.

Proof. It is clear that U1 + U2 is a subalgebra of A, U1 <r A and U2 <r A.
By Corollary 4 in [8], U1 + U2 is a PI algebra. But dim A/(U1 + U2) < ∞, so
according to Lemma 4, there exists JCA such that J ⊆ U1+U2 and dim A/J < ∞.
Consequently A ia a PI algebra.

We show now that Z(A) is finite dimensional over K. This will be proved
by shoving that Z(A) ∩ (B0 + C0) = 0. Suppose, contrary to our claim, that
Z(A)∩ (B0 +C0) 6= 0, so there exists 0 6= z = b0 + c0, where b0 ∈ B0, c0 ∈ C0 and
z ∈ Z(A). Of course lB0(B0)zrC0(C0) = 0. Since A is a prime algebra and z ∈
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Z(A), it follows that lB0(B0)rC0(C0) = 0. But lB0(B0) C B and rC0(C0) C C, so
lB0(B0)ArC0(C0) ⊆ lB0(B0)BrC0(C0) + lB0(B0)CrC0(C0) ⊆ lB0(B0)rC0(C0) = 0,
contrary to primeness of A. Hence Z(A)∩(B0+C0) = 0. Therefore dimK Z(A) <

∞. Since A is a prime algebra, Z(A) is a commutative finite dimensional domain,
so Z(A) is a field. Hence the central localization Z(A)−1A of A is equal to A.
We showed that A is a PI algebra, so by Posner’s Theorem [12], A is finite
dimensional over Z(A). Consequently dimK A < ∞. ¤

4. Proofs of Theorems 1 and 2

Proof of Theorem 1. Suppose the assertion of the theorem is false. It
follows easily that there exists N -counter-example. So we can assume that A is a
N -counter-example. Let B0 and C0 be nilpotent. We proceed by induction with
respect to n = n1 + n2, where n1 and n2 are natural numbers such that Bn1

0 = 0,
Cn2

0 = 0. For n = 2, dimK A < ∞ and we have a contradiction. If n1 = 1 then
dim A/B0 < ∞, so by Lemma 4, A ∈ NF . Similarly if n2 = 1 then A ∈ NF .
Assume that n > 2 and the result holds for smaller integers.

By Lemma 9, A is a prime algebra. Consider A1 = B + B0A. It is clear that
A1 is a subalgebra of A and since B ⊆ A1, A1 = A1 ∩ (B + C) = B + A1 ∩ C.
Since Bn1

0 = 0, then Bn1−1
0 <l A1. From this, there exists a nilpotent ideal I of

A1 such that Bn1−1
0 ⊆ I. Of course A1/I = (B + I)/I + ((A1 ∩C) + I)/I, where

(B + I)/I ∈ NF , ((A1 ∩ C) + I)/I ∈ NF and (B0 + I)/I, ((A1 ∩ C0) + I)/I

are nilpotent ideals of (B + I)/I and ((A1 ∩ C) + I)/I, respectively, of finite
codimension. Moreover ((B0 + I)/I)n1−1 = 0 and (((A1 ∩ C0) + I)/I)n2 = 0, so
the induction assumption gives A1/I ∈ NF and, since I is nilpotent, we have
A1 ∈ NF . Let U1 = B0 + B0A. Since U1 ⊆ A1, U1 ∈ NF . Similarly we can
show that U2 = C0 + C0A ∈ NF . It is obvious that U1 <r A, U2 <r A and in
particular they are PI algebras. Our assumption that A /∈ NF gives that the
indices of nilpotency of B0 and C0 are bigger than one. Hence lB0(B0) 6= 0 and
rC0(C0) 6= 0. Now we can use Lemma 10, getting that dimK A < ∞. Thus A is
not an N -counter-example, a contradiction. ¤

We shall need the following lemma, the proof of which is based on a well
known idea used by Amitsur in his proof of Levitzki–Amitsur Theorem (for ex-
ample [14, Theorem 1.6.36]). We sketch its proof for completeness.
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Lemma 11. Let R be semiprime ring and T be PI subring of R of degree d.

Moreover let I be a nilpotent ideal of R and n be a natural number such that

In = 0 and In−1 6= 0. If for all 1 ≤ i ≤ n− 1, Ai = In−iRIi ⊆ T , then n ≤ d.

Proof. Suppose that n > d. The subring T is PI of degree d, so it satisfies
the identity

x1x2 . . . xd =
∑

id 6=π∈Sd

απxπ(1)xπ(2) . . . xπ(d),

where Sd is the set of permutations of the set {1, 2, . . . d} and απ are some integers.
Therefore

(Im−1R)dId = A1A2 . . . Ad =
∑

id6=π∈Sd

απAπ(1)Aπ(2) . . . Aπ(d) = 0,

so (Im−1R)d+1 = 0. Since R is semiprime, it follows that Im−1 = 0, a contradic-
tion. Thus n ≤ d. ¤

Proof of Theorem 2. Suppose that there exists A /∈ BF . Without loss
of generality, we can assume that A is a B-counter-example. Moreover B0 and C0

are nil of bounded index and such that dimA/(B0 + C0) is the smallest number
for which A /∈ BF . Applying Lemma 9 we have that A is a prime algebra.
By Proposition 6, there exist a natural number n > 0 such that Bn

0 ⊆ W (B0).
Observe that if L, K are ideals of B0 such that LK = 0, then B0 = B0 + KAL

is a subalgebra of A, KAL C B0 and (KAL)2 = 0. It follows that B0 is nil
of bounded index. Since B0/(KAL) is a homomorphic image of B0, then B0

is nil of bounded index and (B0)n ⊆ W (B0). Consider B = B + KAL. It
is clear that B ia a subalgebra of A, B0 C B and dim B/B0 < ∞. Moreover
A = B + C. If a ∈ B0 ∩ C0, then aA = aB + aC and aB, aC are nil subalgebras
of bounded index of aA. By Theorem 2 [6], aA ∈ β, where β is the prime radical.
Since A is a prime algebra, a = 0. Hence B0 ∩ C0 = 0. Thus if B0  B0,
dim A/(B0 +C0) < dim A/(B0 +C0), which is in contradiction with the choice of
B0 and C0. Hence B0 = B0. It follows that KAL ⊆ B0. In particular if I C B0

and Im = 0, Im−1 6= 0 for a natural number m, then for every 1 5 i 5 m − 1,
Ai = Im−iAIi ⊆ B0. Since B0 ∈ B, B0 is a PI algebra of degree, say, d. By
Lemma 11, m ≤ d and consequently for every nilpotent ideal J of B0, Jd = 0.
Hence (W (B0))d = 0. But Bn

0 ⊆ W (B0), so B0 is a nilpotent ideal of B. Therefore
B ∈ NF . In a similar way we show that C ∈ NF . By Theorem 1, A ∈ NF .
It is clear that NF ⊆ BF . This contradicts our assumption that A /∈ BF , and
completes the proof. ¤
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5. Proof of Theorem 3

We now present several facts which will be used in the proof of Theorem 3.
Let R be a ring and I C R. Applying the identity [xy, t] = x[y, t] + [x, t]y, it is
easy to show that

(i) I[R, R] ⊆ [I,R]R∗;

(ii) I[I,R] ⊆ [I, I]R∗,

where R∗ denotes the ring R with an identity adjoined. Hence we obtain that if I

is a commutative ideal of the ring R, then [I, R] ⊆ rR(I) (similar arguments give,
[I,R] ⊆ lR(I)). Moreover if rI(I) = 0 or lI(I)=0, then I ⊆ Z(R). If rR(I) = 0 or
lR(I) = 0, then R is a commutative ring.

Lemma 12. Let A be a prime algebra. Assume that B0 ⊆ Z(B) and

rC(C0) 6= 0. Then dim(AC0 + C0)/C0 < ∞.

Proof. Let us denote rC(C0) = I. First we will prove that

(i) if 0 6= a ∈ AC0 and a = b0 + c0, where b0 ∈ B0, c0 ∈ C0, then b0 = 0.

Since 0 = aI = b0I + c0I and c0I = 0, then b0I = 0. Let us see, that b0AI ⊆
b0BI + c0CI ⊆ Bb0I + c0I = 0, since B0 ⊆ Z(B) and I C C. Therefore b0 = 0,
as I 6= 0 and A is a prime algebra. This proves (i).

By (i) it is clear that AC0 ∩ (B0 + C0) = AC0 ∩ C0. Now (AC0 + C0)/C0 ≈
AC0/AC0 ∩ C0 = AC0/AC0 ∩ (B0 + C0) ≈ (AC0 + (B0 + C0))/(B0 + C0). Thus,
having dim A/(B0 + C0) < ∞, it follows that dim(AC0 + C0)/C0 < ∞. This
proves the lemma. ¤

Remark 1. If in the assumption of the above lemma we replace rC(C0) 6= 0
by lC(C0) 6= 0, then the similar proof gives dim(C0A + C0)/C0 < ∞.

Lemma 13. Let R be a K-algebra and let S, T be finite dimensional K-

subspaces of R. If M and P are K – subspaces of R such that dim(SMT +P )/P <

∞, then dim M/N < ∞, where N = {v ∈ M | SvT ⊆ P}.

Proof. Let e1, e2, . . . , em and f1, f2, . . . fn be K-bases of S and T , respec-
tively. Define for every 1 ≤ i ≤ m, 1 ≤ j ≤ n, ϕij : M → SMT , by ϕij(x) =
eixfj and ψij = η ◦ ϕij , where η is the canonical K-linear map of SMT onto
dim(SMT + P )/P . Clearly ψij are K – linear. Since dim(SMT + P )/P < ∞,
dim M/ kerψij < ∞ for i = 1, 2, . . . , m and j = 1, 2, . . . , n. Consequently
dim M/ ker

⋂
i,j ψij < ∞ and ker

⋂
i,j ψij = {x ∈ M | eixfj ∈ P, i = 1, 2, . . . ,m,

j = 1, 2, . . . , n}. ¤
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Proposition 14. Let A be a prime algebra. Assume that B0 ⊆ Z(B),
rC(C0) 6= 0 and lC(C0) 6= 0. Then dim B0 < ∞ or dim C0 < ∞.

Proof. Suppose, contrary to our claim, that dimB0 = ∞ and dim C0 = ∞.
Adjoining, if necessary, an identity element we can, without loss of generality,
assume that A is a K-algebra with unity.

Note that, by Remark 1, dim(C0A + C0)/C0 < ∞. Hence there exists sub-
space V ⊆ C0A such that V + C0 = C0A + C0 and dimV < ∞. Setting S = K,
T = V , P = C0 and M = C0 in Lemma 13, we obtain subspace N ⊆ C0 such that
NV ⊆ C0 and dimC0/N < ∞. Consequently NC0A ⊆ C0 and dimC/N < ∞.
Let us note that since dim C0 = ∞, dim N = ∞. Further NC0ArC(C0) = 0.
As A is prime and rC(C0) 6= 0, we have NC0 = 0, so N ⊆ lC0(C0) C C. Since
dim C/N < ∞ we can assume that C2

0 = 0.
Fix any 0 6= c ∈ C0 and consider the left ideal L of C generated by c. Since

C0c = 0 and dim C/C0 < ∞, dim L < ∞. As C2
0 = 0, lC(C0) 6= 0. By Lemma 12,

dim(AC0 +C0)/C0 < ∞. Since B0L ⊆ AC0 we can apply Lemma 13 for S1 = K,
T1 = L, P1 = C0 and M1 = B0. Hence there exists a K - subspace N1 ⊆ B0 such
that N1L ⊆ C0 and dim B0/N1 < ∞. Therefore, since dim B0 = ∞, dim N1 = ∞.
It is clear that V N1 ⊆ C0A. Since C0A ⊆ V + C0, dim L < ∞ and C0L = 0,
dim V N1L < ∞. Now let S2 = V , T2 = L, P2 = 0 and M2 = N1. Again by
Lemma 13, there exists N2 ⊆ N1 such that V N2L = 0 and dimN1/N2 < ∞.
Since dim N1 = ∞, dim N2 = ∞. Let us note that N2L ⊆ N1L ⊆ C0, C2

0 = 0
and C0A ⊆ V + C0. Hence C0AN2L ⊆ V N2L + C0N2L = 0. But C0 6= 0 and
A is a prime algebra, so N2L = 0. As N2 ⊆ N1 ⊆ B0 ⊆ Z(B) and L <l C,
we have N2AL ⊆ N2BL + N2CL ⊆ BN2L + N2L = 0. Moreover L 6= 0 and as
dim N2 = ∞, N2 6= 0. This contradicts the fact that A is a prime algebra, so
dim B0 < ∞ or dim C0 < ∞. ¤

Corollary 15. Let A be a prime algebra. Suppose that B0 ⊆ Z(B), C0 is

commutative and rC(C0) 6= 0. Then A ∈ CF .

Proof. Since rC(C0) 6= 0 and C0 is commutative, lC(C0) 6= 0 (if lC(C0) = 0,
C is commutative). By Proposition 14, dimB0 < ∞ or dim C0 < ∞. Assume
first that dim B0 < ∞. Hence dim B < ∞. Since dim C/C0 < ∞ and A = B +C,
then dim A/C0 < ∞. From Lemma 4, there exists I C A such that I ⊆ C0

and dim A/I < ∞, so A ∈ CF . Similar arguments can be applied to the case
dim C0 < ∞. ¤

Corollary 16. If an algebra A is a C-counter-example, where B0 and C0

satisfy conditions of Definition 8, then rB0(B0) 6= 0 and rC0(C0) 6= 0.
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Proof. Let I = rB0(B0) and J = rC0(C0). Suppose that I = 0. Then
B0 ⊆ Z(B). Now if rC(C0) 6= 0, then one can apply Corollary 15. Hence
A ∈ CF which contradicts the choice of A. Thus let rC(C0) = 0. Hence C is
a commutative algebra. If rB(B0) 6= 0 then again by Corollary 15, A ∈ CF ,
contradiction. Therefore it has to be rB(B0) = 0. But then B is commutative.
So B ∈ C and C ∈ C. Hence, A ∈ NC, contrary to the choice of A. Consequently
I 6= 0. One similarly obtains that J 6= 0. ¤

Now we are ready to prove Theorem 3.

Proof of Theorem 3. Suppose the assertion of the theorem is false. He-
nce, without loss of generality, we can assume that A = B + C is a C-counter-
example. Let B0 and C0 are commutative. By Lemma 9, A is a prime algebra.
Consider A1 = B + B0A. It is clear that, since B ⊆ A1, A1 = A1 ∩ (B + C) =
B + A1 ∩ C. We shall show that A1 ∈ NCF . Suppose that A1 /∈ NCF . Let
us note that dim A1/(A0 + (A1 ∩ C0)) ≤ dim A/(B0 + C0), so since A1 /∈ NCF ,
dim A1/(A0+(A1∩C0)) = dim A/(B0+C0). Hence A1/T is a C-counter-example,
where T is a sum of all ideals of A1 that lie in the K-subspace B0 + (A1 ∩C0). It
is obvious that A1/T = (B +T )/T +((A1∩C)+T )/T . Moreover lB0(B0) <r A1.
Since [B, B0] ⊆ lB0(B0), (lB0(B0))2 = 0 and A1/T is a prime algebra, [B,B0] ⊆ T .
Hence (B0 + T )/T ⊆ Z((B + T )/T ). By Corollary 16 and 15, A1/T ∈ CF , a
contradiction. So indeed A1 ∈ NCF . Let U1 = B0 + B0A. Since U1 ⊆ A1,
U1 ∈ NCF . Similarly we can obtain that U2 = C0 + C0A ∈ NCF . In particular
U1 and U2 are PI algebras. Corollary 16 shows rB0(B0) 6= 0 and rC0(C0) 6= 0. Of
course rB0(B0) = lB0(B0). Now we can apply Lemma 10. Hence dimK A < ∞,
thus A is not a C-counter-example, a contradiction. ¤
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