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Weighted Nikolskii-type inequalities

By L. JOO (Budapest)

To the memory of Professor Andrds Rapcsdk

Weighted polynomial inequalities play a very important role in the
theory of weighted approximations and they are interesting in themselves.
Moreover, they can be useful in other areas, e.g. concerning orthogo-
nal polynomials or convergence of interpolation processes. Nikolskii-type
inequalities seek relationship between different finite dimensional metric
spaces of polynomials. The first such inequality was found by S. M. NIKOL-
SKII [15], and it deals with estimating L, norms of trigonometric polyno-
mials in terms of their L, norms for p < ¢ (for p > ¢ this is trivially done
by Hélder’s inequality). In this paper we shall consider similar questions
concerning exponential weights. Our paper extends earlier results to the
case o # 0, i.e. when the weight has a zero at the origin.

Let

(@) = wal@) = [2]% - exp(—|z[™), mER, m> 0.

Given p, ¢ and m such that 0 < p, ¢ < oo, m > 0 define the Nikolskii
constant, N,, = N,,(m,p,q) n=1,2,... by
nl/m(l/p_l/Q) 1fp S q,
n(1=1/m)(1/a=1/p) if p>qandm >1,
(log(n + 1))Y/a=1/P  if p>gand m =1,
1 ifp>qgand 0 <m < 1.

(1) Nup(m,p,q) =

In what follows, for 0 < p < oo the expression || f||, is defined by

P

1l = / o
R
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For @ = 0 the Theorem 1 (see below) was proved by P. NEVAI —
V. ToTik [6], for m = 2, « > 0 it was proved by S. SzABO [8] and
for Hermite-weight and Laguerre-weight (1 < p, ¢ < 0o, a > 0) it was
proved by C. MARKETT [1]. As for Theorem 2, for the weights a@ = 0,
m > 2 G. FREUD [16] found the correct analogue of the classical Markov—
Bernstein inequality. It was extended by A.L. LEVIN and D.S. LUBINSKY
[10] which is the @« =0, 1 < m < 2 case of Theorem 2. The case a = 0,
0 < m < 1 was proved by P. NEvAl and V. TOTIK [5] which paper also
contains Theorems 3 and 4 with o« = 0. Actually, in [16], [10], [5] more
general weights were considered than w(z) with o = 0, but the parameter
range of m was essentially the same as in our case.

The aim of the present paper is to prove the following theorems.

Theorem 1. Suppose 0 < p,q < 0o, a > 0, m > 0. Then for any
polynomial p,, € I1,, of degree < n we have

(2) [Pnwallp < eNn(m,p,q) - [[Pnwallg,

where ¢ = ¢(m,p,q) is a positive constant independent of n, p,. The
estimate (2) is sharp, i.e. given m, p, q, with 0 < m < 00, 0 < p, ¢ < ©
there exists ¢* > 0 and polynomials { R} }°° , deg R} < n such that

(3) | Ry wallp > ¢* Ny (m,p, q) - [[Rywallq

forn=1,2,....

Theorem 2. Suppose 0 < p < oo, /2> —1/p or p =00, a > 0 then
for any polynomials p,, of degree < n we have

_ 1 .
(4) Ippwally < ¢ n'"m|ppwally, ifm>1
(5) [Phwally < c-logn|pnwallp, — ifm =1
(6) ||p;LwOé||p <c- HpnwaHp» ifm< 1,

where ¢ = ¢(p, m,«) > 0 is a constant independent of n, p,,.

Theorem 3. Suppose ® is a non-negative even function which is con-
cave and increases on [0,00) and such that

oo

® ®
/ (z) dr < +o0, (z) — 00 (z— +00).
1422 log x

— 00
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Let 0 < g < p < o0, then

[ (mo1- 1% expl-ew)) it | <
<7) - o0 L
e [ (O] 12 exp-ow)"ar

with a constant ¢ = c¢(a, p,q, ®) > 0 is independent of n, p,,.
Theorem 4. Suppose ® is a non-negative even function which is con-
cave and increasing on [0,00) and

oo

d
/ (z) dr < +o0.
1+ 22

— 00

Then
(8) max P,,(%)] - |2]% - exp(—®(z)) < cmax pn] - || - exp(—®(x))

here a > 0 and ¢ = ¢(«a, ®); and if in addition
(8) (28(2) ~ D(20))/log(x) — +o0 (x—oc), 0<p <00, 3> —

is filfilled, then

3 |-

[ (w0117 -exp(-) e | <
(9) N > :
<c /(|pn(t)|-|t|%‘-exp(—cp(t)))”dt . c=c(a,p,®).

Our results are not refinable. The proof of this fact will be given in a
subsequent paper of the same journal.

PROOF of Theorem 1. We need some lemmas.
Lemma 1.1 ([9], Theorem 4.16.2). Suppose a/2 > —1, m >0, p > 0.
Then for any polynomial p,, of degree < n we have

1
cinm

(L1) / P (6P wa(B)dt < 2 / [P ()P (1)
R

1
—Ccinm
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where the constant ¢; = c¢1(m, p,a) > 0 does not depend of n, p,,.

Lemma 1.2. Suppose /2 > —1/p, m > 0, p > 0. Then for any
polynomial p,, of degree < n we have

(1.2) /(Ipn( )wa(t))Pdt < 2 (Ipn (1) |wa (t))"dt
o B mpn%

further for any « € R, m > 0

(1.2') max |py (¢)|wa(t) < et [Pn (8)wa(t)-

PRrOOF. It is an easy consequence of Lemma 1.1.

Lemma 1.3 ([8], Lemma 2). Denote X[ (t) the characteristic func-

tion of the interval [a,b] and let 0 < ¢ < p < oo, v(t) = [t|*/?, a > 2.
Then

3
3|

<enli=3) /!pn Xi—2,2)(t)o(t)|" dt

for any algebraic polynomial of degree < n. The constant c is independent
of n and p,.

For the sake of completeness we write here the

PrOOF. Using the ideas and results of [13], p. 118 we have

T
c 1
. — ) < )7 - t)dt,
n+1<|x|+n+1> b2, T \q/|p" I X2 ()

—-1<xz<1, I'>—-1, 0<qg<o0.
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Hence for every p, € II,, and I > 0

/ (]9 [t - X_a)(£)dt >
(1.4) o .
C 1 c
> = q — ) >= 4. |gF
> Elpa(a) (rx|+n+1) > Elpa(a)|? [l

—1<z<1, 0<q< o0
Let I' = $¢. Then we obtain from (1.4)

oo

o Cc o
15) [ (a0l 115)" 2Ot =  (pa(o)]-1o15)"
—1<z<1, 0<q< 0.
Hence
(1.6) sup [P (@)v(2)X[-1,1)(2)] <
re
<ont [ [ @@
le
[ @ @i | =
| [ @ ppra) <
< sup (@) x- @] - | [ @)@ @l

T =
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8
3=

< (i) / P (@)0(2) X o2 (2)|"de

Lemma 1.3 is proved.

PROOF of the Nikolskii-type inequality (2).

Case (i): 0 < p < q < oco. By Lemma 1.2 we can estimate ||p,w||,
as an integral over a finite interval. Applying Holder’s inequality to the
latter integral we obtain (2).

Case (ii): p > q and m > 1. We can prove this case similarly to [8].

Proor. First consider the case 0 < ¢ < p < co. From Lemma 1.2
(1.2) follows

1 1 I3
o0 P con m
/ paBwa(Pdt | < / [P (B)wa (6) Pdt
— OO 1
—Conm

According to [10], Theorem 1 (see also three pages later at “Case a) m>1")
there exists a polynomial R,, of degree < c-n such that

Ro(z) =< e ™z < 2con .
Using the substitution ¢ = con%x and applying Lemma 1.3 we obtain

1 1
L 1 P
conm conm

3 =

1

prwaPdt | < | [ @R 0P| <
1 1
—Conm —Conm
- 1
< enmr / |pn(con%x)v(con%:L')Rn(con%x)x{_l,l](x)|pdx <

Q=

oo

. / |pn(con% ac)v(con%x)Rn(con%:c)x[_zg] (x)|%dx

N— OO
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Using the substitution x = we obtain

1
conm
cn%p . n(%_%> .

1
q

oo
1 1 1
: /|pn(conmx)v(conmx)Rn(conmx)x[272](:1:)]%3: <
L a
2conm
< cenmr -n(i7%) . pma / P (o) Ra()]dt | <
a1
—2conm
1
1 q
2conm

< en(=#)E-4) / [P (B)wa (1) 1dt

1
—2conm

The case 0 < g < p = oo follows using Lemma 1.2 (1.2°) and (1.6). Hence
the case (ii) is proved.

Case (iii): p > q and m = 1. The proof of this case is the same as
the one for case (ii) but we have to use [5], pp. 125-126 instead of [10],
Theorem 1.

Case (iv): p > qand 0 < m < 1. It follows from Theorem 3 at
O(x) = |x|™.

The estimate (2) is proved.
The proof of (3) will be given later.

PROOF of Theorem 2. First we prove (4). For this we need some
lemmas.

Lemma 2.1 ([12], Theorem 5). Let 0 < p < oo, I'1,...,I'y be arbi-
trary real numbers, 1l =x1 > x> ... >y =—1,; > —1 and

N
w(t) =[] It — 2T,
=1

N—-1

[T (t=ailen)" <(1+t>1/2+n‘1>

=2

2F1 21—‘N
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Then any algebraic polynomial p of degree < n satisfies

(2.1) / ph (1 —t3)1/? pwn(t)w(t)dt < cnp/\pn(t)ypw(t)w(t)dt.

—1 -1

Corollary 2.1. Let 0 < p < oo, u(t) = (1 —t)%(1 +1)°, a,b > —1,
then for any algebraic polynomial p,, of degree < n we have

1 1

(2.2) / o () (1 — )2 w(t)dt < en? / 1o (8) [Pu(t)dt.

—1 -1

Lemma 2.2 [13], p. 119, Corollary 26). Let 0 < p < oo, I' > —1,
€ > 0, then for any polynomial p,, of degree < n we have

1 1
(2.3) / pa(®)[P - [tTdt < cn® / pa (&P - ¢+t
—1 —1

where ¢ = ¢(p,T',¢) is a constant not depending on n, p,,.

Lemma 2.3 ([13], p. 163, Lemma 17). Let a € R. Then there exists a
number ¢ = e(a) > 0 such that for any algebraic polynomial p,, of degree
< n we have

2.4 (x)] < en® ()] - ||
(2.4) s Ipn(z)| < cn s/g?ﬁgm (z)] - ||

where ¢ = c(a) is a constant independent of n, p,.

Lemma 2.4 ([13], p. 163, Lemma 18). Let a € R, then

(2.5) max [y, (4)] - (o] + n )" <en- max |pn ()| (J] + noh)e.

Lemma 2.5. Let a > —1, 0 < p < oco. Then for any algebraic poly-
nomial p,, of degree at most n we have

1 1
1 P 2 P
(2.6) /Ipiz(t)!p-\tl“dt <cn /!pn(t)\p-ltladt ,
—1 —2

where ¢ = ¢(p,a) is a constant not depending on n and p,. Let a > 0,
p = 00, then

(2.6) max P ()] - |2]* < en max P (@)] - 2]
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PRroOF. First we prove the case 0 < p < co. We are following the
proof of Lemma 15 in [13], p. 162 where the case 1 < p < 0o was considered.

Let first p,, be an even algebraic polynomial, i.e. of the form p,(x) =
Gn(z?). Then p! (r) = 22G! (2?) and we have to show that

2

/|xG’ )P - |x|%dr < enP - /|Gn(l‘2)|2 -z *dx
e
or
4

1
/'G’n(fv)lp a5 de < C”p/lGn(x)lp
0

0

1
dx.

But

/ G (@)P - o] ™

Hence (2.6) follows from Corollary (2.1) when p,, is even. let now p,, be
odd: p,(r) = G, (2?). In this case we have pl, (z) = G, (2?) + 222G" (2?)
and we will prove that

/|G’ ()WaVI—T P - |2| T da.

/|x2G' )P - |z]de < cnp/|xG HP - |z|*da

and
1 2
/]Gn(:v2)|p - |x|*dx < enP / |2Gp (22)|P - |2|*de.
1 2
The first inequality here follows from the first part of the proof by putting
there p + a instead of a. The second inequality follows from Lemma 2.2

choosing € = p. hence Lemma 2.5 is proved in the case of 0 < p < oo.
Now consider the case p = oco. We have to prove that

xle < - lx]®.
|m|g>§\pn( z)| - || _ngl‘fg!pn(x)l ||

Using (2.5) in Lemma 2.4 we obtain

1 a
a
. . — <
sr<n|a|x<1!pn( z)| - || _Er<n|a|><<1\pn( )| (!an) <
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1\¢ 1\*
< cmax|p, (z)] (m ; —) < en - max [pn(@)] - (|x| ; —) |
n |z|<2 n

jel<1
i.e.
(2.7) max |p) (x)] - |z|* < en - max |p, ()] - |ac|—|—l a.
£<|zf<1 " - |z[<2 n
Here
()] (Il + 1) <
max ) - |x] + =
2| <2 Pn n) =
1\“ 1\“
< max |pp(z)|- | [z]+ =) + max |pu(z)|[- | [z]+ =) .
|lz|<3 n §<l|z|<2 n
But
a
1
O (R
(2.8) §<|=|<2 n
< . @ L . @
< max [p, (o) [ol" < cmax|pu )| Jo

and using (2.4) in Lemma 2.3 we have

1\ 1
max |pn(z)|- | [2| + =) <cmax |py(z)]— <
(2.9) lz|<% n |lz|< 5 n
< . @ L . a.
—052}3@1“9"(”;)' || < cmax pn ()] - |2

Hence from (2.7), (2.8) and (2.9) we get

2.10 L@zt <con- |z
(2.10) %rﬁfgllpn(wﬂ 2" < e-n- maxipa ()] - ||

On the other hand, using (2.4) in Lemma 2.3 we have

(2.11) max [p),(2)] - Jal® < ¢+ 0 max |p,(2)] <
le| <+ lz| <+
< c- /  ple
<o max Py (@)] - ],
so using (2.10) we obtain
(2.12) i [ ()] - |2]* < en- max |pn ()] - [

From (2.10) and (2.12) we obtain (2.6") so Lemma 2.5 is proved completely.
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PROOF of the Markov-Berstein type inequality (4), (5), (6). The idea
of the proof goes back to [2].

Case a) m > 1. For the proof we need a suitable polynomial S,,(z)
for which
(i) Sn(z) is even and its degree is at most n,
(i) Sp(z) < wo(x) if |z| < eynt/™ 1
(iii) |57 (z)] < col2|™ ™ - wo(2) if |2] < cynt/™

and in particular

1S ()| < esn' " cwo(z) if |z < ent/™

Here the constants c;, co, c3 are independent of n and z. Such a poly-
nomial Sy, (z) was constructed in the paper of LEVIN and LUBINSKY [10],
Theorem 1.

By the “infinite—finite range inequality” (Lemma 1.2) there exists a
constant ¢4 such that

(2.13) [pnwllp, < c p;wx[_%n%%n%] p-
By (ii)
Ipnwlly < c P;LUSnX[_%n#%n%] , =
(2.14) =c v[(ann)’—an;]x[f%ln%%n%] ) <
<c v(ann)’x[_%n%%n%] p+c van;x[_%n%%nﬂ ,

where v(z) = |z]*/2.

By Lemma 2.5 we get: for every 0 < p < oo there is a constant ¢ such
that
(2.15) Irpvx-1allp < ¢ n-llrnvx—22llp

for every algebraic polynomial r,, of degree at most n. Hence

-

< enl”m

p

(2.16)

T;LUX[

m‘ﬁ
3

ey L TRUX 1 1
—nm —cqnm cynm

n]

'In this paper f(z) < g(x), x € I C R denotes that there exist positive constants dy,
d2 € R such that di|f(z)| < |g(z)| < d2|f(z)| for = € I.

)

p
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Now we can apply (2.16) to the first term on the right-hand side of (2.14)
and we obtain

’ 1—L
“pnw”p <cnm vannX[_c4n%7c4n%] ' +
(2.17)
T Uan?/lX[—%‘n%,%‘n%]

P
Finally, by (ii) and (iii) we can estimate S,, and S], with w(x), and thus
(4) follows from (2.17).

Case b) m = 1. For p = oo see Lemma 4.4 below. If 0 < p < oo, then
the proof is the same as in the case a) using instead of S, (z) the polynomial
Rinfogn+1)](z) (L is an integer), of degree at most Ln[log(n + 1)] such
that Ry pog(n+1)](2) is even and Ry, i0g(n+1)] (%) X exp(—|z|), if |z]| < con,
and

Tnflog(nt1) ()| < clogn -exp(—|z]), if [z] < con.

The existence of such a polynomial Rp,fiog(n+1))(z) Was proved in [5],
Theorem 3.

Case ¢) 0 < m < 1. This case will be dealt with in the proof of
Theorem 4. Thus Theorem 2 is proved.

PROOF of Theorem 3. We need some lemmas. In what follows denote
by ® any fixed non-negative even function which increases on [0, o).

Lemma 3.1 ([5] Theorem 1). There exists a sequence of polynomials
{pn}o such that

(3.1) Pn(0) =1, |pn(2)] < Kexp(=®(z)), [2]<1
if and only if

e 9]

(3.2) / 1(11:22 dz < oo.

— 00

In what follows we assume also that ® satisfies ®(x)/logz — oo,
x — oo. This condition ensures that every polynomial belongs to all of
the space LP(exp(—®)), 0 < p < oo.

Lemma 3.2. Suppose 0 < p < oo, « > 0 and that (3.2) holds. Then
there is a constant K = K(p,«a,®) such that for every polynomial p,, of
degree at most n

[P (0)] - [0l ® <

=

(33) u+1 i )
<Ksup ([ (palt)] [ - exp(-(t —20))"t |

—1



Weighted Nikolskii-type inequalities 17

where o € R is arbitrary. If we suppose also that ® is concave on [0, 00)
then we have

masx p (1) - |2/ - exp(—B(2)) <

(3.4) utt B
@ p
< s | [ (pal)]- 1 - exp(-(2))” d
AW
PROOF. The idea of the proof is similar to that of Corollary 3 in [5],

but we need some new ideas too. Let @), (x) be a polynomial of degree at
most n such that @, is even, @, (0) = 1 and

|Qn(2)] < K exp(=20(z)), [z <n.
Such a polynomial was constructed in [5] Theorem 1. Now we consider
Q) () := Qn(xr —x9), where xg # 0 is arbitrary fixed.
We know, see [8], (6) above, that

o0

35) @l lelf <ent | [ (a0l 11%) x5

— OO

where |z| > 1/4, « < 0,0 < p < 0.
In case |zo|/n < 1/4 we use (3.5) for the polynomial p,(n-)Q (n-) at
the point xo/n. Then we have

Z L[ T x
po ()]s ()5
n n n

<antl? [ |pu(mt)@; (ut) 117" x

(@)t |

o
2

8
S =

8
B =

8
3|

8
]|
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i.e.

S =

(3.6) |pn(zo)| - |zo|* < ¢ (/ (Ipn(8)] - exp(=2®(s — zo)| - ISg)pdé’)

N— OO

Here we have for the case 2k — 1 < s, <2k +1

(/(pn(S)-eXp(Q@(Sfﬂo))'sg)pdS) <
< C{ Z (exp(—fb(sk —x0)))P-
k=—oc0
2k+1 » %
: /(\pn(S)l'eXP(—‘I’(S—JJO))'!S!g> dS} <
2k—1

B =

—1

u+1
< csup ( / (Ipn ()] - exp(=®(s — z0)) - Sg)pdS)

Using (3.6) we obtain in the case |zo|/n < 1/4

(3.7)

u—1

u+1 P
pulao)] ool < esup ( / <pn<s>|-exp<<1><sxo»-s%‘)pds) .

In the case |zo|/n < 1/4 there exists A,, > 1 such that |zg|/n4, < 1/4.
Using again (3.5) for p,(nAn-)Q; 4 (nAy-) at the point |x[/nA, we ob-

tain
Zo * Zo

< c(nd,)/? ( [ (paln )@, (A 15)" ]<t>dt) <

.’1305

nA,,

IN

— OO

AN
o
VR
3
N
S
~_
R

— OO

’ (/ (Ipn(s) - Qra, (s)]- Sg)px[ngn,ngn](S)dS) <
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B =

SC(niln)Z / (|pn<8)| .exp<—2(b<3_$0)) . |5|%)pd8 7
39 Ipateo)l ol < e[ (1palo)]- exp(-20(s — )| }s2)" ds

From (3.8) we obtain that (3.7) is true in case |zo|/n > 1/4. Hence (3.3)
is proved.
Now suppose that ® is also concave. From (3.3) we get

B =

u+1

[Pn(20)| - 20| < Kysup / (Ipn(t)] - 1812 - exp(—@(t — o))" dt | =
“ u—1
u+1 %
= K sup / (|pn(t —xz0)| - |t — 930]% ~exp(—P(t — 2930)))p dt
u—1

Multiplying this by exp(—®(z()) we obtain

u+1
[pn (z0)] - ’$0|% -exp(—®(wg)) < Ky SliP( / ([pn (t — z0)]-

>

Jt —x0|2 - exp(—®(z)) - exp(—D(t — 2560)))p dt) <

D=

u+1
< K sup /(\pn(t—xo)y-exp(—q>(t—x0))-\t—xoy%)pdt —
“ u—1
1
u+1 D
= K; sup /(|pn(t)y-|t\%-exp(—cb(t)))”dt
u—1

where we have used that by the concavity of ® we have

exp(—®(y)) exp(—®(x)) = exp(—=2(|y|) — (|z]) < exp(—=D(|y| + [=])) <
< exp(—=®(ly + #[)) = exp(=2(y + z)).
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Thus (3.4) holds.

Lemma 3.3. Suppose (3.2) is fulfilled and ® is concave on [0,00).
Then for 0 < p < oo all the “norms”

D=

u+1
sup /(\pn(tn-yty%-exp(—@(t)))pdt . a>0
u—1

are equivalent (uniformly in the polynomial p,). For 0 < p; < py <
and any polynomial p, we have

1

(3.9) / (Ipu()] - % - exp(—0(6)) 7 dt | <
<K [ (0l 1 - exp(-20)" dt | K = Kpr.pa. @)

1
u+1 p
Proor. The fact that all the “norms” sup ( i (-)p> are equivalent

u

follows from (3.4). By (3.4) we have

IA

max |y (z)] - |2]* - exp(—P(x))

==

u+1
<Ksw ([ (a0l -exp(-2(0)"dt | <

T =

o

<K | [ (a0 1 exp(-) e |

— OO

and in the case ¢ > p this yields

oo

[ (o1 - expi-o)ar | =

— OO

Q=

oo

- / (Ipn(0)] - 1617 - exp(—®(£)" " at| <

— OO
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Q3

N— OO

< / (Ipu (D) - 617 - exp(=2(¢)))" dt)

q—
D

IN

: (Iggg |pn ()] - || 2 -eXp(—‘I)(I)))

T =

<K | [ (pal®)]- 1 - exp(-(2))”
Lemma 3.3 is proved, and so Theorem 3 is also proved.

PRroOOF of Theorem 4.

Lemma 4.1. Let a > 0, b > 0. Then for every polynomial p, of
degree at most n we have

n
max |9’ (t)] - |t|* < ¢— max )| - [£]e.
ma 71,1 1" < e, ma o (0)] -1

PROOF. Using the substitution z = 2¢/b in (2.6") we have
26\ |2te ot\| |2t

n
L)1 < e— 1) - [t]e.
max o1, (8)] - |t < e max|pa(8)] - I¢

a

< ¢c— max
~— b

%<2

Y

max
%<1

i.e.

Lemma 4.2 ([13], p. 114, Corollary 15). Let u be the Jacobi weight
u(t) = (1 —)*(1 +t)% a,b > -1, 0 < p < o0, € > 0. Then for every
polynomial p,, of degree at most n we have

[ a0 wteyde < e [pate) - ute)- (- s

where the constant ¢ depends only on p, a, b, €.

Lemma 4.3. Let u be the Jacobi weight, 0 < p < oo, then for every
polynomial T, of degree at most n we have

1 1

/yT;(t)\P-u(t)dtgcn2p-/\Tn(t)\P-u(t)dt.

—1 —1
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Remark. Goetgheluck proved in [14] a similar statement with uf(z)
instead of u(x), where

ui(z) = (1 —2)* (1 + )™ H |z — z|“ f1(z), a1, Br, ¢; = 0.

=1

Here f; is a measurable function that is bounded away from 0 and from
infinity, and 1 < p < oo. In our case the weight function is of a more
special kind but we allow 0 < p < oo.

PROOF. Using Lemma 4.2 with p, =T}, ¢ = p/2 we get

/ T ()P - u(s)ds < en? / TP - 82)bu(s)ds
—1 -1

and hence, taking into account Corollary 2.1 we obtain the desired state-
ment.

Now we turn to the proof of Theorem 4. To this end, let @Q,(z) be
an algebraic polynomial of degree at most n and such that @, is even,
Q. (0) = 1, further the estimate

|Qn(2)] < Kexp(=®(z)], |z[<n

is fulfilled (sse Lemma 3.1).
Let ¢ # 0 be an arbitrary fixed number and

Qr () == Qn(z — x0).

In the case of |‘2—°' < 1/4 use Lemma 4.1 with b =n/2. We get

7, (20)| - [20] 2 = |(pn@3,)" (w0)] - 0| % < K max (Pn@r) (0] - 1% <
=3

< K max |pa ()] - exp(~2(t — x0)) - t]%.
H<3

Multiplying this inequality by exp(—®(xg)) and using concavity of ®, we
obtain

(41) P(wo) - o] - exp(~@ (o)) < K mmae o (1) - exp(~(0)) - |1 %

where xT()' < 1/4. In the case xT‘)' > 1/4 there exists A, > 1 such that

|zo]

+ 4, <1/4. Use again Lemma 4.1 with b = nin . We obtain

Pl (20)| - 20| 2 = |(Pr@pa, ) (z0)] - |zo| 2 <
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nA o
< * Bl -tz <
._anﬂ|Jgg§nKannAnX)! ]z <

S K- max lpn(f)] - exp(~®(t — o)) - |1

From this we obtain that (4.1) holds in the case |zo|/n > 1/4. Thus (8) is
proved.

Now let us asume that (8*) holds and let 0 < p < oo. For the
polynomial @, described at the beginning of the proof, we can define a
constant ¢4 such that

Qu) 2 5. QW) <2 on [ene] n=12..

For 7 € [—cy, ¢4]
(4.2) [pn ()] < 2+ P (1) Qn(T)] = 2[(Pn @) (7) = pn - QR (7)1,
is fulfilled therefore by Lemma 2.5 (2.6) we obtain

Cq

/ P ()P - 7|3Pdr < K / (pa Q) (PP - || 3Pdr +

+ [l rlErar | < & / (Ipn(7)] - exp(~®(r)) - 7] )" dr.

ca o

Now we estimate the integral [, |p/,(y + 7)|P - |y + 7|2Pdr. In the case
4

of |ly| < c4/2 we have

C4 674 J’_y

a
[ W+ 0Py ritrar = [ o jelirar <
-3 -Gty
%—Fy c4
LR WA IR
~ %y —ea

<K / (Ipn(7)] - exp(—8(r)) - [r|%)" dt,

i.e.
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us‘ﬁ

(4.3 [ Wty g+ riErar <
c4

K / ()] < - exp(~B(r)) - |7|%)Pdt.

Now we investigate the case |y| > c¢4/2. Obviously

Cq anNp
(4.4 5 | (W] exp(-a(0) - [t]%)" dt =
TN
= Jim [ [ e g g ol fy | Ty dr <
_%4 —N

4
1

<4
4
=c lim / /—l— / /
N—+o00

3 -3 F<isN -3

The first term in the bracket has already been estimated (see (4.3)). Now
we estimate the other term. With (),, being the polynomial described at
the beginning of the proof, define

Qikn+2)N($) = Qnr2)n (T — Y).
Use (4.2) with py(y + 7) instead of p,(7) and Qf, 5y (7 + y) instead of
Qn (7). We get
(4.5) Py + )| < 20p0 (Y + 7@ yayn (¥ +7) =
= 2|(PnQfnt2yn)s W+ 7) = Pn(y + 7)Q (p2yn (¥ + 7)1,

where t € [—cy, ca.
Hence

a4
(4.6) / Py + TP -y + 7|87 dr <
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4
= / (P @2y n) (y + TP - |y + T|2Pdr+

Here
cq
4
/ Pn(y + 7P QG2 n (Y + )P - [y + T|2Pdr <
_ 4
4
cq
4
<c / Py +7)F - |y + 7|2Pdr <
_Tea
4
cq
4
SC / |pn<y+7—)|p-|Q>(kn+2)N(y—|—7-)‘p.|y_|_7-|%pd7_§
_ea
4
4
4
=¢ / pn(y + 7)IP - exp(—p®(7)) - |y + 7| #Pdr,
_ 4
4
i.e.

4
(4.7) / |pn(y + 7)|P - |Q>('<7/1+2)N(3/ T+ )Py + T‘%p <

=¢ / [pa(y + )P - exp(—p®(7)) - |y + 7| 2Pdr.

4
/ ((PnQnrayn) (y + )P - |y + 7| 2Pdr =
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Tty
= / |(an>(kn+2)N)/<T)|p . |T|%pd7— S
_%_'_y
3yl (n+1)N
< [ 0@ OF - E < [ 0@ (O I
—3lyl —(n+1)N

Using Lemma 2.5 with a = §p, we obtain

48) [ 1puQusa) DI Iy + 71377 <

(n+1)N
S ¢ / |(an>(kn+2)N)(7')|p . |T|%pd’7'.
—(n+1)N
Here
(n+1)N
(49) | 10aQiean ) 27dr <
—(n+1)N
(n+2)N
: / |(PnQfpyayn ) (T + 9P |7 +y|2Pdr <
—(n+2)N
(n+2)N
= / (D (T +y)[P - exp(—p®(7)) - |7 + y|2Pdr.
—(n+2)N

From (4.7) and (4.9) we obtain in the case %4 < |ly| < N, that

(4.10) / pn(y + )P - |y + 7| 5Pdr <

= / [(Pa(y + 1) exp(—p®(7)) - |y + 7|37 dr+
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(n+2)N
w [ 1aly D exp(-p2(r) -y + r{#7dr <

—(n+2)N

<e / Pa(y + PP - exp(—p®(r)) - |y + 7| 37dr.

Using (4.3) and (4.10) we have (remember (4.4))

(4.11)
cq cq cq
2 4 4
/ /+ / PO (y + )P - |y + 7| EPdrdy <
I
=y
D) fe’s)
<e / PP / (Ipu() - exp(—®(r)) - |7|3 )" drdy+
_ 4 —0o0
4
te / e P / Pa(y +7)P - exp(—p®(r) - [y + 7|37 drdy
A<lyl<N —o0
Here
/ ¢ PPW) / Puly + )P - exp(—p®(r) - |y + 7| FPdrdy <
“<|yl<N
/ / PPy (y + )P -y + 7| EPdrdy =
~ / PP |, (w)]? - u] 3 - / exp(p(®(u) — B(x) — B(u — 2)))d du.

We shall show that

/ exp(p(®(u) — ®(z) — ®(u — x)))dx < ¢ = ¢(p, ),

— 00

independently of .
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Next we use the idea of [5], p. 123. We may suppose without loss of
generality that « > 0. Then

/ exp(p(®(u) — ®(z) — P(u — x)))dx < / exp(—(p®(z))dz < c,

and similarly

400 +o0

/ exp(p(®(u) — B(x) — B(u — z))) < / exp(— (p®(2))dz < c.

u 0

By the concavity of ®, for any fixed = the difference ®(u) — ®(u — x)
decreases as u > x increases. Hence ®(u)—®(u—z)—®(z) < ®(22)—-29(z),
(0 <z < %), and using also (8*) we obtain

-9 / exp(p(®(u) — D(x) — ®(u—2)))dx < 2 / eP(2(22)=22(@)) g, <
0 0

oo

< 2/ep(q>(2’:)_2¢(x))dx < +o00.
0

Hence from (4.4) and (4.11)

o0
Cq a\p
5 [ (L) exp(=(1) - [¢]2)" dt =
c4 c4 c4
2 4 4
o [ [ )]
-3 -3 F<WisN -F
e PP pl (y+ )P - |y + 7] FPdrdy <
<ec i —p®(u) P yl2Pdy =
se fim e P (w) [P - |ul 2P du

— o0
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- / (Ipa(8)] - exp(=2(1)) - [t#)" dt.
Theorem 4 is proved.

PROOF of (5) of Theorem 2.

Lemma 4.4. Let a > 0 be any fixed number. Then for any polynomial
pn of degree at most n we have

(4.12) maxexp(—[z])-[p],(2)|-][? < clogn-maxexp(~|e]):|pn(@)]-|z]?.

PROOF. It is similar to that of Lemma 3.2. Let Qn(x) be a polyno-
mial such that its degree is at most n, N = [10mnlogn] and Qx(0)=1,
1Qn ()| < ce™ 17l (2] < (3/2)n), (see [5], p. 124). Now we choose Q% (z) :=
Qn(x — zp), where zg # 0 is an arbitrary fixed number.

In the case |zg| < 1 we use Lemma 2.5 (2.6") with a = §. We get

(4.12) [ (z0)] - [20] # = [(pn@N)' (w0)| - 0| * <

n-+N o
n * . 2 <<
- ‘rgﬂgl(p Qn)(w)] - ]z[2 <

<ec
< clogn - max |pn()] - |21 % - exp(—|z — zo]) =
rzeR
= CIOg'ffgﬁi [pn(z — @0)| - |2 — 20| % - exp(—|2 — 220]).
Multiplying this inequality by exp(—|z¢|) we obtain

|7, (o) | - 0] 2 - exp(—|zo]) <
< clogn - max |p (= wo)| - [# = 0| ? - exp(—|z — 2wo) - exp(—|zo|) <
< clogn - max|py(z — wo)| - |& = 20| ¥ - exp(—|z — z0]) =
= clognmax |p,(z)| - |2]* - exp(—|z]),
i.e. if |zg| <1 then

(4.13) [p},(x0)| - [zo| - exp(=|zo) < clogn-max [p, ()| - 2] - exp(~|z]).

In the case of |xzg| > 1 there exists A > 1 such that ‘%" < 1. Repeating

the idea of the case |zg| < 1 we obtain that (4.13) is true for every xy # 0,
thus Lemma 4.4 is proved.
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